DEFECT GROUPS IN THE THEORY OF REPRESENTATIONS OF FINITE GROUPS

BY
Richard Brauer
Dedicated to Oscar Zariski
1. Introduction ${ }^{1}$

Let G be a finite group. Let Ξ be an algebraically closed field. As is well known, the study of the characters of G is closely related to that of the group algebra $\Xi[G]$ and of its center $Z=Z(\Xi[G])$. We call Z the class algebra of G. We are concerned here with a further investigation of \boldsymbol{Z} continuing the work in [1].

The dimension of Z as a Ξ-space is the class number $k(G)$ of G. Since we are interested in characters and related functions, we also consider the dual space \hat{Z} consisting of all linear functions defined on \boldsymbol{Z} with values in $\boldsymbol{\Xi}$.

Write Z as a direct sum

$$
\begin{equation*}
Z=\oplus \sum B \tag{1.1}
\end{equation*}
$$

of block ideals of Z, i.e. of indecomposable ideals of Z. This decomposition (1.1) corresponds to the decomposition

$$
\begin{equation*}
\hat{Z}=\oplus \sum F_{B} \tag{1.2}
\end{equation*}
$$

where F_{B} is the subspace of \hat{Z} consisting of those $f \in \hat{Z}$ which vanish on all block ideals $B_{1} \neq B$ in (1.1). Then B and F_{B} are themselves dual vector spaces and they have the same dimension k_{B}.

Each B is a commutative ring with a unit element η_{B}. If 1 is the unit element of Z, we have

$$
\begin{equation*}
1=\sum_{B} \eta_{B} \tag{1.3}
\end{equation*}
$$

and (1.3) is the decomposition of 1 into primitive orthogonal idempotents. It follows that

$$
\Xi[G]=\oplus \sum_{B} \eta_{B} \Xi[G]
$$

is the decomposition of the group algebra into (two-sided) block ideals.
Since B is indecomposable, the residue class ring \bar{B} of B modulo its radical is simple and hence an extension field of finite degree of Ξ. Since Ξ was algebraically closed, \bar{B} is isomorphic to Ξ. We then have an algebra homomorphism ω of B onto \boldsymbol{Z}. Clearly, ω can be extended to an algebra homomorphism ω_{B} of Z onto $\boldsymbol{\Xi}$ such that ω_{B} vanishes for all block ideals $B_{1} \neq B$ in (1.1). Thus $\omega_{B} \in F_{B}$. Conversely, it is seen at once that each non-zero algebra homomorphism of Z into Ξ coincides with ω_{B} for some B.

[^0]The case that \exists has characteristic 0 is well known and fairly trivial. Let $\chi_{1}, \chi_{2}, \cdots, \chi_{k(G)}$ denote the irreducible characters of G. Each χ_{j} defines an algebra-homomorphism ω_{j} onto Ξ given by Frobenius' formula

$$
\begin{equation*}
\omega_{j}(s K)=|K| \chi_{j}\left(\sigma_{K}\right) / \chi_{j}(1) \tag{1.4}
\end{equation*}
$$

where K is a class of conjugate elements of G, where $S K \epsilon \Xi[G]$ is the sum of the $|K|$ elements of K, and where $\sigma_{\boldsymbol{K}} \in K$. Since the $k(G)$ homomorphism ω_{j} are distinct, we have $k(G)$ block ideals $B \cong \exists$ in (1.1) and Z is semisimple.

We now turn to fields of prime characteristic. Throughout this paper, p will be a fixed prime number and we shall reserve the letter Ω for an algebraically closed field of characteristic p. Take then $\boldsymbol{\Xi}=\Omega$ above and set

$$
Z=Z(G)=Z(\Omega[G])
$$

It is clear in principle that if we know the irreducible characters $\chi_{1}, \chi_{2}, \cdots, \chi_{k(G)}$, we can construct the block ideals B, or as we shall simply say, the blocks B of G. Actually, this can be done in an explicit fashion ($\S 2$, 2). In particular, the dimension k_{B} turns out to be the number of irreducible characters χ_{i} in B in the sense of [1].

In a way, our aim lies in the opposite direction. This is part of our effort to find new links between characters of G and group theoretical properties of G. The main result of $[1, \mathrm{I}]$ is already of this type. With each block B of G, we associate a p-subgroup D of G, the defect group of B. If we know ${ }^{2}$ the normalizer $N_{G}(D)$ of D, we can construct the algebra homomorphism ω_{B} for the blocks B of G with the defect group D. This gives us the values (1.4) for the characters $\chi_{j} \in B$ modulo a prime ideal divisor of p in an appropriate algebraic number field.

The defect group D of B is determined up to conjugacy. We shall associate with B a system of p-subgroups of G which we shall call the lower defect groups of B. Again, they are really only determined up to conjugacy. In order to fix ideas, it will be convenient to choose a set $\mathcal{P}(G)$ of representatives for the classes of conjugate p-subgroups of G. We then take defect groups and lower defect groups in $\mathcal{P}(G)$.

Let K be a conjugate class of G. There is a unique element $P \in \mathcal{P}(G)$ such that P is a p-Sylow subgroup of the centralizer $C_{G}(\sigma)$ for suitable $\sigma \in K$. We then call P the defect group D_{K} of the class K.

Let B now be a block. A member P of $\mathcal{P}(G)$ will be called a lower defect group of B, if there exist elements f of the space F_{B} in (1.2) with the following properties:
(i) There exist conjugate classes K with the defect group P such that $f(\delta K) \neq 0$ with $s K$ defined as in (1.4).

[^1](ii) We have $f(\delta K)=0$ for all conjugate classes K for which the order $\left|D_{K}\right|$ of the defect group D_{K} is smaller than the order $|P|$ of P.

More generally, we consider subspaces V of F_{B} such that all $f \neq 0$ in V have properties (i) and (ii). Let $m_{B}(P)$ denote the maximal dimension of such a space V. We count P exactly $m_{B}(P)$ times as lower defect group of B. Let \mathscr{D}_{B} denote the system consisting of the groups $P \in \mathcal{P}(G)$, each P taken with the multiplicity $m_{B}(P) \geqq 0$. This is the system \mathscr{D}_{B} of lower defect groups of B. We shall show (§4) that D_{B} consists of exactly k_{B} groups. In other words,

$$
\begin{equation*}
k_{B}=\sum_{P} m_{B}(P) ; \quad(P \in \mathcal{P}(G)) \tag{1.5}
\end{equation*}
$$

If P is a lower defect group of B, i.e. if $m_{B}(P)>0$, then P is conjugate to a subgroup of the defect group D of B, and D itself is a lower defect group of B. If we know the normalizer $N_{G}(P)$ of $P \in \mathcal{P}(G)$, we are able to construct a subspace V_{P} of dimension $m_{B}(P)$ of F_{B} with the properties (i), (ii) above such that F_{B} is the direct sum of the V_{P} for the various $P \in \mathcal{P}(G)$. If $P \neq 1$, $N_{G}(P)$ is a 'local subgroup' of G. However, since $P=1$ occurs in $\mathcal{P}(G)$, our construction falls short of a full construction of F_{B} based on a knowledge of the local subgroups of G. In particular, in (1.5) the term $m_{B}(1)$ cannot be determined, and we can only give a lower estimate for k_{B}.

By a p-section $\mathfrak{S}(\tau)$ of an element τ of G, we mean the set of all elements $\xi \in G$ such that the p-factor ξ_{p} of ξ is conjugate to the p-factor τ_{p} of τ, $\mathbf{c f}$. [1, II, §3]. Each p-section is a union of conjugate classes. We shall denote by Π a set of representatives for the conjugate classes of p-elements of G. Each p-section has the form $\subseteq(\pi)$ with $\pi \epsilon \Pi$ and G is the disjoint union of these $\mathfrak{S}(\pi)$. In §6, we shall associate each lower defect group of B with one of the sections. Let $m_{B}^{(\pi)}(P)$ of the $m_{B}(P)$ members P of \mathscr{D}_{B} be associated with $\mathfrak{S}(\pi)$ so that

$$
\begin{equation*}
\sum_{\pi} m_{B}^{(\pi)}(P)=m_{B}(P) ; \quad(\pi \in \Pi) \tag{1.6}
\end{equation*}
$$

We shall show that $m_{B}^{(\pi)}(P)$ can be determined when we know the centralizer $C_{G}(\pi)$ of π and the blocks b of $C_{G}(\pi)$ with $b^{G}=B$ (in the sense of [1, II, §2]. It suffices to know the lower defect groups of b associated with the section of the unit element in $C_{G}(\pi)$.

The numbers $m_{B}^{(1)}(P)$ have some remarkable properties. If l_{B} is the number of modular irreducible characters in B, then

$$
\begin{equation*}
l_{B}=\sum_{P} m_{B}^{(1)}(P) ; \quad P \in \mathscr{P}(G) \tag{1.7}
\end{equation*}
$$

This is a kind of analogue of (1.5). If in (1.7) we sum only over the $P \in \mathcal{P}(G)$ of a fixed order p^{r}, the partial sum represents the multiplicity of p^{r} as elementary divisor of the Cartan matrix C_{B} of B. This refines a result announced without proof in [2].

Notation. Most of the notation used has been explained above. The letter G will always stand for a finite group and p will be a fixed prime number.

We shall denote by Ω an algebraically closed field of characteristic p. The class algebra $Z(\Omega[G])$ of G over Ω will be denoted by Z or $Z(G)$. Occasionally in §2, a particular field Ω will be used, but it is clear that the results concerning Z will not depend on the choice of Ω. If M is a subset of G we denote by $S M$ the sum of the elements of M in the group algebra of G.

The set of conjugate classes of G will be denoted by $\mathfrak{C} \ell(G)$. For $K \in \mathfrak{C} \ell(G)$, we shall denote by σ_{K} a representative element in K. If f is a function defined on Z, we shall usually write $f(K)$ instead of $f(s K)$. The set of blocks of G (for given p) will be denoted by $ß \ell(G)$.

We choose a set $\mathcal{P}(G)$ of representatives for the classes of conjugate p-subgroups of G. If $P, Q \in \mathscr{P}(G)$, we write $P \preceq Q$ when P is conjugate in G to a subgroup of Q. Then $\mathcal{P}(G)$ is partially ordered. A set of representatives for the conjugate classes of p-elements of G will be denoted by $I I$.

If M is a subset of G, the centralizer of M in G is denoted by $C_{G}(M)$ and the normalizer of M is denoted by $N_{G}(M)$. We write $|M|$ for the cardinality of M.

In summations, the range of the summation is often indicated in parentheses at the end of the line, e.g. see (1.5). We frequently have to use determinants Δ of the following kind. We have a set F of n functions f and a set X of n arguments. Each row of Δ correspond to one $f \epsilon F$ and each column of Δ corresponds to one $x \in X$. We then write ${ }^{3}$

$$
\Delta=\operatorname{det}(f(x)) ; \quad(f \in F, \quad x \in X)
$$

2. Preliminaries

1. In the following, a simple method developed in [1, I, §7] will play an important role. We discuss it briefly. We shall say that a pair of subgroups (T, H) of G is an admissible pair, if there exists a p-subgroup Q of G such that

$$
\begin{equation*}
T=C_{G}(Q), \quad Q T \subseteq H \subseteq N_{G}(Q) \tag{2.1}
\end{equation*}
$$

(Actually, these conditions could be replaced by weaker ones.)
As shown in [1, I, §7], there exists a unique algebra homomorphism μ of $Z(G)=Z(\Omega[G])$ into $Z(H)=Z(\Omega[H])$ such that

$$
\begin{equation*}
\mu: s K \longrightarrow \delta(K \cap T) \text { for } K \in \mathbb{C} \ell(G) \tag{2.2}
\end{equation*}
$$

The dual mapping λ then maps the dual space $\hat{Z}(H)$ of $Z(H)$ into $\hat{Z}(G)$. For $\varphi \in \hat{Z}(H)$, we have

$$
\begin{equation*}
\lambda: \varphi \longrightarrow \varphi^{\lambda}=\varphi \circ \mu . \tag{2.3}
\end{equation*}
$$

In particular, if b is a block of H and if φ is the corresponding algebrahomomorphism ω_{b} of $Z(H)$ onto Ω then ω_{b}^{λ} is an algebra homomorphism of $Z(G)$ onto Ω. Hence $\omega_{b}^{\lambda}=\omega_{B}$ for some block B. We then write $B=b^{G}$;

[^2]cf. [1, II, §2]. We show:
(2A) Let (T, H) be an admissible pair of subgroups of G. Let b_{0} be a block of H and let $F_{b_{0}}$ denote the subspace of $\hat{Z}(H)$ corresponding to b_{0}. If $\varphi \in F_{b_{0}}$ and if λ is the mapping (2.3), then $\varphi^{\lambda} \epsilon F_{B_{0}}$ with $B_{0}=b_{0}^{G}$.

Proof. Since μ is an algebra homomorphism, it maps the idempotent η_{B} of $B \in \mathbb{B}(G)$ on an idempotent of $Z(H)$ or on 0 . Hence we can set

$$
\begin{equation*}
\eta_{B}^{\mu}=\sum_{b} \eta_{b} \tag{2.4}
\end{equation*}
$$

where b ranges over a set Γ_{B} of blocks of H. If $b_{0} \in ß \ell(H)$ and if $B_{0}=b_{0}^{\theta}$, by (2.3) and (2.4),

$$
\omega_{B_{0}}\left(\eta_{B}\right)=\omega_{b_{0}}\left(\eta_{B}^{\mu}\right)=\sum_{b} \omega_{b_{0}}\left(\eta_{b}\right) ; \quad\left(b \in \Gamma_{B}\right) .
$$

This shows that $\omega_{B_{0}}\left(\eta_{B}\right)=1$, if and only if $b_{0} \in \Gamma_{B}$. Hence Γ_{B} consists of exactly those $b \in ß \ell(H)$ for which $b^{G}=B$.

Suppose now that $\varphi \in F_{b_{0}}$. Then, for $\zeta \in Z(G)$,

$$
\varphi^{\lambda}\left(\eta_{B} \zeta\right)=\varphi\left(\eta_{B}^{\mu} \zeta^{\mu}\right)=\sum_{b} \varphi\left(\eta_{b} \zeta^{\mu}\right) ; \quad\left(b \in \Gamma_{B}\right) .
$$

If $B \neq b_{0}^{G}$, then $b_{0} \notin \Gamma_{B}$ and it follows that our expression vanishes. This shows that $\varphi^{\lambda} \in F_{B_{0}}$ with $B_{0}=b_{0}^{G}$.
(2B) Let (T, H) form an admissible pair of subgroups of G with $T=C_{G}(Q)$, $Q \in \mathcal{P}(G)$. Let $\varphi \in \hat{Z}(H)$ and $f=\varphi^{\lambda}$, cf. (2.3). If $f(K) \neq 0$ for some conjugate class, then the defect group D_{K} of K satisfies $D_{K} \geq Q$ in the partial ordering of $P(G)$.

Indeed, by (2.2) and (2.3)

$$
f(K)=\varphi\left(\delta\left(K \cap C_{G}(Q)\right)\right.
$$

If $f(K) \neq 0$, the class K meets $C_{G}(Q)$ and this implies $D_{K} \geq Q$.
2. We next discuss the connection between the algebras Z ($\Xi[G]$) and $Z(\Omega[G])$ where \boldsymbol{Z} is an algebraically closed field of characteristic 0 and Ω (as always) an algebraically closed field of characteristip p. As we have seen in $\S 1$, the class algebra $Z(\xi[G])$ is semi-simple and, if $k(G)$ is the class number of G, we have exactly $k(G)$ distinct algebra homomorphisms ω_{i} of $Z(\xi[G])$ onto $\boldsymbol{\Xi}, \mathrm{cf}$. (1.4). These formulas show that this result remains valid, if $\boldsymbol{\Xi} \boldsymbol{\pi}$ is replaced by the field Ξ_{0} of the $|G|$-th roots of unity over the field Q of rational numbers. Indeed, all $\chi_{i}\left(\sigma_{K}\right)$ in (1.4) lie in Ξ_{0}.

Let p be a fixed rational prime. Let ν denote a fixed extension of the p-adic (exponential) valuation of \mathbf{Q} to a valuation of Ξ_{0}. If 0 is the ring of local integers for ν in Ξ_{0} and \mathfrak{p} the corresponding prime ideal, we set

$$
\begin{equation*}
\mathfrak{o} / \mathfrak{p}=\Omega_{0} \tag{2.5}
\end{equation*}
$$

and form the subring

$$
\begin{equation*}
J=\sum_{K} \mathfrak{o}(S K) ; \quad(K \in \mathbb{C} \ell(G)) \tag{2.6}
\end{equation*}
$$

of "integral" elements of $Z\left(\Xi_{0}[G]\right)$. If θ_{0} is the natural homomorphism of 0 onto Ω_{0} in (2.5), clearly θ_{0} can be extended to a homomorphism θ of J onto the class algebra $Z\left(\Omega_{0}[G]\right)$. If φ is a linear function defined on $Z\left(\mathcal{\Xi}_{0}[G]\right)$ with values in Ξ_{0}, and if $\varphi(\alpha) \in \mathbb{D}$ for all $\alpha \in J$, then the map θ defines a linear function φ^{θ}, defined on $Z\left(\Omega_{0}[G]\right)$ with values in Ω_{0}. Let Ω denote the algebraic closure of Ω_{0}. By linearity, φ^{θ} can be considered as a linear function on the class algebra $Z=Z(\Omega[G])$ with values in Ω, i.e. φ^{θ} can be considered as an element of the dual space \hat{Z}.

Since as is well known the right sides in (1.4) are algebraic integers in Ξ_{0}, we can apply this to the function $\varphi=\omega_{j}$. It is clear that ω_{j}^{θ} is an algebra homomorphism of Z onto Ω. Hence ω_{j}^{θ} must be an ω_{B} for some block B of G. In [1], the irreducible character χ_{j} of G was said to belong to the block B of G, if $\omega_{j}^{\theta}=\omega_{B}$. We shall also say now that then ω_{j} is associated with B. If this is so for k_{B}^{*} values of j, clearly

$$
\begin{equation*}
k(G)=\sum_{B} k_{B}^{*} ; \quad(B \in ®(G)) . \tag{2.7}
\end{equation*}
$$

Consider the Ξ_{0}-space W spanned by the ω_{j} associated with B,

$$
\begin{equation*}
W=\sum_{j} \Xi_{0} \omega_{j} ; \quad\left(\chi_{j} \in B\right) \tag{2.8}
\end{equation*}
$$

and take the subset M_{B} consisting of those $\varphi \in W$ for which $\varphi(\alpha) \in \mathcal{D}$ for all $\alpha \in J$. Then M_{B} is an 0 -module of rank k_{B}^{*}. Since o is a principal ideal domain, M_{B} has an d-basis. It follows that the module $\left(M_{B}\right)^{\theta}$ of all φ^{θ} with $\varphi \in M_{B}$ has again rank k_{B}^{*}. On the other hand, the method in [1, II, §4] shows that $\left(M_{B}\right)^{\theta} \subseteq F_{B}$. Hence

$$
\begin{equation*}
\operatorname{dim}_{\Omega} B=\operatorname{dim}_{\Omega} F_{B} \geqq k_{B}^{*} \tag{2.9}
\end{equation*}
$$

If we add over all B, both sides have the same sum $k(G)$, cf. (1.1) and (2.7). Hence we must have equality in (2.9). Thus
(2C) Let Ω be an algebraically closed field of characters p. Let B be a block of G. Then $\operatorname{dim}_{\Omega} B$ is equal to the number of ordinary irreducible characters of G in B in the sense of [1].

With the notation introduced above, we also have
(2D) If φ ranges over the elements of the \mathbb{D}-module M_{B}, then φ^{θ} ranges over F_{B}.
3. We add some remarks which will only be used in $\S 6$ and $\S 7$.
(2E) Let B be a block of G. Suppose we have coefficients $a_{K} \in \Xi$ such that

$$
\begin{equation*}
\sum_{K} a_{K} \omega_{j}(K)=0 ; \quad(K \in \mathbb{C} \ell(G)) \tag{2.10}
\end{equation*}
$$

for every ω_{j} associated with B. Then (2.10) remains valid if we let K range only over the conjugate classes which belong to a fixed p-section.

Proof. Expressing ω_{j} by χ_{j} by means of (1.4), we have

$$
\sum|K| a_{K} \chi_{j}\left(\sigma_{K}\right)=0
$$

We may assume that the p-factor of σ_{K} is an element $\pi_{K} \in \Pi$. If $\sigma_{K}=\pi_{K} \rho_{K}$, we can express $\chi_{j}\left(\sigma_{K}\right)$ by the decomposition numbers belonging to B and the section $\subseteq\left(\pi_{K}\right)$ and the values of modular irreducible characters of $C_{G}\left(\pi_{K}\right)$ for the element ρ_{K}, cf. [1, II (3.2), (6A)]. Since [I1, II (7B)] implies that the matrix of decomposition numbers belonging to B is non-singular the statement is immediate.
(2F) Let B be a block; $k_{B}=\operatorname{dim}_{\Omega} B$. Suppose we have a set F of k_{B} elements of F_{B} and a set Ω of k_{B} conjugate classes such that

$$
\operatorname{det} f(K) \neq 0 ; \quad(f \in F, \quad K \in \Omega) .
$$

Let K_{0} be a fixed conjugate class. There exist coefficients $c_{K} \in \mathbb{D}$ such that

$$
\begin{equation*}
\omega_{j}\left(K_{0}\right)=\sum_{K} c_{K} \omega_{j}(K) ; \quad(K \in \Omega) \tag{2.11}
\end{equation*}
$$

for each ω_{j} associated with B. Here, c_{K} vanishes when K and K_{0} belong to different p-sections. For each $f \in F_{B}$, then

$$
\begin{equation*}
f\left(K_{0}\right)=\sum_{K} c_{K}^{\theta} f(K) ; \quad(K \in \Omega) \tag{2.12}
\end{equation*}
$$

Proof. For each $f \in F_{B}$, there exists a $\varphi \in M_{B}$ with $\varphi^{\theta}=f$. If Φ is the system of k_{B} functions φ obtained from F in this manner,

$$
\operatorname{det}(\varphi(K)) \not \equiv 0(\bmod \mathfrak{p}) ; \quad(\varphi \in \Phi, \quad K \in \Re)
$$

It follows that we can find coefficients $c_{\mathbb{K}} \in \mathfrak{D}$ such that

$$
\varphi\left(K_{0}\right)=\sum_{K} c_{K} \varphi(K) ; \quad(K \in \Omega)
$$

for each $\varphi \in \Phi$. Since the k_{B} functions φ are certainly linearly independent and belong to W in (2.8), they form a Ξ_{0}-basis of W and hence

$$
\omega_{j}\left(K_{0}\right)=\sum_{K} c_{K} \omega_{j}(K) ; \quad(K \in \Omega)
$$

for each ω_{j} associated with B. Now (2E) shows that this result remains valid, if we replace c_{K} by 0 for all $K \in \Omega$ which do not belong to the section of K_{0}.

The relation (2.11) remains valid if ω_{j} is replaced by an arbitrary element φ of W. In particular, we may take $\varphi \in M_{B}$. Now (2.12) is immediate from (2D).

The following result has been observed by M. Osima and K. Iizuka
(2G) Let B be a block of G. There exists a unique idempotent $\varepsilon_{B} \in Z(\mathrm{D}[G])$ such that $\omega_{j}\left(\varepsilon_{B}\right)=1$ or 0 according as to whether or not ω_{j} is associated with B. If K_{0} is a fixed conjugate class, we have formulas

$$
\begin{equation*}
\left(s K_{0}\right) \varepsilon_{B}=\sum_{K} a_{K}(\delta K) ; \quad(K \in \mathfrak{C} \ell(G)) \tag{2.13}
\end{equation*}
$$

with $a_{K} \in \mathfrak{D}$. If K_{0} belongs to the p-section $\mathfrak{S}(\pi)$, here $a_{K}=0$ for all K not contained in $\mathfrak{S}(\pi)$.

Proof. As shown in [1, II, §4] there exists an idempotent $\varepsilon_{B} \in Z(\mathrm{p}[G])$ for which $\omega_{j}\left(\varepsilon_{B}\right)$ has the values 1 or 0 as indicated. It is clear that ε_{B} is unique. Then for each $K_{0} \in \mathfrak{C} \ell(G)$, we have an equation (2.13) with $a_{K} \in \mathfrak{0}$. This implies that

$$
\sum_{K} a_{K} \omega_{j}(K)=\omega_{j}\left(K_{0}\right)
$$

if ω_{j} is associated with B while in the other case the sum is 0 . In either case, (2E) shows that

$$
\sum_{K} a_{K} \omega_{j}(K)=0 ; \quad(K \in \mathbb{C} \ell(G), \quad K \nsubseteq \subseteq(\pi))
$$

Since this holds for $j=1,2, \cdots, k(G)$, we have $a_{K}=0$ for all K not contained in $\mathfrak{S}^{(\pi)} \boldsymbol{\pi}$, Q.E.D.

The map θ of $Z(\mathrm{p}[G])$ onto $Z\left(\Omega_{0}[G]\right)$ clearly maps ε_{B} onto the idempotent $\eta_{B} \in B$. Hence
(2H) Let B be a block of G. Let K_{0} be a fixed conjugate class. There exist elements $\boldsymbol{c}_{\boldsymbol{K}} \boldsymbol{\epsilon} \Omega$ such that

$$
\left(s K_{0}\right) \eta_{B}=\sum_{K} c_{K}(s K)
$$

where K ranges over those conjugate classes which are contained in the section of K_{0}.

3. Selection of sets of conjugate classes for the blocks

(3A) For each block B of G, we can select a set Ω_{B} of k_{B} conjugate classes of G and a set X_{B} of k_{B} elements of F_{B}, denoted by h_{K} with $K \in \Omega_{B}$, such that:
(i) The set $\mathbb{C} \ell(G)$ is the disjoint union of the sets Ω_{B} with $B \in \odot \ell(G)$.
(ii) The set X_{B} is a basis of F_{B}.
(iii) If $Q \in \mathcal{P}(G)$ and if $\Omega_{B}(Q)$ is the subset of Ω_{B} consisting of those classes with defect group Q, each h_{K} with $K \in \Omega_{B}(Q)$ has the form $h_{K}=\varphi^{\lambda}$ where $\varphi \in \hat{Z}\left(N_{G}(Q)\right)$ and where λ is the operator in (2.3) with $T=C_{G}(Q)$, $H=N_{G}(Q)$.
(iv) $h_{K}(K)=1 ; h_{K}\left(K^{\prime}\right)=0$ for $K, K^{\prime} \in \Omega_{B}(Q)$ and $K \neq K^{\prime}$.

Proof. Consider a fixed $Q \in \mathcal{P}(G)$ and set $H=N_{G}(Q)$. For each $b \in ß \ell(H)$, let F_{b} be the subspace of $\mathcal{Z}(H)$ defined in a manner analogous to the definition of F_{B} in $\hat{Z}(G)$. Let Y_{b} denote a basis of F_{b}.

If $B \in \mathbb{B} \ell(G)$, denote by B_{B} the set of blocks b of H with $b^{G}=B$ and let Y_{B} be the union of the Y_{b} for these b. Since

$$
\hat{Z}(H)=\oplus \sum_{b} F_{b} ; \quad(b \in ® \in(H))
$$

the union Y of the sets Y_{B} for all $B \in \mathscr{B} \ell(G)$ is a basis of $\hat{Z}(H)$. Hence

$$
\begin{equation*}
\operatorname{det}(\varphi(L)) \neq 0 ; \quad(\varphi \in Y, \quad L \in \mathbb{C} \ell(H)) \tag{3.1}
\end{equation*}
$$

It follows from (3.1) that, for each $B \in ß \ell(G)$, we can select a subset \mathbb{R}_{B} of $\mathfrak{C} \ell(H)$ such that

$$
\begin{equation*}
\mathfrak{C} \ell(H)=\cup_{B} \Omega_{B}(\text { disjoint }) ; \quad(B \in \mathbb{B} \ell(G)) \tag{3.2}
\end{equation*}
$$

and that $\left|\mathbb{R}_{B}\right|=\left|Y_{B}\right|$ and

$$
\begin{equation*}
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{B}, \quad L \in \mathfrak{R}_{B}\right) \tag{3.3}
\end{equation*}
$$

For $\left|Y_{B}\right|=\left|\Omega_{B}\right|=0$, the determinant in (3.3) is 1 by definition and (3.3) is always satisfied.

Let $\mathfrak{R}_{B}(Q)$ denote the subset of \mathfrak{R}_{B} consisting of the classes in Ω_{B} with the defect group Q in H. If follows from (3.3) that we can find a subset $Y_{B}(Q)$ of Y_{B} with $\left|Y_{B}(Q)\right|=\left|\mathfrak{R}_{B}(Q)\right|$ such that

$$
\begin{equation*}
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{B}(Q), \quad L \in \mathbb{R}_{B}(Q)\right) \tag{3.4}
\end{equation*}
$$

It is an immediate consequence of Sylow's theorems that if L is a conjugate class of $H=N_{G}(Q)$ with the defect group Q in H, then the conjugate class L^{G} of G which contains L has defect group Q in G. Conversely, every conjugate class K of G with defect group Q is obtained in this fashion; the corresponding class L of H is uniquely determined; $L=K \cap C_{G}(Q)$. Let $Y_{B}(Q)^{\lambda}$ denote the set of functions φ^{λ} with $\varphi \in Y_{B}(L)$ and with λ defined in (2.3), with $T=C_{G}(Q), H=N_{G}(Q)$. On account of $(2 \mathrm{~A}), Y_{B}(Q)^{\lambda}$ is a subset of F_{B}. Let $\Omega_{B}(Q)$ denote the set of classes L^{G} with $L \in \Omega_{B}(Q)$. Then each class in $\Omega_{B}(Q)$ has defect group Q. Moreover, for $\varphi \in Y_{B}(Q)$ and $K=L^{G}$ with $\mathrm{L} \in \mathfrak{R}_{B}(Q)$, by (2.3)

$$
\varphi^{\lambda}(K)=\varphi\left(\delta\left(K \cap C_{G}(Q)\right)\right)=\varphi(L)
$$

Hence (3.4) implies

$$
\operatorname{det}(f(K)) \neq 0 ; \quad\left(f \in Y_{B}(Q)^{\lambda}, \quad K \in \Omega_{B}(Q)\right)
$$

It is now clear that we can find linear combinations h_{K} of the elements of $Y_{B}(Q)^{\lambda}$ which satisfy the conditions (iv) in (3A). If Ω_{B} is the union of the sets $\Omega_{B}(Q)$ for all $Q \in \mathcal{P}(G)$, then condition (iii) is likewise satisfied. For each $K \in \Omega_{B}$, the function h_{K} belongs to F_{B}.

If K is any class of G and if Q is the defect group, then by (3.2), $L=K \cap C_{K}(Q)$ belongs to Ω_{B} for a unique block B. It follows that K belongs to Ω_{B} for a unique B. Hence condition (i) of (3A) holds.

We show that the set X_{B} of functions h_{K} with $K \in \Omega_{B}$ is linearly independent. Suppose we have a non-trivial relation

$$
\begin{equation*}
\sum_{K} c_{K} h_{K}=0 ; \quad\left(K \in \Omega_{B}\right) \tag{3.5}
\end{equation*}
$$

with coefficients $c_{K} \in \Omega$. Since not all c_{K} vanish, we can choose a group $P \in \mathcal{P}(G)$ such that $c_{K} \neq 0$ for some $K \in \Omega_{B}(P)$ while we have $c_{K}=0$ for all $K \in \Omega_{B}$ whose defect group D_{K} has smaller order than $|P|$.

Take $K^{\prime} \in \Omega_{B}(P)$. Then K^{\prime} has defect group P. Consider a term $c_{K} h_{K}$ in (3.5). If here $K \in \Omega_{B}(Q)$ with $Q \in \mathscr{P}(G)$, by (iii) and (2B), we have $h_{K}\left(K^{\prime}\right)=0$ except when $P \geqq Q$. If $P>Q$, by construction $c_{K}=0$. It follows from (3.5) that, for $K^{\prime} \epsilon K_{B}(P)$, we have

$$
\sum_{K} c_{K} h_{K}\left(K^{\prime}\right)=0
$$

where K ranges over the classes in Ω_{B} with the defect group $Q=P$. These are the $K \epsilon \Omega_{B}(P)$. It now follows from (iv) that $c_{K}=0$ for all $K \epsilon \Omega_{B}(P)$, a contradiction.

Hence the set $X_{B}=\left\{h_{K}\right\}$ is linearly independent. This implies

$$
\left|\Omega_{B}\right|=\left|X_{B}\right| \leqq \operatorname{dim}_{\Omega} F_{B}=k_{B}
$$

If we add here over all $B \in \mathbb{B} \ell(G)$, the sum on the left is $k(G)$ by (i). Since the sum on the right is also $k(G)$ by (1.2), we must have equality for each B. Hence X_{B} is a basis of F_{B}. This proves (ii) and the proof of (3A) is complete.
(3B) Let Ω_{B} be chosen as in (3A). There exists a basis $\left\{f_{K}\right\}$ of F_{B} with K ranging over Ω_{B} with the following properties

$$
f_{K}(K)=1 ; f_{K}\left(K^{\prime}\right)=0 \quad \text { for } \quad K, K^{\prime} \in \Omega_{B}, K \neq K^{\prime}
$$

Moreover, if $f_{K}\left(K^{*}\right) \neq 0$ for some $K^{*} \in \mathfrak{C} \ell(G)$, then $D_{K *} \geq D_{K}$.
Proof. Let $Q \in \mathscr{P}(G)$. Suppose that f_{K} has already been obtained for all $K \in \Omega_{B}(P)$ with $P \in \mathcal{P}(G)$ and $P>Q$. Suppose now that $K \in \Re_{B}(Q)$ and set

$$
\begin{equation*}
f_{K}=h_{K}-\sum_{K_{1}} h_{K}\left(K_{1}\right) f_{K_{1}} ; \quad\left(K_{1} \in \Omega_{B}, D_{K_{1}}>Q\right) \tag{3.6}
\end{equation*}
$$

Here, $f_{K_{1}}$ is assumed to be defined. If $f_{K}\left(K^{*}\right) \neq 0$ for $K^{*} \in \mathcal{C} \ell(G)$, then $h_{K}\left(K^{*}\right) \neq 0$ or $f_{K_{1}}\left(K^{*}\right) \neq 0$ for some $K_{1} \in \Omega_{B}$ with $\left.D_{K_{1}}\right\rangle Q$. In the latter case, by assumption $D_{K *} \geq D_{K_{1}}$ and hence $D_{K *} \geq Q$. In the former case, by (3A) (iii) and (2B), $D_{K *} \geq Q$. This shows that f_{K} has the last property in (3B).

Suppose now that $K^{\prime} \in \Omega_{B}$. If $D_{K^{\prime}}>Q$ then K^{\prime} is one of the K_{1} in (3.6) and we see that $f_{K}\left(K^{\prime}\right)=0$. If $D_{K^{\prime}}=Q$, then K^{\prime} is not one of the K_{1} and (3.6) yields

$$
f_{K}\left(K^{\prime}\right)=h_{K}\left(K^{\prime}\right)
$$

Now (3A) (iv) shows that $f_{K}\left(K^{\prime}\right)=0$ for $K^{\prime} \neq K$ and that $f_{K}(K)=1$. Finally, for the remaining $K^{\prime} \in \Omega_{B}$, we have $f_{K}\left(K^{\prime}\right)=0$ since otherwise as shown above $D_{K^{\prime}} \geq Q$.

Applying this successively for all $Q \in \mathcal{P}(G)$ we obtain the required system $\left\{f_{R}\right\}$. Since $\left\{h_{R}\right\}$ was a basis of F_{B}, so is $\left\{f_{K}\right\}$.

If for the local subgroups $H=N_{G}(P)$ with $P \in \mathcal{P}(G), P \neq 1$, we know a basis of F_{b} with $b \in ß \ell(H)$, we can construct the functions f_{K} except for the $K \in \Re_{B}$ with $D_{K}=1$.
(3C) Let B be a block ideal of $Z(G)$ and set

$$
B^{*}=\oplus \sum_{B_{1}} B_{1}, \quad\left(B_{1} \in \circledast \ell(G), \quad B_{1} \neq B\right)
$$

For each $K^{*} \in \mathbb{C} \ell(G), K^{*}{ }_{₫} \AA_{B}$ form the element

$$
\zeta_{K^{*}}=s K^{*}-\sum_{K} f_{K}\left(K^{*}\right) s K ; \quad\left(K \in \Omega_{B}\right)
$$

These elements form a basis of B^{*}.

Proof. It is clear that all f_{K} with $K \in \Omega_{B}$ vanish for the elements $\zeta_{K *}$ and this implies $\zeta_{K *} \epsilon B^{*}$. It is clear that the elements $\zeta_{K *}$ are linearly independent and since the number of these elements is equal to $\operatorname{dim}_{\Omega} B^{*}$, they form an Ω-basis of B^{*}.

Remark. The construction in (3A), (3B) can be performed in the case when we have a partition

$$
\oiint \ell(G)=U B \quad \text { (disjoint) }
$$

where each B is a union of blocks. In particular, if we take

$$
\leftrightarrow \ell(G)=B \cup B^{*}
$$

with B and B^{*} as in (3C) and interchange the roles of B and B^{*}, we obtain an Ω-basis of B.

It should be mentioned that the selection Ω_{B} of sets of classes for the blocks in (3A) is not uniquely determined.

4. The lower defect groups of a block

The system \mathscr{D}_{B} of lower defect groups of a block has been defined in the introduction. We show
(4A) If \Re_{B} is as in (3A), the system \mathfrak{D}_{B} of lower defect groups of the block B coincides exactly with the system of defect groups of the k_{B} classes $K \in \Omega_{B}$.

Proof. We have to show that for $P \in \mathcal{P}(G)$, the multiplicity $m_{B}(P)$ of P in \mathscr{D}_{B} (cf. §1) is equal to $\left|\Omega_{B}(P)\right|=k_{B}(P)$. Let V_{0} denote the subspace of F_{B} spanned by the $k_{B}(P)$ functions f_{K} with $K \in \Omega_{B}(P)$. It is clear from (3B) that V_{0} has dimension $k_{B}(P)$ and that for $v \neq 0$ in V_{0}, there exist classes K with $D_{K}=P$ such that $v(K) \neq 0$. We may even choose $K \in \Omega_{B}(P)$. Moreover, if $K^{*} \in \mathbb{C} \ell(G)$ and if $v\left(K^{*}\right) \neq 0$, then $f_{K}\left(K^{*}\right) \neq 0$ for some $K \in \Omega_{B}(P)$ and then, by (3B), $D_{K^{*}} \geq P$. In particular, $\left|D_{K^{*}}\right| \geqq|P|$. This shows that V_{0} has the properties (i) and (ii) required in the definition of $m_{B}(P)$ in $\S 1$ of subspaces V of F_{B} and hence $k_{B}(P) \leqq m_{B}(P)$.

Conversely, let V be any subspace of F_{B} with these properties (i), (ii), §1. Express $v \in V$ by the basis $\left\{f_{K}\right\}$ of F_{B} in (3B),

$$
v=\sum_{K} a_{K} f_{K} ; \quad\left(K \in \Omega_{B}\right), \quad a_{K} \in \Omega .
$$

Here $a_{K}=v(K)$ for $K \in \Omega_{B}$. For any $K^{*} \in \mathfrak{C} \ell(G)$, then

$$
\begin{equation*}
v\left(K^{*}\right)=\sum_{K} v(K) f_{K}\left(K^{*}\right) ; \quad\left(K \in \Omega_{B}\right) \tag{4.1}
\end{equation*}
$$

Because of the property $\S 1$, (ii) of V, it suffices to let K range over the classes for which $\left|D_{K}\right| \geqq|P|$.

If $v \neq 0$, then by $\S 1$, (i), we can choose K^{*} with the defect group P such that $v\left(K^{*}\right) \neq 0$. By (3B), $f_{K}\left(K^{*}\right)=0$ in (4.1) except when $P \geq D_{K}$. It follows that there exist $K \in \Omega_{B}$ with the defect group P for which $v(K) \neq 0$. Since $K \in \Omega_{B}(P)$ and $\left|\Omega_{B}(P)\right|=k_{B}(P)$, this implies that the dimension of
V is at most equal to $k_{B}(P)$. Hence $m_{B}(P) \leqq k_{B}(P)$. We then have equality and the proof is complete.

In particular, the numbers $\left|\Omega_{B}(P)\right|$ in (3A) do not depend on the choice of Ω_{B}. As a corollary of (4 A), we mention
(4B) The number k_{B} of irreducible characters χ_{i} of G in the block B is given by

$$
\begin{equation*}
k_{B}=\sum_{P} m_{B}(P) ; \quad P \in \mathcal{P}(G) \tag{4.2}
\end{equation*}
$$

For each P, the sum

$$
\begin{equation*}
\sum_{B} m_{B}(P) ; \quad(B \in \mathbb{B} \ell(G)) \tag{4.3}
\end{equation*}
$$

represents the number of conjugate classes of G with defect group P.
A re-examination of the proof of (3A) yields
(4C) For any $B \in ß \ell(G)$ and any $Q \in \mathcal{P}(G)$

$$
\begin{equation*}
m_{B}(Q)=\sum_{b} m_{b}(Q) \tag{4.4}
\end{equation*}
$$

where b ranges over the blocks of $H=N_{G}(Q)$ with $b^{G}=B$.
Proof. It follows from (3.3) that, for each $B \in \mathbb{B} \ell(G)$ and each $b \in B_{H}$, we can find subsets Y_{b} of Y_{B} and Ω_{b} of Ω_{B} with $\left|Y_{b}\right|=\left|\Omega_{b}\right|$ such that Y_{B} is the disjoint union of the Y_{b}, that Ω_{B} is the disjoint union of the \mathfrak{R}_{b} with b ranging over B_{H} and that for each b

$$
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{b}, \quad L \in \Omega_{b}\right) .
$$

We apply (3A) to the group $H=N_{G}(Q)$ instead of G. Let $\Omega_{b}(Q)$ denote the set of those $L \epsilon \Omega_{b}$ which have defect group Q in H. Since $L^{H}=L$, we see that $\Omega_{b}(Q)$ has the same significance for H and b as $\Omega_{B}(Q)$ has for G and B. Hence by (3A)

$$
\left|\mathfrak{R}_{b}(Q)\right|=m_{b}(Q) .
$$

Since $\Re_{B}(Q)$ in $\S 3$ is the disjoint union of the sets $\Re_{b}(Q)$ with $b \in B_{H}$ and since

$$
\left|\Omega_{B}(Q)\right|=\left|\Omega_{B}(Q)\right|
$$

cf. $\S 3$, (4.4) now is evident.
(4D) The defect group D of B (in the sense of [1]) occurs in \mathscr{D}_{B}. It is the unique maximal element of \mathscr{D}_{B} in the partial ordering of $\mathcal{P}(G)$.

Proof. The algebra homomorphism ω_{B} in F_{B} (cf. §1) vanishes for all $K \in \mathfrak{C} \ell(G)$ with $\left|D_{K}\right|<|D|$, but not for all K with $D_{K}=D$, [1, I, §8]. Hence $D \in \mathscr{D}_{B}$.

On the other hand, if $P \in \mathscr{D}_{B}$, there exist blocks b of $H=N_{G}(P)$ with $b^{G}=B$. Let d be a defect group of b in the sense of [1]. Since $P \triangleleft H$, then $P \subseteq d,[1, \mathrm{I},(9 \mathrm{~F})]$ and d is conjugate in G to a subgroup of $D,[1, \mathrm{II}(2 \mathrm{~B})]$. Hence $D \succeq P$ as stated.

If $d=P$, then $D=P$ by [1]. If $P \subset d$, there exist blocks b_{0} of $N_{H}(d)$ with
$b_{0}^{H}=b$ and then $b_{0}^{G}=B$. Hence we have
(4E) If B and D are as in (4D) and if P is a lower defect group of B with $P \neq D$, there exists a p-subgroup d of G with

$$
P \subset d \subseteq N_{\theta}(P)
$$

and a block b_{0} of $N_{G}(P) \cap N_{G}(d)$ with $b_{0}^{G}=B$.
We finally prove an extension of (4A).
(4F) Suppose that for each block B of G we have a subset \AA_{B}^{*} of $\mathcal{C} \ell(G)$ such that
(i) each $K \in \mathbb{C} \ell(G)$ belongs to at least one Ω_{B}^{*}.
(ii)) If $\left|\Omega_{B}^{*}\right|=k_{B}^{*}$, there exists a subset U_{B} of F_{B} with $\left|U_{B}\right|=\left|k_{B}^{*}\right|$ and

$$
\begin{equation*}
\operatorname{det}(h(K)) \neq 0 ; \quad\left(h \in U_{B}, \quad K \in \Omega_{B}^{*}\right) \tag{4.5}
\end{equation*}
$$

Then $k_{B}^{*}=k_{B}$ and exactly $m_{B}(Q)$ classes of Ω_{B}^{*} have defect group $Q ;(Q \in \mathcal{P}(G))$.
Proof. It follows from (i) that

$$
\sum_{B} k_{B}^{*} \geqq k(G)=\sum_{B} k_{B} ; \quad(B \in ß \ell(G))
$$

On the other hand, (ii) implies that

$$
k_{B}^{*} \leqq \operatorname{dim} F_{B}=k_{B}
$$

If we add over B, we conclude that $k_{B}^{*}=k_{B}$. Each $K \in \mathfrak{C} \ell(G)$ belongs to exactly one Ω_{B}^{*}.

For any $Q \in \mathcal{P}(G)$, let $r_{B}(Q)$ denote the number of $K \in \Omega_{B}^{*}$ with the defect group Q. Then

$$
\begin{equation*}
\sum_{B} r_{B}(Q)=\sum_{B} m_{B}(Q) ; \quad B \in \mathbb{B} \ell(G), \tag{4.6}
\end{equation*}
$$

since on both sides, we have the number of conjugate classes of G with defect group Q.

If $r_{B}(Q) \neq m_{B}(Q)$ for some B and Q, choose a Q of maximal order for which this happens. On account of (4.6), we can then choose B such that

$$
\begin{equation*}
r_{B}(Q)<m_{B}(Q) \tag{4.7}
\end{equation*}
$$

If $\left\{f_{K}\right\}$ has the same significance as in (3B), it follows from the assumption (ii) and $k_{B}^{*}=k_{B}$ that

$$
\begin{equation*}
\operatorname{det}\left(f_{K}\left(K^{*}\right)\right) \neq 0 ; \quad\left(K \in \Omega_{B}, K^{*} \in \Omega_{B}^{*}\right) \tag{4.8}
\end{equation*}
$$

Consider here the rows for which $D_{K} \geq Q$. By (3B) then $f_{K}\left(K^{*}\right)=0$ except when

$$
\begin{equation*}
D_{K} * \geq D_{K} \geq Q \tag{4.9}
\end{equation*}
$$

The number of rows in question is

$$
R=\sum_{P} m_{B}(P) ; \quad(P \in \mathcal{P}(G), \quad P \geq Q)
$$

As shown by (4.9), the non-zero coefficients in the rows occur in

$$
C=\sum_{P} r_{B}(P) ; \quad(P \in \mathscr{P}(G), \quad P \geq Q)
$$

columns. Our choice of Q implies that $m_{B}(P)=r_{B}(P)$ for $|P|>|Q|$. By (4.7), $R>C$. But this is inconsistent with (4.8) and (4F) is proved.

5. The ideals I_{Q} of $Z(G)$

We shall give another characterization of the multiplicity $m_{B}(Q)$ of $Q \in \mathcal{P}(G)$ as lower defect groups of the block B. We first note
(5A) Let $Q \in \mathcal{P}(G)$. Let K range over the conjugate classes of G which do not meet $T=C(Q)$. The corresponding class sums $s K$ form the basis of an ideal I_{Q} of $\boldsymbol{Z}(G)$.

This is immediate since I_{Q} is the kernel of the homomorphism μ in (2.2) of $Z(G)$ into $Z(H) ; H=N_{G}(Q), T=C_{G}(Q)$.
(5B) Let $B \in \mathbb{B} \ell(G)$. If I_{Q} is as in (5A),

$$
\begin{equation*}
\operatorname{dim}_{\Omega}\left(B \cap I_{Q}\right)=\sum^{\prime} m_{B}(P) \tag{5.1}
\end{equation*}
$$

where P in the sum ranges over the members of $P(G)$ which do not contain a conjugate of Q.

Proof. Consider B as an algebra over Ω. Then $I=B \cap I_{Q}$ is an ideal of B. Let R denote the representation of B belonging to the B-module B / I. We then have $R(\zeta)=0$ for $\zeta \in I$. Conversely, if $\zeta \in B$ and $R(\zeta)=0$, then $B \zeta \subseteq I$. Since B has a unit element η_{B}, this implies $\zeta \epsilon I$. Hence R has the kernel I.

Choose an Ω-basis of B / I and write R in matrix form. Each coefficient of R considered as a function of a variable element of B can be viewed as an element of the dual space \hat{B} of B. Let W denote the subspace of \hat{B} spanned by the different coefficients of R. Since R has the kernel I, we have

$$
\begin{equation*}
\operatorname{dim}_{\Omega} W=\operatorname{dim}_{\Omega}(B / I)=k_{B}-\operatorname{dim}_{\Omega} I \tag{5.2}
\end{equation*}
$$

If $w \in W \subseteq \hat{B}$, we can consider w as an element of F_{B}. Then

$$
w(\zeta)=w\left(\eta_{B} \zeta\right)
$$

for $\zeta \in Z$. Express w by the basis $\left\{f_{R}\right\}$ in (3B),

$$
\begin{equation*}
w=\sum_{K} w(K) f_{K} ; \quad\left(K \in \Re_{B}\right) \tag{5.3}
\end{equation*}
$$

If here $\delta K \in I_{Q}$, then $\eta_{B}(\delta K) \in I$ and

$$
w(K)=w\left(\eta_{B}(s K)=0\right.
$$

Therefore, it suffices to let K in (5.3) range over those elements K of Ω_{B} which meet T. These are the K for which $D_{K} \geq Q$. Then

$$
\operatorname{dim}_{\Omega} W \leqq \sum_{P} m_{B}(P) ; \quad(P \in \mathscr{P}(G), \quad P \geqq Q)
$$

since the sum of the right represents the number of K in (5.3). By (5.2) and (5.3),

$$
k_{B}-\sum_{P} m_{B}(P) \leqq \operatorname{dim}_{\Omega} I ; \quad(P \in \mathcal{P}(G), \quad P \geqq Q)
$$

Here the left side is equal to the sum in (5.1), cf. (4.2). Thus

$$
\begin{equation*}
\sum_{P}^{\prime} m_{B}(P) \leqq \operatorname{dim}_{\Omega} I=\operatorname{dim}_{\Omega}\left(I_{Q} \cap B\right) \tag{5.4}
\end{equation*}
$$

Add here over all $B \in ß \ell(G)$. On the left, we obtain the number of $K \in \mathbb{C} \ell(G)$ whose defect group does not contain a conjugate of Q, cf. (4.3). By (5A), this is the dimension of I_{Q}. Since I_{Q} is the direct sum of the $I_{Q} \cap B$ for the different blocks, we have equality after adding (5.4) and hence equality in (5.4), Q.E.D.

It is clear from (5.1) that, for each $P \in \mathcal{P}(G), m_{B}(P)$ can be expressed by the dimensions of the ideals $B \cap I_{Q}$ for suitable $Q \in \mathcal{P}(G)$ if k_{B} is known.

6. The p-sections of G

The p-sections of a group have been defined in §1. Each $\zeta \in Z=Z(G)$ has a unique representation

$$
\begin{equation*}
\zeta=\sum_{K} a_{K}(\delta K) ; \quad(K \in \mathbb{C} \ell(G)) \tag{6.1}
\end{equation*}
$$

If π is a p-element of G, let $\zeta^{(\pi)}$ denote the sum of the terms in (6.1) for which K belongs to the section $\mathfrak{S}(\pi)$ of π. Then

$$
\begin{equation*}
\zeta=\sum_{\pi} \zeta^{(\pi)} ; \quad(\pi \in \Pi) \tag{6.2}
\end{equation*}
$$

We note
(6A) If ζ belongs to the block B of G, each $\zeta^{(\pi)}$ in (6.2) does.
Indeed, since $\zeta=\eta_{B} \zeta$, we have

$$
\zeta=\sum_{\pi} \eta_{B} \zeta^{(\pi)} ; \quad(\pi \in \Pi)
$$

On account of (2H), each $\eta_{B} \zeta^{(\pi)}$ is a linear combination of class sums δK with $K \subseteq \mathfrak{S}(\pi)$. On comparing this with (6.2), we find

$$
\zeta^{(\pi)}=\eta_{B} \zeta^{(\pi)} \epsilon B
$$

We shall say that an element f of \hat{Z} is sectional and is associated with the section $\mathfrak{S}(\pi)$, if $f(K)=0$ for all $K \subseteq \mathfrak{C} \ell(G)$ which are not contained in $\mathfrak{S}(\pi)$.
(6B) The functions f_{K} in (3B) are sectional.
Proof. Let K_{0} be a fixed conjugate class, say $K_{0} \subseteq \subseteq\left(\pi_{0}\right)$. Apply (2F) with $\Omega=\Omega_{B}$ and with F consisting of the f_{K} with $K \in \Omega_{B}$. It follows that for $K \in \Omega_{B}$ there exists elements $c_{K}^{\theta} \in \Omega$ such that, for every $f \in F_{B}$,

$$
f\left(K_{0}\right)=\sum_{K} c_{K}^{\theta} f(K) ; \quad\left(K \in \Re_{B}\right)
$$

and that $c_{K}^{\theta}=0$ if K is contained in a section $\subseteq(\pi) \neq \subseteq\left(\pi_{0}\right)$. Taking $f=f_{K}$ with $K \subseteq \subseteq(\pi)$, we see that $f_{K}\left(K_{0}\right)=0$ as we wished to show.

We shall denote by $F_{B}^{(\pi)}$ the subset of F_{B} consisting of the functions $f \in F_{B}$, which are sectional and are associated with $\mathfrak{S}(\pi)$. As a corollary of (6B), we have
(6C) The space F_{B} is the direct sum of the subspaces $F_{B}^{(\pi)}$ with π ranging over 11 .

Indeed, the functions f_{K} wiht $K \in \Omega_{B}$ form a basis of F_{B}. Here f_{K} is sectional and, if $K \subseteq \subseteq(\pi)$, then as $f_{K}(K)=1, f_{K}$ is associated with $\subseteq(\pi)$ and hence $f_{K} \in F_{B}^{(\pi)}$.

We now replace F_{B} by $F_{B}^{(\pi)}$ in the definition of $m_{B}(P)$ in $\S 1$. For given $B \in ß \ell(G), P \in \mathcal{P}(G)$ and $\pi \in \Pi$, we consider subspaces V of $F_{B}^{(\pi)}$ such that every $f \neq 0$ in V has the following properties:
(i) There exist conjugate classes K with the defect group P such that $f(K) \neq 0$.
(ii) We have $f(K)=0$ for every $K \in \mathfrak{C} \ell(G)$ for which $\left|D_{K}\right|<|P|$.

Of course, it will suffice here to consider only classes $K \subseteq \subseteq(\pi)$.
We denote by $m_{B}^{(\pi)}(P)$ the maximal dimension of a space V with the properties (i), (ii). Let $D_{B}^{(\pi)}$ be the system of groups consisting of the groups $P \in \mathcal{P}(G)$ with each P taken with the multiplicity $m_{B}^{(\pi)}(P)$. Now a proof quite analogous to that of (4 A) yields
(6D) Let Ω_{B} be as in (3A) and let $\Omega_{B}^{(\pi)}$ be the subset consisting of the $K \epsilon \Omega_{B}$ which are contained in the section $\mathfrak{S}(\pi), \pi \in \Pi$. Then $\mathscr{D}_{B}^{(\pi)}$ consists exactly of the defect group D_{K} of the $K \in \Re_{B}^{(\pi)}$.

We shall say that $\mathscr{D}_{B}^{(\pi)}$ is the system of lower defect groups of B associated with the section $\mathfrak{S}(\pi)$. Now (6D) yields the following:
(6E) The system \mathscr{D}_{B} is the union of the systems $\mathscr{D}_{B}^{(\pi)}$ for all $\pi \in \Pi$. In other words

$$
\begin{equation*}
m_{B}(P)=\sum_{\pi} m_{B}^{(\pi)}(P) ; \quad(\pi \in \Pi) \tag{6.3}
\end{equation*}
$$

for each $P \in \mathcal{P}(G)$. If we set $\left|\Re_{B}^{(\pi)}\right|=l_{B}^{(\pi)}$, we have

$$
\begin{equation*}
l_{B}^{(\pi)}=\sum_{P} m_{B}^{(\pi)}(P) ; \quad(P \in \mathcal{P}(G)) \tag{6.4}
\end{equation*}
$$

The number of conjugate classes $K \subseteq \subseteq(\pi)$ with a given defect group P is given by

$$
\begin{equation*}
\sum_{B} m_{B}^{(\pi)}(P) ; \quad(B \in ß<(G)) \tag{6.5}
\end{equation*}
$$

We can also extend (4F).
(6F) Suppose that for each $B \in ß \ell(G)$ and each $\pi \epsilon \Pi$, we have a set Ω_{B}^{*} of conjugate classes $K \subseteq \mathfrak{S}(\pi)$ such that each $K \in \mathbb{C} \ell(G)$ contained in the section $\mathfrak{S}(\pi)$ belongs to Ω_{B}^{*} for some B. Suppose further that for each B, we have
a subset U_{B} of $F_{B}^{(\pi)}$ with $\left|U_{B}\right|=\left|\Omega_{B}^{*}\right|$ such that

$$
\operatorname{det}(h(K)) \neq 0 ; \quad\left(h \in U_{B}, \quad K \in \Omega_{B}^{*}\right)
$$

Then $\left|\Omega_{B}^{*}\right|=l_{B}^{(\pi)}$ and exactly $m_{B}^{(\pi)}(Q)$ classes $K \in \Omega_{B}^{*}$ have defect group Q; $(Q \in \mathcal{P}(G))$.

This is shown by the same method as (4 F) considering only classes contained in the section $\mathfrak{S}(\pi)$ and replacing $m_{B}(Q)$ by $m_{B}^{(\pi)}(Q)$ and F_{B} by $F_{B}^{(\pi)}$.

Our next result shows that the numbers $m_{B}^{(\pi)}(P)$ can be expressed by the analogous numbers with G replaced by $C_{G}(\pi)$ and B replaced by blocks of $C_{G}(\pi)$.
(6G) Let $\pi \in \Pi$ and set $C=C_{G}(\pi)$. For each $B \in ® \ell(G)$ and each $P \in \mathcal{P}(G)$, we have

$$
\begin{equation*}
m_{B}^{(\pi)}(P)=\sum_{Q} \sum_{b} m_{b}^{(\pi)}(Q) \tag{6.6}
\end{equation*}
$$

where Q ranges over those groups in $\mathcal{P}(C)$ which are conjugate to P in G and where b ranges over the set B_{c} of blocks b of C with $b^{G}=B$.

Proof. We apply here the method of $\S 2,1$ with $Q=\langle\pi\rangle, T=H=$ C. Let $\mathfrak{S}_{c}(\pi)$ denote the p-section of π in C. If $K \in \mathfrak{C} \ell(G)$ and $K \subseteq \mathfrak{S}(\pi)$, set

$$
\begin{equation*}
K \cap \Im_{c}(\pi)=L \tag{6.7}
\end{equation*}
$$

Then L is not empty and L consists of elements of the form $\pi \rho$ with p-regular $\rho \in C$. Any two elements of L are conjugate in G. It follows from their form that they are conjugate in C. It is now evident that L is a conjugate class of $C ; L \subseteq \mathfrak{S}_{c}(\pi)$. Conversely, if $L \in \mathfrak{C} \ell(C)$ and $L \subseteq \mathfrak{S}_{c}(\pi)$, the conjugate class $K=L^{G}$ of G containing L belongs to $\mathfrak{S}(\pi)$ and satisfies (6.7). Hence we have a one-to-one correspondence between the set of $K \in \mathfrak{C} \ell(G)$ with $K \subseteq \mathfrak{S}(\pi)$ and the set of $L \in \mathfrak{C} \ell(C)$ with $L \subseteq \mathfrak{S}_{c}(\pi)$. Moreover, if $Q \in \mathcal{P}(C)$ is the defect group of L in C, the defect group P of $K=L^{G}$ in G is conjugate to Q.

We now use a method similar to that used in the proof of (3A). If $b \in \mathbb{B} \ell(C)$, let F_{b} be the subspace of the dual space $\hat{Z}(C)$ of $Z(C)$ defined in a manner analogous to the definition of F_{B} in $\hat{Z}(G)$. Let Y_{b} denote a basis of F_{b} consisting of sectional functions, (cf. (6C)). Let Y_{B} be the union of all Y_{b} with $b^{G}=B$ and let Y be the union of Y_{B} for all $B \epsilon ß \ell(G)$. Then Y is a basis of $\hat{Z}(C)$ and hence

$$
\operatorname{det}(\varphi(L)) \neq 0 ; \quad(\varphi \in Y, \quad L \in \mathbb{C} \ell(C))
$$

It follows that, for each B, we can select a subset \mathfrak{R}_{B} of $\mathfrak{C} \ell(C)$, such that $\mathcal{C} \ell(C)$ is the disjoint union of the sets Ω_{B}, that $\left|Y_{B}\right|=\left|\Omega_{B}\right|$, and that

$$
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{B}, L \in \mathfrak{R}_{B}\right)
$$

Let $\mathfrak{R}_{B}^{(\pi)}$ denote the set of all $L \in \mathbb{R}_{B}$ such that $L \subseteq \Im_{C}(\pi)$. We can then
find a subset $Y_{B}^{(\pi)}$ with $\left|Y_{B}^{(\pi)}\right|=\left|\mathfrak{R}_{B}^{(\pi)}\right|$ such that

$$
\begin{equation*}
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{B}^{(\pi)}, \quad L \in \mathbb{R}_{B}^{(\pi)}\right) . \tag{6.8}
\end{equation*}
$$

Since all $\varphi \in Y_{B}^{(\pi)}$ are sectional, it follows from (6.8) that they are associated with the section $\mathfrak{S}_{c}(\pi)$. Let $X_{B}^{(\pi)}$ denote the system of functions φ^{λ} with $\varphi \in Y_{B}^{(\pi)}$ and λ defined by (2.3) with $T=H=C$. Each $f=\varphi^{\lambda}$ belongs to F_{B}, cf. (2A). If $K \in \mathcal{C} \ell(G)$, by (2.2) and (2.3)

$$
f(K)=\varphi(\delta(K \cap C))
$$

If K is not contained in $\subseteq(\pi)$, then K does not meet $\Im_{c}(\pi)$ and hence $f(K)=$ 0 . If $K \subseteq \subseteq(\pi), K \cap C$ is the union of L in (6.7) and of conjugate classes $L^{*} \in \mathfrak{C} \ell(C)$ contained in sections of C different from $\mathfrak{S}_{c}(\pi)$. Since $\varphi\left(L^{*}\right)=$ 0 for these L^{*}, we find $f(K)=\varphi(L)$.

If \Re_{B}^{*} is the set of classes L^{G} with $L \in \mathfrak{R}_{B}^{(\pi)}$, we then have

$$
\operatorname{det}(f(K)) \neq 0 ; \quad\left(f \in X_{B}^{(\pi)}, \quad K \in \Omega_{B}^{*}\right) .
$$

Since every $L \in \mathfrak{C} \ell(C)$ with $L \subseteq \mathfrak{S}_{c}(\pi)$ belongs to $\mathfrak{R}_{B}^{(\pi)}$ for some $B \epsilon \mathfrak{B} \ell(G)$, every $K \in \mathbb{C} \ell(G)$ with $K \subseteq \subseteq(\pi)$ belongs to some \Re_{B}^{*}. We can now apply (6 F) and see that exactly $m_{B}^{(\pi)}(P)$ classes $K \in \AA_{B}^{*}$ have defect group P. It follows that exactly $m_{B}^{(\pi)}(P)$ of the classes $L \in \mathbb{R}_{B}^{(\pi)}$ have defect groups Q in C with Q conjugate to P. On the other hand, if we set

$$
Y_{b}^{(\pi)}=Y_{B}^{(\pi)} \cap Y_{b}
$$

for $b \in B_{c}$, it follows from (6.8) that we can break up $\mathbb{R}_{B}^{(\pi)}$ into subsets $\mathfrak{R}_{b}^{(\pi)}$ with $b \in B_{c}$ such that $\left|Y_{b}^{(\pi)}\right|=\left|L_{b}^{(\pi)}\right|$ and

$$
\operatorname{det}(\varphi(L)) \neq 0 ; \quad\left(\varphi \in Y_{b}^{(\pi)}, \quad L \in \Omega_{b}^{(\pi)}\right)
$$

Applying (6F) to C and b, we see that $m_{b}^{(\pi)}(Q)$ of the classes $L \in \mathbb{R}_{b}^{(\pi)}$ have defect group $Q \in \mathcal{P}(C)$. It is now clear that (6.6) holds.

7. The section of the unit element

(7A) Assume that π is a p-element in the center $Z(G)$ of G. Let B be a block of G. Let Ω_{B} have the same significance as in (3A). As before, let $\Omega_{B}^{(\pi)}$ denote the set of classes $K \in \Omega_{B}$ with $K \subseteq \subseteq(\pi)$ and set $\left|\Omega_{B}^{(\pi)}\right|=l_{B}^{(\pi)}$. We can find a set X_{B} of $l_{B}^{(\pi)}$ irreducible characters χ_{i} in B such that

$$
\begin{equation*}
\operatorname{det}\left(\chi_{i}\left(\sigma_{K}\right)\right) \not \equiv 0(\bmod \mathfrak{p}) ; \quad\left(\chi_{i} \in X_{B}, \quad K \in \Omega_{B}^{(\pi)}\right) \tag{7.1}
\end{equation*}
$$

Here, \mathfrak{p} has the same meaning as in §2, 2. Moreover, $l_{B}^{(\pi)}$ coincides with the number l_{B} of modular irreducible characters in B. Finally, $\mathscr{D}_{B}^{(\pi)}=\mathscr{D}_{B}^{(1)}$.

Proof. As shown in [1, I (5A)] there exists a set X_{B} of l_{B} irreducible characters $\chi_{i} \in B$ and a set $\mathfrak{R}_{B}^{(1)}$ of l_{B} conjugate classes $K \subseteq \subseteq(1)$ such that each conjugate class in $\subseteq(1)$ belongs to $\mathbb{R}_{B}^{(1)}$ for exactly one B, and that for every B

$$
\operatorname{det}\left(\chi\left(\sigma_{K}\right)\right) \not \equiv 0(\bmod \mathfrak{p}) ; \quad\left(\chi \in X_{B}, \quad K \in \mathbb{R}_{B}^{(1)}\right)
$$

The section $\mathfrak{S}(1)$ consists of the p-regular elements of G. If K ranges over the classes in $\mathfrak{S}(1), \pi K$ ranges over the classes in $\mathfrak{S}(\pi)$. Let $\mathfrak{R}_{B}^{(\pi)}$ denote the set of classes πK with $K \in \mathfrak{R}_{B}^{(1)}$. Since

$$
\chi\left(\sigma_{K}\right) \equiv \chi\left(\sigma_{\pi K}\right) \quad(\bmod \mathfrak{p})
$$

we have

$$
\begin{equation*}
\operatorname{det}\left(\chi\left(\sigma_{K}\right)\right) \not \equiv 0(\bmod \mathfrak{p}) ; \quad\left(\chi \in X_{B}, \quad K \in \mathfrak{R}_{B}^{(\pi)}\right) \tag{7.2}
\end{equation*}
$$

Let $r_{B}^{(\pi)}(P)$ denote the number of classes in $\mathfrak{R}_{B}^{(\pi)}$ with the given defect group $P \in \mathcal{P}(G)$. Then

$$
\begin{equation*}
\sum_{B} r_{B}^{(\pi)}(P)=\sum_{B} m_{B}^{(\pi)}(B) ; \quad(B \in \mathbb{B} \ell(G)) \tag{7.3}
\end{equation*}
$$

since both sides represent the number of classes $K \subseteq \subseteq(\pi)$ with defect group P, cf. (6.5).

If some class $K \in \mathfrak{R}_{B}^{(\pi)}$ does not belong to $\Omega_{B}^{(\pi)}$, we try to replace it by a class in $\Omega_{B}^{(\pi)}$ with the same defect group such that the condition (7.2) is preserved after the replacement. We continue in this manner as long as possible.

Assume first that, for every $\pi \epsilon Z(G)$ and for every $B \epsilon \mathbb{B l}(G)$, this process only comes to an end when all classes in $\mathfrak{R}_{B}^{(\pi)}$ have been replaced by classes in $\Omega_{B}^{(\pi)}$. Then, obviously,

$$
r_{B}^{(\pi)}(P) \leqq m_{B}^{(\pi)}(P)
$$

and (7.3) implies that we have equality. This means that we have replaced $\mathfrak{R}_{B}^{(\pi)}$ by $\Omega_{B}^{(\pi)}$ and hence (7.1) holds. Also,

$$
l_{B}^{(\pi)}=\left|\Omega_{B}^{(\pi)}\right|=\left|\mathfrak{R}_{B}^{(\pi)}\right|=l_{B} .
$$

Since the classes K and πK have the same defect group, we have $r_{B}^{(\pi)}(P)=$ $r_{B}^{(1)}(P)$. Since our result above can be applied for $\pi=1$, we find

$$
m_{B}^{(\pi)}(P)=r_{B}^{(\pi)}(P)=r_{B}^{(1)}(P)=m_{B}^{(1)}(P)
$$

Hence $\mathscr{D}_{B}^{(\pi)}=\mathscr{D}_{B}^{(1)}$, and (7A) holds in the case under discussion.
Assume then that for some $\pi \in Z(G)$ our exchange comes to an end before all classes in $\mathfrak{R}_{B}^{(\pi)}$ have been replaced. Let H_{B} denote the set obtained from $\mathfrak{R}_{B}^{(\pi)}$ when the process terminates. All classes in H_{B} lie in $\mathbb{S}(\pi)$. Exactly $r_{B}^{(\pi)}(P)$ classes in H_{B} have defect group P, we have $\left|H_{B}\right|=l_{B}$ and

$$
\begin{equation*}
\Delta=\operatorname{det}\left(\chi\left(\sigma_{K}\right)\right) \not \equiv 0(\bmod \mathfrak{p}) ; \quad\left(\chi \in X_{B}, \quad K \in H_{B}\right) \tag{7.4}
\end{equation*}
$$

Finally, for some B, there exist classes $K_{0} \in H_{B}$ which do not belong to $\Omega_{B}^{(\pi)}$ and which cannot be exchanged with a class in $\mathscr{\Omega}_{B}^{(\pi)}$ with the same defect group such that (7.4) is preserved. Choose here B and K_{0} such that the defect group Q of K_{0} has maximal order.

If $P \in \mathcal{P}(G)$ and $|P|>|Q|$, our choice implies that, for every block B_{1} and every $K \epsilon H_{B_{1}}$ with $D_{K}=P$, we have $K \epsilon \Omega_{B_{1}}^{(\pi)}$. This implies that $r_{B_{1}}^{(\pi)}(P) \leqq m_{B_{1}}^{(\pi)}(P)$. On account of (7.3), we have equality. This shows
that, for $|P|>|Q|$, the same classes of defect group P occur in $H_{B_{1}}$ and in $\Omega_{B_{1}}^{(\pi)}$.

We shall now derive a contradiction. It follows from (2F) that there exist elements $c_{K} \in \mathfrak{D}$ for $K \in \mathfrak{\Re}_{B}^{(\pi)}$ such that

$$
\begin{equation*}
\omega_{j}\left(K_{0}\right)=\sum_{K} c_{K} \omega_{j}(K) ; \quad\left(K \in \Re_{B}^{(\pi)}\right) \tag{7.5}
\end{equation*}
$$

for each ω_{j} associated with B. Then, by (1.4)

$$
\begin{equation*}
\chi_{j}\left(\sigma_{K_{0}}\right)=\sum_{K} c_{K}\left(|K| /\left|K_{0}\right|\right) \chi_{j}\left(\sigma_{K}\right) ; \quad\left(K \in \Omega_{B}^{(\pi)}\right) \tag{7.6}
\end{equation*}
$$

Let $\Delta_{K_{1}}$ denote the determinant obtained form Δ in (7.4) by replacing the column $\chi\left(\sigma_{K_{0}}\right)$ by $\chi\left(\sigma_{K_{1}}\right)$ with $K_{1} \in \Omega_{B}^{(\pi)}$. On account of (7.6), then

$$
\begin{equation*}
\Delta=\sum_{K} c_{K}\left(|K| /\left|K_{0}\right|\right) \Delta_{K} ; \quad\left(K \in \Omega_{B}^{(\pi)}\right) \tag{7.7}
\end{equation*}
$$

If here K has a defect group D_{K} with $\left|D_{K}\right|>|Q|$, then as remarked, $K \in H_{B}$ and hence $\Delta_{K}=0$ since two columns are equal. It will therefore suffice to let K range over the classes with $\left|D_{K}\right| \leqq|Q|$. Since $D_{K_{0}}=Q$, then $|K| /$ $\left|K_{0}\right| \epsilon \mathrm{D}$. It then follows from (7.7) that there exist classes $K_{1} \in \Omega_{B}^{(\pi)}$ for which

$$
\begin{equation*}
c_{K_{1}} \not \equiv 0, \quad\left|\Delta_{K_{1}}\right| \not \equiv 0(\bmod \mathfrak{p}), \quad\left|D_{K_{1}}\right|=|Q| \tag{7.8}
\end{equation*}
$$

In the notation of $\S 2,2$, the equation (7.5) remains valid if we replace ω_{j} by an element of M_{B}. Then (2F) shows that

$$
f\left(K_{0}\right)=\sum_{K} c_{K}^{\theta} f(K) ; \quad\left(K \in \Omega_{B}^{(\pi)}\right)
$$

for any $f \in F_{B}$. For $f=f_{K_{1}}$, this yields

$$
c_{K_{1}}^{\theta}=f_{K_{1}}\left(K_{0}\right)
$$

By (7.8), then $f_{K_{1}}\left(K_{0}\right) \neq 0$ and by (3B) $Q \geq D_{K_{1}}$. Now (7.8) shows that $D_{K_{1}}=Q$ and that we could have exchanged K_{0} with $K_{1} \in \Re_{B}^{(\pi)}$ since both have the same defect group and since (7.4) would be preserved. This is a contradiction and the proof is complete.

If π is an arbitrary p-element of the group G, we can apply (7A) to the group $C=C_{G}(\pi)$. If $b \in ß \in(C)$ and if $Q \in \mathcal{P}(C)$, then $\mathscr{D}_{b}^{(1)}=\mathscr{D}_{b}^{(\pi)}$ and hence $m_{b}^{(1)}(Q)=m_{b}^{(\pi)}(Q)$. Now (6G) becomes
(7B) Let π be a p-element of G and set $C=C_{G}(\pi)$. For each $B \in ß \ell(G)$ and each $P \in \mathscr{P}(G)$,

$$
\begin{equation*}
m_{B}^{(\pi)}(P)=\sum_{Q} \sum_{b} m_{b}^{(1)}(Q) \tag{7.9}
\end{equation*}
$$

where Q ranges over the groups in $\mathcal{P}(C)$ which are conjugate to P and where b ranges over the blocks of C with $b^{G}=B$.

By (7 A), $l_{b}^{(1)}=l_{b}$ is the number of modular irreducible characters in b. If we add (7.9) over all $P \in \mathcal{P}(G),(6 \mathrm{E})$ yields the corollary:
(7C) If the notation is as in (7B), we have

$$
\begin{equation*}
l_{B}^{(\pi)}=\sum_{b} l_{b} \tag{7.10}
\end{equation*}
$$

where b ranges over the blocks of C with $b^{a}=B$.
On comparing (7.10) with [1, II, §7] we have
(7D) The number $l_{B}^{(\pi)}$ of lower defect groups of B associated with the section $\mathfrak{S}(\pi)$ is equal to the number of modular irreducible characters of $C_{G}(\pi)$ which belong to B in the sense of [1, II, §7].

In particular, there are l_{B} lower defect groups of B associated with the section $S(1)$. On account of (6 E), we have
(7E) The number l_{B} of modular irreducible characters in the block B is given by

$$
\begin{equation*}
l_{B}=l_{B}^{(1)}=\sum_{P} m_{B}^{(1)}(P) ; \quad(P \in \mathcal{P}(G)) \tag{7.11}
\end{equation*}
$$

The proposition (7A) can be applied for $\pi=1$ for any G. Hence
(7F) For every $B \in \circledast \ell(G)$, we have

$$
\operatorname{det}\left(\chi\left(\sigma_{K}\right)\right) \not \equiv 0(\bmod \mathfrak{p}) ; \quad\left(\chi \in X_{B} ; K \in \Omega_{B}^{(1)}\right)
$$

Since every p-regular class of G belongs to $\Omega_{B}^{(1)}$ for exactly one B, we can apply the method in (1, I, §5) and obtain
(7G) Let B be a block. Let $r \geqq 0$ be a rational integer. The multiplicity of p^{r} as an elementary divisor of the Cartan matrix of B is given by

$$
\sum_{P}^{\prime} m_{B}^{(1)}(P)
$$

where P ranges over all groups in $\mathcal{P}(G)$ of order p^{r}.
This is a refinement of a result stated without proof in [2].
As a consequence of (7G), we have
(7H) If B has defect group D (in the sense of [1]) with D chosen in $\mathcal{P}(G)$), then D occurs exactly once in $\mathscr{D}_{B}^{(1)}$.

The results of [3] show that D occurs in $\mathscr{D}_{B}^{(\pi)}$ for $\pi \epsilon \Pi$, if and only if π is conjugate to an element of $Z(D)$; they also allow us to characterize the multiplicity $m_{B}^{(\pi)}(D)$. For arbitrary $\pi \epsilon \Pi$, we can determine the maximal elements of $\mathscr{D}_{B}^{(\pi)}$.

References

1. R. Brauer, Zur Darstellungstheorie der Gruppen endlicher Ordnung, I, II, Math. Zeitschrift, vol. 63 (1956), pp. 406-444; vol. 72 (1959), pp. 25-46.
2. - On blocks of characters of groups of finite order, I, Proc. Nat. Acad. Sci., vol. 32 (1946), pp. 182-186.
3. -, On blocks and sections in finite groups, I, II, Amer. J. Math., vol. 89 (1967), pp. 1115-1135; II to appear.

Harvard University

Cambridge, Massachusetts

[^0]: ${ }^{1}$ This work has been supported in part by a National Science Foundation grant.

[^1]: ${ }^{2}$ When we say that a subgroup H of G is known, we usually assume that we know H not only as an abstract group but also the imbedding of H in G, i.e. the manner in which the conjugate classes of H lie in the conjugate classes of G.

[^2]: ${ }^{3}$ The order in which the elements of G and of X are taken will always be immaterial.

