ENVELOPES AND p-SIGNALIZERS OF FINITE GROUPS

BY
Jonn G. THOMPSON

The object of this paper is to obtain information about p-signalizers of
finite groups, more particularly, to construct a characteristic subgroup which
contains all the p-signalizers and is “small”. As an application of the result
obtained, and of independent interest, we obtain some information about
groups whose c.f. are Suzuki groups.

If X is a group and p is a prime, S,(X) is the join of all the normal p-solvable
subgroups of X. Thus, S;(X) = S(X) is the largest solvable normal sub-
group of X. The socle of X is Soc(X), the join of all the minimal normal
subgroups of X; and Soc,(X) = Soc(X mod S,(X)). Finally, ESoc(X)
is the extended socle of X and is defined by ESoc(X) = N Nx(M), where M
ranges over all subgroups of Soc(X) which are subnormal in X;' and
ESoc,(X) = ESoc(X mod S,(X)).

If 1 = S(X), then Soc(X) = S; X -+ X 8., where each S; is simple,
1 = Cx(Soc(X)) and ESoc(X) = Ni= Nx(S:).

Lemma 1. (a) Suppose Soc,(G) € H & G. Then

(1) Sp(@) = S,(H).
(ii) Soc,(G) = Soc,(H).
(iii) ESoc,(H) C ESoc,(G).
(b) IfH < G, then
(1) S,(H) = H n Sy(@).
(ii) Soc,(H) & Soc,(@).
(iii) ESoc(H) C ESoc,(G).

Proof. (a) Since S,(G) is a p-solvable normal subgroup of H, we have
S,(G) C S,(H). Since Soc,(G) n S,(H) is a p-solvable normal subgroup
of Soc,(@), we have Soc,(G) n S,(H) C S,(G).

Thus
[Soc,(G), S,(H)] S Soc,(G) n S,(H) S Su(G),

so S,(H) centralizes Soc,(G)/S,(G), whence S,(H) C S,(G). This gives
(i). In proving (ii), we may assume that S,(G@) = S,(H) = 1. Thus,
Soc,(G) < Soc,(H), and so Soc,(G) = Soc,(H), since Cg(Soc,(G)) = 1.
This yields (ii). Clearly, ESoc,(H) = ESoc,(G) n H, so (iil) holds.

As for (b), since every characteristic subgroup of H is normal in G, (i),
(ii), (iii) follow.

For each group G, let @(Q) = {A | A 1 G, Ce(4) = Z(A)}.

TerorEM 1. Suppose p is a prime, P is a S,-subgroup of G, A ¢ GQ(P) and
Q eWg(A4;p'). Then Q C ESoc,(Gy), where Gy = Co(0yp (@) mod 0, (G)).
1 Observe that if ¥ C Soc(X) then ¥ <]<] X if and only if ¥ <] Soc(X).
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Proof. We proceed by lexicographic induction on the ordered triple
(G|, P:41],|Q|), and by way of contradiction. The induction hypothesis
gives
(1) 0 (@) = 1.

Let H = O,(G) C P and let H, = [H, Q]. Suppose H; # 1. Let @ =
Co(A). Since AH C P, it follows that Cx(A) € Z(A). Hence, Qo cen-
tralizes Cx,(A), and so @, centralizes H,. Let @, = [@, A]. We will show
that Q: centralizes H. This follows from the induction hypothesis if @; < @,
so suppose @1 = Q. Inany case, [H,A]C A,andso [H,4,Q1 S HnQ = 1.
This violates Lemma 5.16 of [3]. We conclude that

(2) QC CG(H) =Go.
Our induction hypothesis, together with Lemma 1, gives
(3) G = Go A.

Let A = A-0,(®), so that A e @(P). Since Q ¢ (4; p'), our induction
hypothesis gives A = 4.

Let Gi = Socy,(Go). Now S,(Gy) = Z(Gy) is a p-group and Gi/Z(G,) =
Si X -+« X Sn, where each S; is a simple non abelian group of order divisible
by p. Since @ 4 ESoc,(Gs), we may assume that Q does not normalize S .

By our induction hypothesis, every proper subgroup of @ which admits 4
normalizes S,. Hence, @ is a ¢-group for some prime ¢ #* p, and
Q nNg(S:) = Q: 2 D(Q), while Q/D(Q) is an irreducible A -group.

Let S: = Li/Z(Gy), and let G, be the normal closure of L; in G. Thus,
Q ¢ ESoc,(G: QA), and so

(4) G=G0QA, G =G, Li~L;, t=1,2.-,m.
Let P; = Pa L;. Since L; <] < G, we see that

(5) P; isan S,subgroup of L;, =1, ,m.
We proceed to show that
(6) A npormalizes L, t1=1---,m.

Suppose false. Choose a ¢ A such that L; = L; with j ¢ <. Thus, for each

zeP;,x"eLj,s0

y = 22" = [z, aleL; L; n A.
For each z € Q, we get [y, 2] e @ n G, = D(Q), so y centralizes @/D(Q). Hence
[y, 2] = 1. Hence Q normalizes L; L; , and so @ n N(L;) is of index at most 2
in Q. TFirst, suppose ¢ is odd. Then @ normalizes L;, so @ normalizes L, ,
as QA permutes {L:, ---, L.} transitively. This is not the case, so
|Q:Q nN(L;) | = 2. Thus, {L;, L;} is permuted transitively by @, so we may
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assume that
{Li, Lo}, {Ls, L4, -+ ,{Lana, Lsn}

are the orbits of {L,, -+, L,} under @, 2n = m, and thatz = 1,7 = 2. On
the other hand, @ is an arbitrary element of A which does not normalize L,
and so we conclude that A normalizes L; Ly. Hence m = 2,n = 1, and so
A normalizes L, and L, , p being odd. We conclude that (6) holds.

Since A € N7 N(L;), so also [4, Q] € Ny N(L;). This implies that
[4, Q] € D(Q), and so

(7 AQ = A X Q.

Since P is a Sp-subgroup of Ne(4), Pn Ce(A) = Z(A) is a S,-subgroup of
Cs(A). Hence Co(A) = Z(A) X D, where D = 0,(Cq(A4)) 2 Q. By
induction, we get 4 = P.

Since A = P, it follows that @ centralizes P;. Hence, for each z ¢ Q,
L;n L 2 P;,and so L; n L7 D Z(G,). This implies that L; = L, for all
zeQ,72=1, ... m, and completes the proof.

For each group G, let (@), the envelope of G, be the class of all groups H
which have a normal subgroup K such that

(1) K/Z(K) ~G.
(2) Cx(K/Z(K)) = Z(K).

For each prime p, let 8, be the class of all groups G such that if H « (&), H,
is an S,-subgroup of H and A ¢ Q(H,), then O, (H) contains every element
of Uz(A; p'). Let §, be the class of all groups G such that if H ¢ &(G) and
U is a p-subgroup of H, then O, (Cx(U)) C O, (H).

Lemma 2. Ifg = 2" > 2 4s an odd power of 2, then Sz(q) €$:n §; .

Proof. Choose H ¢ &(@), where @ = Sz(q). In proving the lemma, we
may assume that Oy (H) = 1. Let K be a normal subgroup of H such that
K/Z(K) ~ G and Cx(K/Z(K)) = Z(K). Let P be a S;-subgroup of H.
As is well known [2], | H:K | is odd, so P C K.

Case 1. ¢ > 8. By a result of Alperin and Gorenstein [1], K =
K’ X Z(K). Thus, for each A ¢ @(P), we have A = A, X Z(K), where
A; = An K ¢@(P n K'). In particular, A contains Z(P n K'). By a
result of Suzuki [2], 1 is the only element of Mz(A4;2'), and s0 G €S, .

If U is a 2-subgroup of H, we may assume U C P. Thus, Cx(U) contains
Z(P n K'), and by the result of Suzuki alluded to above, 1 is the only element
of Mxg(Ce(U); 2'), and so G e§;.

Case 2. ¢ = 8. Let L = K’. Thus, K is a central product of L and
Z(K), and L is perfect. Let P, = Pn L. If A ¢ @(P), then A is a central
product of A; and Z(K), where A; = An P, e@Q(P,). If Z(L) = 1, the argu-
ment in Case 1 applies, so suppose Z(L) = 1. Set Z = Z(L).

By the result of Alperin and Gorenstein, we get that Z is elementary of order
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2 or 4, and in addition, Z = Z(P,;). Also, P; = Z X E, where E is elementary
of order 8. By a basic property of P:1/Z, each of its normal subgroups either
contains Pj/Z or is contained in P1/Z. Since 4:<] P;and Cp,(41) = Z(41),
we get that 4, 2 Pi. Hence, 1 is the only element of Mz(A;2’), 50 G 8.

Now suppose U is a 2-subgroup of H. We may assume that U & P.

First, suppose Cx(U) € K. If U C Z(K), clearly O (Cs(U)) = 1, so
suppose U & Z(K). Since K/Z(K) is a CIT-group, it follows that Cx(U) =
Ck(U) is a 2-group, 50 O (Cx(U)) = 1.

Finally, suppose Cz(U) & K. In this case, H/Z(K) ~ Aut Sz(8). As
observed by Alperin and Gorenstein, H/K acts non-trivially on Z(L) = Z,
and so O (C(U)) C K, whence O (C(U)) = 1.

Combining the various cases gives G ¢§; and completes the proof.
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