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1. Introduction

In this paper, we shall study shrinkability conditions satisfied by certain
types of pointlike decompositions of E*. We shall show that if @ is a point
like decomposition of E* having a 0-dimensional set of nondegenerate elements
and such that the associated decomposition space is homeomorphic to E°,
then G satisfies a well-known shrinkability condition. The results of this
paper carry over, with essentially no changes, to cellular decompositions of
arbitrary 3-manifolds with boundary.

In order to state our results precisely, we introduce some notation. If G
is an upper semicontinuous decomposition of E°, then E°/G denotes the asso-
ciated decomposition space, P denotes the projection map from E’ onto
E’/@, and Hg denotes the union of all the nondegenerate elements of G.

Suppose that @ is an upper semicontinuous decomposition of E® such that
P[H,] is 0-dimensional. Then we shall say that G is shrinkable if and only
if for each open set U containing H¢ and each positive number ¢, there is a
homeomorphism /4 from E® onto E® such that (1) if z e B> — U, h(z) = =,
and (2) if g € G, (diam hlg]) < e.

The importance of shrinkable decompositions is easily seen from the follow-
ing theorem, due to Bing [7], [8]: If G is a monotone decomposition of E*
such that P[Hg] is O-dimensional and @ is shrinkable, then E*/G is homeo-
morphie to E.

The main result of this paper is the following theorem which provides a con-
verse, in the case of pointlike decompositions of E°, to the theorem of Bing’s
stated above: If G is a pointlike decomposition of E* such that P[Hg) is O-
dimensional and E’/G is homeomorphic to E’, then G is shrinkable. An analo-
gous result holds for cellular decompositions of arbitrary 3-manifolds with
boundary.

The significance of the two theorems stated above concerning shrinkabilty
of decompositions of E* becomes clearer when it is pointed out that shrink-
ability provides one of the most commonly used criteria for deciding whether
the space of some particular decomposition of E® is homeomorphic to E°.
Although the study of local properties of decomposition spaces is beginning
to provide some different ways of showing that spaces of various decomposi-
tions of E® are topologically distinet from E°, such methods seem as yet more
difficult to apply than those involving shrinkability.
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Various special cases of the main result of this paper have been established
previously. In [1], it was shown to hold in case P[Hg] is countable. In
[2], it was established in case P[H,] is a compact 0-dimensional set.

In Section 5, we show that if G is a shrinkable monotone decomposition of
E? such that P[Hg] is 0-dimensional and E*/G is homeomorphic to E°, then
each element of @ is cellular. A number of questions related to the problems
studied in this paper are considered in Section 6.

2. Notation and terminology

The statement that M is a 3-manifold with boundary means that M is a
separable metric space such that each point of M has a neighborhood which is a
3-cell. A point z of a 3-manifold with boundary M is an interior point of M
if and only if  has an open neighborhood in M which is an open 3-cell. The
interior of M, Int M, is the set of all interior points of M. The boundary of
M, Bd M,is M — Int M.

A subset X of a 3-manifold with boundary M is cellular in M if and only if
there is a sequence Cy, Cy, C3, - - - of 3-cells in M such that (1) for each 7,
Cit CIntC;, and (2) X = Ni= C;. A cellular set in a 3-manifold with
boundary M lies in Int M. The statement that G is a cellular decomposition
of a 3-manifold with boundary M means that G is an upper semicontinuous
decomposition of M into cellular sets.

A subset X of E® is pointlike if and only if X is a compact continuum such
that E* — X is homeomorphic to E* — {0}. @ is a pointlike decomposition
of E® if and only if G is an upper semicontinuous decomposition of E® into
pointlike sets. It is well known that in E°, “pointlike” and “cellular” are
equivalent; see [13]. By a monotone decomposition of a 3-manifold with bound-
ary M is meant an upper semicontinuous decomposition of M into compact
continua.

If A is a set in a topological space, then Cl A denotes the closure of 4 and
BA denotes the (topological) boundary of A. If X is a metric space, then a
sequence A; , Az, As, - -+ of sets in X is a null sequence if and only if for each
positive number ¢, there exists a positive integer n such that if ¢ > n, then
(diam 4;) < e. If €is a positive number and 4 is a subset of a metric space,
then V (¢, 4) denotes the open e-neighborhood of 4.

3. Preliminary Results

The following two lemmas are corollaries of Lemmas 3 and 4, respectively,
of [3].

LemMa 1. Suppose that G is a monotone decomposition of E® such that
P[H ) is 0-dimensional, and U is an open covering (in E°) of Hg such that

(1) each set of U 7s a union of elements of G and

(2) 4 B is any bounded subset of E', U{U : U e U and U intersects B}
18 bounded.
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Then there exists an open (in E*) covering U of H g by mutually disjoint bounded
sets such that

(1) each set of U lies in some set of U and

(2) if B s any bounded set in E°, then {V : V €0 and V intersects B} is a
null sequence.

LeEmMA 2. Suppose that {Vy, Vo, Vi, -+ -} 1s a sequence of mutually disjoint
bounded open sets in E° such that if B is any bounded set in E°, {V; 1 V, inter-
sects B} 1s a null sequence. Suppose that for each i, h; is a homeomorphism
Sfrom Cl V; onto Cl V; such that h; | BV s the identity on BV;. Let h be the
function from E® into E® such that

(1) ifzxeE — Uia Vi, h(z) = z, and

(2) f 7 1s a positive integer and x € Vi, h(x) = hi(x).

Then h is a homeomorphism from E* onto E°.

The following result is established in [4].

TuHEOREM 1 OoF [4]. Suppose that M is a 3-manifold with boundary and G
is a cellular decomposition of M such that M /G is a 3-manifold with boundary
N. Suppose that U is an open set in Int N such that P[H¢] < U. Then
there is a homeomorphism h from C1 P7[U] onto C1 U such that h | P U] =
P | BPUI.

4. The main result

TueoreM 1. If G is a pointlike decomposition of E® such that P[Hg] is O-
dimensional and E°/Q is homeomorphic to E°, then G is shrinkable.

Proof. Suppose U is an open set in E’ containing He and ¢ is a positive
number. With the aid of Lemma 1, it follows that there exists a covering
(Vi, Va, Vs, -++} of Hg by mutually disjoint open sets in E* such that (1)
for each 7, V; < U and (2) if B is any bounded set in E°, then {V; : V., inter-
sects B} is a null sequence. Notice that for each 7, 8V; and Hg are disjoint,
V; is a union of elements of ¢, and Cl V; is compact.

Our first step is to construet, for each 7, a homeomorphism #; from Cl V;
onto Cl V; such that h; | BV is the identity and &, shrinks nondegenerate ele-
ments of @ in V,;. Hence suppose ¢ is some positive integer. Since by
hypothesis, E*/G is homeomorphic to E*, then by Theorem 1 of [4], there is a
homeomorphism f; from Cl V; onto Cl P[V,] such that fi| BV: = P |8V;.
Since Cl P[V] is compact and f;' is continuous, there is a positive number
6; such that if 4 is any subset of P[V:] and (diam A) < &:;, then
(diam f[A]) < e.

Since V; is a union of elements of G, P[V,] is open. By arguments similar
to those used to establish Lemmas 1, 2, and 3 of [3], it may be shown, since
P[V.] n P[H] is 0-dimensional, that there exists an open covering of P[V:] n
P[H;) by mutually disjoint open sets Vi, Vie, Vi, -+ such that (1) for
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each positive integer j, Cl V,; < P[V,] and (diam V;;) < 8, and (2) Va,
Vi, Viz, -+ is a null sequence.

If j is a positive integer, then by Theorem 1 of [4], there is a homeomorphism
k,'j from CI Vij onto ClI P_l[Vij] such that kij' 6V“ = 1)_1 |6V” . Observe
that k5 P [Vl = Vs .

Now define a function h; as follows: (1) If z ¢ BV,:, hi(z) = =z.
(2) If 2 ¢ Vi, — Uiy PV, then hy(z) = fi'P(z). (3) If j is a positive
integer and 2 ¢ P7'[V;], then hi(z) = f7 'k} (z).

It is easily verified that h; is well defined, from CI V; into Cl V;, and is
one-to-one. By an argument similar to that given for Lemma 4 of [4], it
may be shown that both h; and h;* are continuous. The following argument
shows that h; has Cl V; as its range. Let @ be a 3-cell containing C1 V.
Define a function A from Q into Q as follows: (1) If z e Vi, hi(z) = hi(2).
(2) If zeQ — Vi, hi(z) = z. It is easily seen that h; is a continuous
function from Q into Q and Ay [ Bd Q is the identity. If h; does not have all
of Cl V; as its range, there would exist a retraction from @ onto Bd . Conse-
quently, the range of h; is C1 V.

Define a function & as follows: (1) If z e B> — Uiy Vi, h(z) = 2. (2)
If 7 is a positive integer and z ¢ V;, h(z) = hi(z). By Lemma 2, h is a
homeomorphism from E® onto E°.

It is clear that if z e E° — U, h(z) = z. In order to complete the proof
of Theorem 1, we need only to show that if g € G, then (diam A[G]) < e.
Suppose that g is a nondegenerate element of G. There is some positive in-
teger 7 such that ¢ € V,;. There is a positive integer j such that Plg] < V;.
First we shall show that

kgl € fi' (Vi)

Clearly g € P [Vi]. Now hP ' [Vil = 'k P [V, but ki P V] =
Vi;. Hence h: P [Vl = fi'[Vis], so kgl € f7'[Vil. Now by construc-
tion, (diam V;) < &; and hence (diam f;'[Vi;]) < e. Therefore

(diam hfg]) < ¢

and since hlg] = hifg], it follows that (diam hlg]) < e. Hence if g is any
element of @, (diam A[g]) < e.
Consequently, G is shrinkable, and Theorem 1 is proved.

5. Cellularity of elements of G

Suppose G is a monotone decomposition of E° such that (1) E*/G is homeo-
morphic to E* and (2) P[Hg] is 0-dimensional. It is not known whether,
under this hypothesis, each element of @ is cellular. Indeed, if (2) above is
replaced by “P[H] is compact and 0-dimensional,” it is not known whether
each element of G is cellular.” Some information is available in cases where
additional hypotheses are satisfied. For the case where P[H] is countable,

2 See Section 6.



704 STEVE ARMENTROUT

see [10], and for the case where P[H¢] lies in a compact 0-dimensional set,
see [2] and [6]. If each element of G is a compact absolute retract or, indeed,
satisfies certain weaker hypotheses, then each element of G is cellular; no
hypothesis concerning the dimension of P[H] is necessary. See [11] and [5]
for these and related results.

There is an example due to Bing [9] of a monotone decomposition G of E*
such that E*/G is homeomorphic to E*, P[Hg] is an are, but each nondegener-
ate element of G is non-cellular. This shows that, in the case of monotone
decompositions of E’, some condition on P[H] is necessary.

It follows from results of [2] and [7] that if G is a monotone shrinkable
decomposition of E* such that P[Hg] is a compact 0-dimensional set, then each
element of G is cellular. Our next result extends this to the case where
P[H (] is 0-dimensional.

THEOREM 2. Suppose that G is a monotone shrinkable decomposition of E*
such that P[Hg] is O-dimensional. Then each element of G is cellular.

Proof. Suppose that ¢ is an element of G. We shall first show that if U
is any open set in E° containing g, then there is a 3-cell C such that ¢ C Int C
and C € U. Let U be an open set in E° containing g. Let V be an open
set in E* containing Hg such that (1) each component of V is bounded and
(2) if Vy is the component of V containing g, then Cl Vo < U. Let W be
an open set in E° containing Hg such that W C V and if W, is the component
of W containing ¢, then C1 W, C V,.

Let {Cy, Cy, -+, Cu} be a finite set of 3-cells in E® such that {Int C;,
Int C,, ---, Int C,} covers Cl W, and each of C;, Cs, --- and C, liesin V.
There exists a positive number ¢ such that any subset of Cl W, of diameter
less than ¢ lies in some one of Int C;, Int Cs, -+, and Int C, .

Since G is shrinkable, there is a homeomorphism % from E°® onto E® such
that (1) if z e B* — W, h(z) = x and (2) if g € G, (diam hlg]) < . Since
h|E® — W is the identity and V < W, then h|E® — V is the identity.
Since both V, and W, are bounded, it follows by an argument similar to one
used in the proof of Theorem 1, that A[Cl Vo] = Cl Vi and h[Cl W,] = Cl W, .
Since ¢ C V,, there is a positive integer ¢ such that ¢ < n and A[g] C Int C;.

Let C denote A7 [Ci]. Clearly C is a 3-cell and ¢ < Int C. Since C; © W,
and h[Cl W,] = Cl W,, it follows that A~'[Ci] € Cl W,. Therefore

RC) c U,
and hence C C U.
We can now show that ¢ is cellular. There is a 3-cell D; such that

g < Int D,
and D; € V(1,¢g). Thereis a 3-cell D, such that
g IntD; and D, C (Int D) NV(1/2,g).
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Suppose that & is a positive integer and there is a 3-cell D; such that ¢  Int Dy
and D, < V(1/k, ¢). Then there is a 3-cell Dy,; such that

g < Int Dy and Dyyy € (Int D) n V(1/k + 1, g).

It is easily seen that (1) for each positive integer m, D1 © Int D,, and
(2) g = Ni=1D;. Hence g is cellular. This establishes Theorem 2.

6. Questions

The following two questions of considerable interest are closely connected
with the results of Section 5 and were mentioned there.

1. Suppose G is a monotone decomposition of E® such that (1) E*/Q is
homeomorphic to E* and (2) P[Hg] is O-dimensional. Then is each element
of @ cellular?

2. Suppose G is a monotone decomposition of E® such that (1) E*/Q is
homeomorphic to E® and (2) P[H,] is compact and 0-dimensional. Then is
each element of @ cellular? (Added in proof. Recently, D. R. McMillan, Jr.
and, independently, H. W. Lambert have answered the question affirmatively.)

It should be posible to define a notion of ‘“shrinkable” for arbitrary de-
compositions of E* (or 3-manifolds, or metric spaces). The definition used
in this paper is not useful unless P[H¢] is 0-dimensional.

3. Is there a definition of “shrinkable” for decompositions of E° such
that the following are theorems? (a) If G is a monotone shrinkable decom-
position of E°, then E*/G is homeomorphic to E*. (b) If G is a pointlike
decomposition of E® such that E°/G is homeomorphic to E, then @ is shrink-
able.

MecAuley has considered shrinkability conditions for arbitrary decomposi-
tions of E® (and other spaces); see [12] and [13]. In connection with part
(b) of question 3 above, it has been shown in [4] that in the case of cellular
decompositions of 3-manifolds into 3-manifolds, the projection map can be
approximated arbitrarily closely by homeomorphisms.
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