FOURIER-STIELTJES TRANSFORMS ON THE GENERALIZED
LORENTZ GROUP

BY
GARTH WARNER

1. Introduction

The purpose of this note is to define the Fourier-Stieltjes transform and
prove a uniqueness theorem for certain subalgebras of the measure algebra
M(G) of the generalized Lorentz group G. For an arbitrary semi-simple
Lie group G with finite center such a definition was given in [1] for the algebra
of measures stable for the action of K, K the compact constituent of the
Iwasawa decomposition of G. In the formulation given below this algebra
corresponds to M°(x), x the trivial character of K. On the other hand, we
have limited ourselves to the generalized Lorentz group G since various aspects
of the harmonic analysis on this group needed for the definitions are well
known [5]. The main result in this paper is the fact that the Fourier-Stieltjes
transform { of a measure u determines g, that is, 4 = 0 implies u = 0. This
result was obtained in [1, P. 218] for the algebra M°(x), x the trivial character
of K. Our proof is similar to the one in [1] (cf. also [3, P. 680] where the same
technique is employed in a different setting). For the convenience of the
reader, we have gathered the necessary prerequisite material from [5] in a
preliminary section.

2. Preliminaries
(A) Definition of the group G. Let G be the identity component of the
orthogonal group associated with the indefinite quadratic form
X+ X+ + X5 (n an integer > 2).

G is a real simple Lie group called the generalized Lorentz group. Hence G
consists of all matrices ¢ ¢ GL (n 4+ 1, R) such that tg-J-g = J (‘¢ =
transpose) where
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and
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withge > 1,det (g) = 1. G admits an Iwasawa decomposition, ¢ = KA,N,
where K is the maximal compact subgroup of rotations around the z, — axis,
A is a one-parameter subgroup of matrices of the form

cosh ¢ sinh ¢ 0 (teR)
a; = | sinh ¢ cosh ¢
0 In—l

(In-1 denoting the unit matrix of order n — 1), and N is a nilpotent group
homeomorphic to R*™. Let M denote the centralizer of A, in K; then
M may be identified with the rotations in the space (X, Xi, -+, Xa)
leaving fixed X, and X,[5, P. 300]. If the Haar measure dg on G is suitably
normalized, one has

faf(g) dg = LLLf(ka,x)e(”'l)‘ dk dt dx

where g = k a,2(k ¢ K, a, ¢ A, , € N), dk is the Haar measure on K of
mass 1 and dt, dz are the Euclidean measures in R, resp. R"™* ([5, P. 299]).

(B) The algebras L°(x). Denote by K the set of irreducible characters x
of K normalized in such a way that one has

x(6) = x xx(k) = [ x0T @

(“+” is convolution product). Hencefor each x e K there exists an irreducible
unitary representation =« in a unitary space E of finite dimension d(x) such
that

x(k) = d(x)-Tr (=(k)) (k e K).

Similar normalizations and notations will be used for the set M of irreducible
characters n of M.

Let L = L(@) denote the algebra of continuous complex-valued functions

with compact support on G, with convolution product being the multiplica-
tion. The subset L°(x) of L consisting of all functions f e L such that

() xrfsx=1
Gi) 5 =, where f'g) = [ j(hoh™) b
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is a subalgebra of L and the map f — f° % x = x *f° is a projeetion of L onto
L’(x). Given f e L'(x), define the Abel transform F; of f by

Fi(t) = vt fK f (o 2)w (6™ dh da.

Hence F; is a map from the real line R to the algebra of linear operators in
the representation space F of . Among other things, it is proved in [5,
P. 309] that

(i) L'(x)is a commutative algebra for every x e K;
(ii) if Fs(t) = 0, then f(g) = 0.

In addition, as a consequence of the fact that the restriction to M of every
irreducible unitary representation of K decomposes into a direct sum of
pairwise inequivalent irreducible representations of M, one is able to choose
an orthonormal basis (e, : 1 < p < d(x)) in E such that if

w(k)e, = gi:i) eqn(k)eq (k e K),
then one has for m ¢ M,

[ f'(m)

(epg(m)) = : f(m) ’

_ + ff(m)_
where, for 1 < j < u, m — f(m) is an irreducible representation of M, of

dimension r; , with d(x) = 1 + --+ 4+ r.. Let I; be the set of integers p
such that

nt e tria<pSntceetry

and let n’(m) = r;- Tr(f'(m)), m e M. 1In[5, P.312] it is proved that with
respect to the basis (e,) the matrix of Fs(t) assumes diagonal form with

Fy(t),y = (n—l)t/Zf f o) x*n}(k% dk d

for p e I;(e is the identity element in G).

(C) Spherical functions of type x. Fix a character x and choose 5 e I
such that x * 7 % 0 (see (B)). Let s be a complex number and put

x * (k) o

ax,ﬂ,s»(g) X * "7(6)

ifg=rFkaz,keK,teR,zeN. Let
£x10(0) = (ax0s(@) = [ cxnalhoh™) db.
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Then the functions {,., s are spherical functions in the sense of Godement
[2] and Takahashi [5, P. 315] proved

(1) if Re(s) = (n — 1)/2, {y.q.s is positive definite;

(ii) for all g;, g» € G, one has

Lg‘xm.a(kgl k—lg2) dk = $xms(91)xn.0(02);
(iii) the map
7= tenolf) = [ 50)5enalo) dg

is a homomorphism of L’(x) into C; ¢ = complex numbers.

3. Fourier-Stieltjes transforms

(A) The algebra M°(x). The symbol M(G) will stand for the algebra
(under convolution #) of all complex regular Borel measures on G with com-
pact support. M (@) is a normed algebra under the norm

lull = [ alul @)

(| u| being the total variation of u). Measures » on K (i.e. elements of
M (K)) will be identified with elements in M (G) by

7= [ 1) as®) (f < L(6)).

Similarly elements in L(G) will sometimes be identified with f dg in M (G).
If u e M (@), then u° can be defined by the “weak” integral:

W= f e * u* (ex-1) dk
K
(e being the unit mass at k). One has

(bt % pa)’ = (ua%pa)’ = pt % ps .

DeriNiTioN. M°(x) will consist of all measures u ¢ M (@) such that (i)
po=p' (i) p = x*u*x

Evidently M°(x) is a subalgebra of M (@) and in order to determine u(f)
(f e L(@)) it is enough to know u(f) for f e L(x).

Lemma 1. M°(x) is a commutative algebra.

Proof. This follows at once from the fact that L°(x) is commutative and
weakly dense in M°(x).

DEFINITION. Let 4 be a measure in M°(x). Let 7 ¢ R, q ¢ M such that
x*n#0,andputs = (n — 1)/2 + /= 1. Then the Fourier-Stieltjes
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transform 4 is defined by
£y m) = [ Sxnal0) dulo):

Thus £ is a map from the Cartesian product of the line B with the finite set
of characters n such that x * ¢ 0. Since Re(s) = (n — 1)/2, yn.s i
positive definite and so | i(7, 9)] < || #||. In addition, the usual argument
employing the regularity of u shows that if 5 is fixed and r; — r, , then

Ay, n) — f(ro, ).

LEMMA 2. If ¢ = pu * v, then 6 = [i-9. Hence the map u — i(r, 1) 1s,
for each (v, 1), a complex homomorphism of M°(x).

Proof. The proof depends on the functional equation satisfied by the
Cxa.s (see 2, part (C)). We have

é(ryn) = (uw)" (r,7)
= _/; j; Exme (91 92) du (g1) dv (g2).

And, since p = p°,

Li‘x.n.c (9192) dp (g) = L s (91.02) du (1)
= [ [t G702 du o0

= L $xoms (gl)g.x,ﬂ,: (92) dp (91)0

The assertion is now clear.
Next we prove that {i determines u.
TurorEM 1.  Suppose uy, ps e M'(x) and fiy = fa. Then py = ps.

Proof. 1t is plainly enough to prove that i = 0 implies » = 0 Suppose
first that u is absolutely continuous with respect to dg, that is, du = f dg with
f e L(x). We have

8 m) = [ G (9) 0 (0)

= [ fune @)10) dg

_ f f f ) (x*")((’)“) '™V G dt d

- f{ (n — l)tf [ 5thau ) (X";”)((’;) dk dx} -V gy

= f Fy(t)pp V7 d,
R
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Here p is any element in the set I; determined by % (see 2, part (B)). In
[5, P. 309] it is shown that F;(t) is a continuous function of ¢ with compact
support and hence for each p, F;(t),p ¢ L'(dt). Moreover the above calcula-
tion shows that for p e I; 4(r, n) is just the Fourier transform of E(t)pp
and since fi(r, ) = 0 we must have F;(t),, = 0. Letting 4 range over the
set of characters such that x * 9 0, we conclude F;(¢) = 0 which in turn
implies f = 0 (2, part (B)). Hencep = 0.

In order to complete the proof, let f; be an approximate identity ir L(G),
that is, f; is a sequence of functions in L(G) such that

i) f;207=12,

(ii) faf,<g)dg—1y- 1, ;

(iii) if C is any compact subset of G' containing e, then fg_c f(g)dg — 0
asj — .

Let »; = x * f; . Then the arguments of the preceding paragraph imply
w * v; = 0 since

(w*v;))" = ;=0

and »; is absolutely continuous with respect to dg. On the other hand, given
any f e L°(x) we have f; % f — f uniformly on compacta and so

prvi(f) = prx*f5() = p(x*fi*f) = plxx (fix)°) > p(x *f°) = w(f).
But since p * »; = 0 we must have ¢ = 0 too. This completes the proof.

Remark. The algebra M (G') admits a natural adjoint map u — p* under
which each algebra M°(x) is stable. One may view each algebra M°(x)
as a set of measures possessing certain symmetry properties. It would be of
interest to know whether the algebras M°(x) are symmetric in the technical
sense (cf. (4, P. 104]).
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