CLASS TWO p GROUPS AS FIXED POINT FREE AUTOMORPHISM GROUPS

BY
T. R. Berger ${ }^{1}$
\section*{1. Introduction}

This paper concerns itself with bounds on the Fitting length of solvable groups G admitting class two odd p groups A as fixed point free automorphism groups. Previous results are listed in the papers of E. Shult [9], [10]. The cases where $A=S_{3}$ and A is abelian are discussed there.

The main result of this paper is the following theorem.
Theorem. Suppose $A G$ is a solvable group with normal subgroup G. Assume A is an odd p group of class $\leq 2 ;(|A|,|G|)=1 ;$ and $C_{G}(A)=1$.

Assumer is a prime and $p^{c} \neq r^{d}+1$ for any $p^{c} \leq \exp A$ and $r^{2 d+1}| | G \mid$. Then the Fitting length of G is bounded above by the power of p dividing $|A|$.

This result is proved by means of a representation theorem (VI. 1). The representation theorem is proved by reduction of a minimal counterexample.

The results of this work are partially contained in the author's doctoral dissertation, written under Professor's M. Hall, Jr and E. C. Dade, at the Californa Institute of Technology.

The main work is done in Section VI. Section II is a statement of results used; Section III an examination of class two groups; Section IV and V examinations of characters of particular groups; and finally, Section VII gives a proof of the main theorem using the lemma of Section VI.

II. Preliminary results

Assume that G is a group, \mathbf{Q} is the rational field, δ is a primitive $|G|^{\text {th }}$ root of unity, and $\mathbf{k}=\mathbf{Q}(\delta)$. Every irreducible representation T of G by linear transformations may be written in \mathbf{k}. Suppose χ is the character of G associated with T. Since $\chi=\operatorname{tr} T$ and $\operatorname{det} T$ are invariants the function

$$
\phi(\chi)=\operatorname{det} T
$$

is well defined. By linearity we may extend ϕ from a function on irreducible characters to a linear function on all characters of G. Then ϕ maps characters of G onto sums of linear characters of G.
(II.1) Assume that H is a normal subgroup of G and let λ be an irreducible character of H such that
(1) λ is G invariant,

Received February 5, 1968.
${ }^{1}$ This research was partially supported by a National Science Foundation grant.
(2) $\phi(\lambda)$ extends to a linear character α of G,
(3) $\lambda(1)$ and $[G: H]$ are relatively prime.

Then there exists a unique character χ of G such that
(a) $\left.\chi\right|_{H}=\lambda$
(b) $\phi(\chi)=\alpha$

This theorem is proved in [5]. It may also be proved using Schur's lemma and factor sets. The author has given a shorter and more elementary proof than either of these [1].
(II.2) Suppose G is a group with normal subgroup H. Assume that λ is an irreducible character of H and χ is an irreducible character of G such that $\left.\chi\right|_{H}=\lambda$. Then if ψ is any irreducible character of G such that $\left.\psi\right|_{H}$ contains λ then

$$
\psi=\mu \chi
$$

for an appropriate irreducible character μ on G / H. Further, for any irreducible μ on $G / H, \mu \chi$ is an irreducible character of G.

The proof of this is elementary and may be found in [2, (51.7)].
(II.3) Suppose that H is a group with normal subgroup N of index n. Suppose that U is an H module over a field \mathbf{K} of characteristic zero or prime to n. Assume that $\left.U\right|_{N}$ is completely reducible. Then U is completely reducible.

The proof of this is well known. The method is given in [2, (10.8)]. As an immediate corollary we obtain
(II.4) Suppose that H is a group with normal subgroup N of index n. Assume that U is a completely reducible N module over a field \mathbf{K} of characteristic zero or prime to n. Then $\left.\left.U\right|^{H}\right|_{N}$ is completely reducible so $\left.U\right|^{H}$ is completely reducible.
(II.5) Suppose $Y \triangle X \leq G$ are A invariant subgroups of $A G$ where $(|A|,|G|)=1$. If A fixes the coset $x Y$ for $x \in X$ then A fixes an element $x y \in x Y$. So $C_{X / Y}(A)=C_{X}(A) Y / Y$.

A proof is given in [6].
(II.6) Suppose $p||G|$, and $G \triangle A G$ where $(|A|,|G|)=1$. Then A fixes P some p Sylow subgroup of G.

This result is clear from the Sylow theorems.
(II.7) If $G \triangle A G$ where $(|A|,|G|)=1$ and $H \leq C_{G}(A)$ and $N=N_{G}(H)$ then

$$
N=C_{N}(A) C_{N}(H)
$$

The Three Subgroup lemma applies here. See [4, (3.1)].
We now apply these to obtain some specialized lemmas. In what follows assume we have a group $A G$ with normal subgroup G where $(|A|,|G|)=1$.
(II.8) Suppose $M \leq G$ is normal in $A G$. Assume $\pi \epsilon G$. Then we may choose $\pi^{\prime} \epsilon \pi M$ so that

$$
C_{A}\left(\pi^{\prime}\right)=A \cap(A M)^{\pi^{\prime}}=A \cap(A M)^{\pi}
$$

Let $A_{0}=A \cap(A M)^{\pi}$. Now $\pi M \epsilon C_{G / M}\left(A_{0}\right)$. So we may choose $\pi^{\prime} \epsilon \pi M$ so that $\pi^{\prime} \in C_{G}\left(A_{0}\right)$ by (II.5). Then $C_{A}\left(\pi^{\prime}\right)=A \cap(A M)^{\pi^{\prime}}=A \cap(A M)^{\pi}=A_{0}$.

For the remainder of this section suppose K is a field of characteristic zero or prime to $|A|$. Assume K is a splitting field for all subgroups of $A G$.
(II.9) Suppose that V is a completely reducible $\mathrm{K}[A G]$ module. Assume $M<G$ is normal in $A G$. Suppose $A_{1} \leq A$. Then $\left.V\right|_{A_{1} M}$ is completely reducible.

This is an application of Clifford's theorems and (II.3).
(II.10) Suppose V is an irreducible $\mathrm{K}[A G]$ module and $\left.V\right|_{A_{0} G}$ is not homogeneous for $A_{0} G \triangle A G$. Assume that A is nilpotent. Then there is subgroup A^{*} such that $A_{0} \leq A^{*} \triangle A,\left[A: A^{*}\right]=n$ is a prime, and

$$
\left.V\right|_{A^{*} G}=U_{1}+\cdots \dot{+} U_{n}
$$

where the U_{i} are irreducible $A^{*} G$ modules and $\left.V \simeq_{A G} U_{1}\right|^{A G}$.
We know that $A_{0} G$ is normal in $A G$. So by Clifford's theorems $\left.V\right|_{A_{0} G}$ is completely reducible. So

$$
\left.V\right|_{A_{0} G}=V_{1} \dot{+}+\dot{+} V_{e}
$$

where the V_{i} are homogeneous components. Let $A_{1}=\operatorname{Stab}\left(A, V_{1}\right)$ the stabilizer in A of V_{1}. Since $A_{0} G \triangle A G, A_{1} G=\operatorname{Stab}\left(A G, V_{1}\right)$. So V_{1} (written $V_{1}\left(A_{1} G\right)$ when considered as an $A_{1} G$ module) is an irreducible $A_{1} G$ module and $\left.V_{1}\left(A_{1} G\right)\right|^{A G} \simeq_{A G} V$. But A is nilpotent so there is $A_{1} \leq A^{*} \triangle A$ maximal of prime index n so that $\left.V\right|_{A^{*} G}=U_{i} \dot{+} \cdots \dot{+} U_{n}$ where the U_{i} are irreducible $A^{*} G$ modules with $\left.U_{1} \simeq_{A^{*} G} V_{1}\left(A_{1} G\right)\right|^{A^{* G}}$ and so $\left.U_{1}\right|^{A G} \simeq_{A}{ }^{G} V$.

Next we prove a result about $\mathrm{K}[A]$ modules.
(II.11) Suppose $A^{\prime} \leq A^{*} \leq A$ and $A_{1} \leq A$. Also J is an irreducible $\mathrm{K}\left[A_{1}\right]$ module. Assume

$$
L=\operatorname{ker}\left[A_{1} \rightarrow \operatorname{Aut} J\right] \geq A_{1} \cap A^{*}
$$

Let $I=C_{\left.J\right|^{A}}\left(A^{*}\right) . \quad$ Then

$$
\operatorname{ker}[A \rightarrow \operatorname{Aut} I]=L A^{*}
$$

First suppose $C_{J \mid A_{1} A^{*}}\left(A^{*}\right)=J_{0}$ has kernel $L A^{*}$. Set $J_{1}=\left[A^{*},\left.J\right|^{A_{1} A^{*}}\right]$. Then $\left.J\right|^{A_{1} A^{*}}=J_{0}+J_{1}$ as a $K\left[A_{1} A^{*}\right]$ module. Let J^{\prime} be an irreducible component of J_{1}. Then $\left[A^{*}, J^{\prime}\right]=J^{\prime}$. Hence $\left[A^{*},\left.J^{\prime}\right|^{A}\right]=\left.J^{\prime}\right|^{A}$. So I must be contained wholly in $\left.J_{0}\right|^{A}$. But

$$
\left.\left.J_{0}\right|^{A}\right|_{L A^{*}}=\left.\sum_{\pi A_{1} A^{*}} \dot{+} \pi \otimes J_{0}\right|_{I A^{*}}
$$

where summation is over cosets in A. Now $A^{*}, L A^{*} \triangle A$ so $\left.\pi \otimes J_{0}\right|_{L A^{*}}$ is both a trivial $L A^{*}$ and A^{*} module. Hence $\left.J_{0}\right|^{4}=I$.

So we may assume that $A_{1} A^{*}=A$ and prove the lemma in that case

Now
$\left.\left.J\right|^{A}\right|_{L A^{*}} \simeq_{L A^{*}} \sum_{A_{1} \pi L A^{*}}+\left.\left.\left.\pi \otimes J\right|_{A_{1} \pi-\left.1 \cap_{L A^{*}}\right|^{L A^{*}}} \simeq_{L A^{*}} J\right|_{A_{1} \cap A_{A^{*}}}\right|^{L A^{*}}=\left.\left.J\right|_{L}\right|^{L A^{*}}$ since $A_{1} L A^{*}=A$ and $L \leq A_{1} \cap L A^{*} \leq L\left(A_{1} \cap A^{*}\right)=L$. But L is trivial on $\left.J\right|_{L}$ so

$$
\left.\left.\left.J\right|^{A}\right|_{L A^{*}} \simeq_{L A^{*}}(\operatorname{dim} J) 1_{L}\right|^{L A^{*}}
$$

where 1_{L} is the trivial L module of dimension 1. Next

$$
\operatorname{dim} \operatorname{Hom}_{K\left[L A^{*}\right]}\left(1_{L A^{*}},\left.1_{L}\right|^{L A^{*}}\right)=\operatorname{dim} \operatorname{Hom}_{\mathbb{K}[L]}\left(\left.1_{L A^{*}}\right|_{L}, 1_{L}\right)=1
$$

So $\operatorname{dim} C_{\left.J\right|^{A}}\left(L A^{*}\right)=\operatorname{dim} J$. Clearly $C_{\left.J\right|^{A}}\left(L A^{*}\right)$ is contained in I. But also $\operatorname{dim} \operatorname{Hom}_{K\left[A^{*}\right]}\left(1_{A^{*}},\left.\left.1_{L}\right|^{L A^{*}}\right|_{A^{*}}\right)=1$.
And

$$
\left.\left.\left.\left.\left.J\right|^{A}\right|_{L A^{*}}\right|_{A^{*}} \simeq_{A^{*}}(\operatorname{dim} J) 1_{L}\right|^{L A^{*}}\right|_{A^{*}}
$$

Therefore $\operatorname{dim} I=\operatorname{dim} J=\operatorname{dim} C_{\left.J\right|^{A}}\left(L A^{*}\right)$. Hence $C_{J \mid \Lambda}^{A}\left(L A^{*}\right)=I$. So $L A^{*}$ is in the kernel of I. Since $A_{1} / A^{*} \cap A_{1}$ is abelian, A_{1} / L is cyclic and $\left.J\right|_{A_{1}}$ is a sum of cyclic faithful A_{1} / L modules. So the kernel of I is $L A^{*}$.
(II.12) Suppose $A^{\prime} \leq A^{*} \leq A$ and $A_{1} \leq A$. Assume U is $a \mathbf{K}\left[A_{1} G\right]$ module and $\left.V \simeq_{A G} U\right|^{A G}$. Then
(i) $C_{V}\left(A^{*}\right)=(0)$ if and only if $C_{U}\left(A_{1} \cap A^{*}\right)=(0)$.

If $C_{V}\left(A^{*}\right) \neq(0)$ then
(ii) $C_{\Delta} C_{V}\left(A^{*}\right)=A^{*} C_{A_{1}} C_{U}\left(A_{1} \cap A^{*}\right)$.

Remark. With $A^{*}=A$, (i) says $C_{V}\left(A_{1}\right)=(0)$ if and only if $C_{V}(A)=(0)$.
For (i) we know that

$$
\left.\left.\left.\left.\left.V\right|_{A^{*}} \simeq_{A^{*}} U\right|^{A G}\right|_{A^{*}} \simeq_{A^{*}} \sum_{A^{*} \pi A_{1} G} \dot{+} \pi \otimes U\right|_{\left(A_{1} G^{\pi-1} \Lambda_{A^{*}}\right.}\right|^{A^{*}}
$$

The π 's may be chosen in A. Because $A^{*} \triangle A$ and $\pi \epsilon A$ we have the modules in the sum conjugate to $\left.\left.U\right|_{A_{1} G \cap_{A^{*}}}\right|^{A^{*}}$. So the centralizer of A^{*} is the same
dimension in each summand. But $A_{1} G \cap A^{*}=A_{1} \cap A^{*}$ so (i) follows imimmediately.

For (ii) we apply (i) and (II.11).
Remark. (II.12) and the remark following it will be used heavily in section VI, often without mention.
(I.13) Suppose A is a p group in which every characteristic abelian subgroup is cyclic. Then A is the central product of a cyclic with an extra special group.

A proof is given in [7].

III. Class two p groups

In this section we compute the nonlinear irreducible characters of a class two p group. We then use this result to prove a fixed point theorem for a class two odd p group irreducible on a module over a prime Galois field. For the remainder of this section suppose that P is a class two p group, \mathbf{Q} is the rational field, δ is a primitive $|P|^{\text {th }}$ root of unity, and $k=Q(\delta)$.
(III.1) Suppose that P has a faithful irreducible character β. Then $\beta(x)=0$ for all $x \in P-Z(P)$.

Let $x \in P-Z(P)$. By the Clifford theorems $\left.\beta\right|_{Z(P)}=m \alpha$, a multiple of a single linear faithful character of $Z(P)$. Choose y so that $[x, y]=x^{-1} x^{y} \neq 1$. Then

$$
\beta(x)=\beta\left(x^{y}\right)=\beta(x[x, y])=\beta(x) \alpha([x, y])
$$

since $[x, y] \in Z(P)$. But α is faithful on $Z(P)$ so $\alpha([x, y]) \neq 1$. Hence $\beta(x)=0$.
(III.2) Theorem. Suppose β is a faithful irreducible character of P. Then

$$
\begin{array}{rlrl}
\beta & =p^{d} \alpha ; & & \alpha \text { faithful linear on } \\
& =0 ; & & Z(P) \\
& =0 \text { outside } Z(P)
\end{array}
$$

and $|P|=p^{2 d}|Z(P)|$.
Clearly $\left.\beta\right|_{z_{(P)}}=p^{d} \alpha$ for some faithful linear α on $Z(P)$ and p^{d} dividing $|P|$. Now

$$
\begin{aligned}
& 1=(\beta, \beta)_{P}=|P|^{-1} \sum_{x \epsilon P} \beta(x) \beta\left(x^{-1}\right) \\
&=|P|^{-1} p^{2 d} \sum_{x \in Z(P)} \alpha(x) \alpha\left(x^{-1}\right)=|P|^{-1} p^{2 d}|Z(P)|
\end{aligned}
$$

This completes the proof.
(III.3) Suppose P has a faithful irreducible character of degree p^{d}. Let $s(P)$ be the number of subgroups $A \leq P$ of order p such that $A \cap Z(P)=1$. Then

$$
s(P) \leq\left(p^{2 d}-1\right) p /(p-1)
$$

Consider $P / Z(P) . \quad$ By (II.2) this group has order $p^{2 d}$. The largest pos-
sible number of subgroups of order p in $P / Z(P)$ is then $\left(p^{2 d}-1\right) /(p-1)$. Let $B / Z(P)$ be cyclic of order p. Then B is abelian of rank two or one. In any case, it contains no more than $\left(p^{2}-1\right) /(p-1)=p+1$ subgroups of order p. One of these must be the subgroup of order p in $Z(P)$. Hence

$$
s(P) \leq\left(p^{2 d}-1\right) p /(p-1)
$$

(III.4) Theorem. Suppose that p is an odd prime and $r(\neq p)$ is a prime. Assume that V is an irreducible $G F(q)[P], q=r^{m}$, faithful on P. Then there exists a vector $v \in V^{*}$ which is fixed by no element of P^{*}.

We proceed by contradiction.
Since $r \neq p$, ordinary character theory holds. So we apply (III.2) several times. Now $|P|=p^{2 d}|Z(P)|$ so the Brauer character of V is a sum of t algebraic conjugates of the character of (II.2). The number $t=1$ if and only if V is absolutely irreducible. Hence

$$
\operatorname{dim} V=t p^{d}
$$

So there are $q^{t_{p} d}-1$ vectors in V^{*}. We know that $Z(P)$ is elementwise fixed point free on V. Hence, if $v \in V^{*}$ and $C_{P}(v) \neq 1$ then $C_{P}(v) \cap Z(P)=1$. Further, $C_{P}(v)$ contains a cyclic subgroup of order p. So the largest number of vectors in V^{*} which can be fixed by subgroups of order p will be $s(P)$ times the maximum number of vectors in V^{*} which can be fixed by a single subgroup of order p.

Suppose A is cyclic of order p and $A \cap Z(P)=1$. Then by (III.2) we have $\operatorname{dim} C_{V}(A)=t p^{d-1}$. So the prescribed product is $s(P)\left[q^{t p^{d-1}}-1\right]$. In order to have every $v \in V^{*}$ fixed by some $A \leq P$ we must have

$$
s(P)\left[q^{t_{p}^{d-1}}-1\right] \geq q^{t_{p}^{d}}-1
$$

Using (III.3) we obtain

$$
p\left(p^{2 d}-1\right) /(p-1) \geq\left(q^{t p^{d}}-1\right) /\left(q^{t p^{d-1}}-1\right)
$$

A simple computation shows that with p odd we must have $p=3, q=2$, $d=1,2$, and $t=1$ for the inequality to hold. In particular V is absolutely irreducible. But then $\left.V\right|_{z(P)}$ is a multiple of a single one dimensional $Z(P)$ module. Or equivalently, $G F(2)$ contains a primitive $|Z(P)|^{\text {th }}$ root of one. This contradiction proves the theorem.

IV. Extensions of extra special groups

In this section we compute characters of groups which are extensions of normal extra special subgroups. Preliminary results in this direction are in [3, 4 (13.6)].

We reintroduce the field of Section II. Suppose that \mathbf{Q} is the rational field and δ is a primitive $|A R|^{\text {th }}$ root of unity over \mathbf{Q}. We let $\mathbf{k}=\mathbf{Q}(\delta)$. In what follows we will be discussing k characters.

Suppose $A R$ is a group with normal extra special r subgroup R of order $r^{2 m+1}$. Assume that A centralizes $D(R)$ and $(|A|, r)=1$. Let $\mathrm{K}=G F(r)$ (\mathbf{K} and \mathbf{k} are different fields). Consider the \mathbf{K} vector space $R / D(R)=V$. If $v_{1}, v_{2} \in V=R / D(R)$ choose $x \in V_{1}=x D(R)$ and $y \in v_{2}=y D(R)$. Then set $\left(v_{1}, v_{2}\right)=[x, y] \in D(R)$. We may identify $D(R)=G F(r)^{+}=\mathrm{K}^{+}$. Using this identification (\cdot, \cdot) becomes a nonsingular symplectic pairing on $V=R / D(R)$ into \mathbf{K}^{+}. For $v=x D(R) \epsilon V, y \in A$ we set

$$
y v=\left(y x y^{-1}\right) D(R)=x^{y^{-1}} D(R)
$$

With this conjugation as action V becomes a left $\mathrm{K}[A]$ module. Further, A centralizes $D(R)$ so A fixes the pairing (\cdot, \cdot).

Fix $\alpha: A \rightarrow A$ as that unique antiautomorphism of A which sends $x \rightarrow x^{-1}$ for all $x \epsilon A$. Then α extends linearly to an antiautomorphism of $\mathbf{K}[A]$.
(IV.1) Suppose that $1=e_{1}+\cdots+e_{t}$ is a decomposition of 1 into primitive central orthogonal idempotents of $\mathbf{K}[A]$. Then, except possibly when $e_{i}^{\alpha}=e_{j}$, we have

$$
\left(e_{i} V, e_{j} V\right)=0
$$

Choose any $v_{1}, v_{2} \in V$. Suppose $e_{i}^{\alpha} \neq e_{j}$. Then $e_{i}^{\alpha} e_{j}=0$. So

$$
\left(e_{i} v_{i}, e_{j} v_{2}\right)=\left(v_{1}, e_{i}^{\alpha} e_{j} v_{2}\right)=0
$$

The symplectic space V is nonsingular. So if $e_{i} V \neq(0)$ then $e_{i}^{\alpha} V \neq(0)$. By choosing complementary bases we see that $\operatorname{dim}_{K} e_{i} V=\operatorname{dim}_{K} e_{i}^{\alpha} V$. Further $e_{i} V+e_{i}^{\alpha} V$ is a nonsingular subspace of V if it is not (0). Let

$$
N_{e_{i}}=\operatorname{ker}\left[A \rightarrow \operatorname{Aut} e_{i} V\right]
$$

Since $x \in N_{e_{i}}$ implies $x^{-1} \in N_{e_{i}}$, we also have $N_{e_{i}}=N_{e_{i}} \alpha$. So (IV.1) has the following corollary.
(IV.2) In the notation of (IV.1) we have, for all i,
(a) $N_{e_{i}}=N_{e_{i}} \alpha$,
(b) $\operatorname{dim}_{\mathbf{K}} e_{i} V=\operatorname{dim}_{\mathbf{K}} e_{i}^{\alpha} V$, and
(c) $e_{i} V+e_{i}^{\alpha} V$ is nonsingular or (0).

Now we decompose the space V. Since $(|A|, r)=1$, as a $K[A]$ module, V is completely reducible. That is,

$$
V=V_{0} \dot{+} V^{\prime}
$$

as a $\mathbf{K}[A]$ module where V_{0} is irreducible.
(IV.3) As a $\mathrm{K}[A]$ module

$$
V=V_{1}+\cdots+V_{s}
$$

where
(a) V_{i} is nonsingular
(b) $\left(V_{i}, V_{j}\right)=(0) i \neq j$
(c) (i) V_{i} is irreducible or (ii) $V_{i}=W_{i}+W_{i}^{*}$ as $a \mathrm{~K}[A]$ module with W_{i}, W_{i}^{*} irreducible isotropic subspaces of V_{i}.

We prove this by induction on $\operatorname{dim} V$. We examine the decomposition $V=V_{0}+V^{\prime}$. First, suppose that V_{0} is nonsingular. Then set $V_{0}=V_{1}$ and consider $V^{*}=V_{1}^{\perp}$. Since V_{1} and (,) are A invariant and V_{1} is nonsingular we get

$$
V=V_{1}+V^{*}
$$

as a $K[A]$ module and V^{*} is nonsingular. Second, suppose V_{0} is singular. Since (,) and V_{0} are A invariant, V_{0}^{\perp} is $\mathrm{K}[A]$ invariant. So by complete reducibility

$$
V=V_{0}^{\perp} \dot{+} W_{1}
$$

as a $\mathrm{K}[A]$ module. Now rad $V_{0} \neq(0)$ and is A invariant. Further, V_{0} is irreducible so rad $V_{0}=V_{0}$; that is, $V_{0}=W_{1}^{*}$ is isotropic. In particular, $V_{0} \subseteq V_{0}^{\perp}$.
We see then that

$$
V_{1}=W_{1}+W_{1}^{*}
$$

is a $K[A]$ decomposition. Further, by choosing complementary bases we see that V_{1} is nonsingular and W_{1}, W_{1}^{*} are irreducible isotropic subspaces. Setting $V_{1}^{\perp}=V^{*}$, as before we get, the $\mathbf{K}[A]$ decomposition

$$
V=V_{1}+V^{*}
$$

Now $\operatorname{dim} V^{*}<\operatorname{dim} V$ so induction completes the proof.
Using (IV.3) we set R_{i} equal to the inverse image in R of $V_{i} . \quad$ Because V_{i} is nonsingular we know that R_{i} is extra special with $D\left(R_{i}\right)=D(R)$.
(IV.4) R is the central product of the $R_{i}, i=1, \cdots, s$.

Since each $R_{i} \geq D(R), \prod_{i} R_{i}=M \geq D(R)$. Further,

$$
M / D(R)=\sum \dot{+} V_{i}=V=R / D(R)
$$

Hence $M=R$. Also $Z\left(R_{i}\right)=Z(R)=D(R)$.
Next, if $i \neq j$ then $\left[R_{i}, R_{j}\right]=1$. This is immediate since $\left(V_{i}, V_{j}\right)=(0)$ or equivalently $\left[R_{i}, R_{j}\right]=1$.

Therefore, R is the central product of the R_{i}.
For the following lemma, the construction of the central product is important. Let $R_{0}=\prod_{i} \odot R_{i}$ be the direct product of the R_{i}. Also set M equal to the subgroup of all $\Pi \odot y_{i} \in R_{0}$ such that the product in $R \prod y_{i}=1$. This subgroup is normal in R_{0} and is in $\Pi \odot D\left(R_{i}\right)$. Further, $R \simeq R_{0} / M$ in a natural way. Since $V=\sum \dot{+} V_{i}$ for $y \epsilon R, y D(R)=\sum v_{i}$ uniquely. Choose $z_{i} \in v_{i}$ so that the product in $R \prod z_{i}=y$. Then setting $\Phi(y)=\Pi \odot z_{i} M$ gives the desired isomorphism. In fact, this is an A isomorphism as is easily verified.
(IV.5) Suppose that θ_{i} is an irreducible character of R_{i} (given in (IV.3)) which is nontrivial on $D(R)=D\left(R_{i}\right)$. Suppose that for every $i,\left.\theta_{i}\right|_{D(R)}$ contains the fixed linear character λ of $D(R)=D\left(R_{i}\right)$. Assume that X_{i} is an irreducible character of $A R_{i}$ and $\left.X_{i}\right|_{R_{i}}=\theta_{i}$. Then the direct product character.

$$
\beta=\prod X_{i}
$$

is irreducible on $A R \simeq A^{\Delta} R_{0} / M$ where A^{Δ} is the diagonal subgroup of $\prod_{i=1}^{s} \odot A$.
It is sufficient to note that $\left.\beta\right|_{R_{0}}=\Pi \theta_{i}$ is an irreducible character of R_{0} with M in its kernel. Hence, β, considered as a character on $A R$, is irreducible.
(IV.6) Suppose that $A_{0}=C_{A}(R)$. Assume also that $C_{A}\left(R_{i}\right)=H_{i} . \quad$ Further, let β be an irreducible character of $A R$ constructed as in (IV.5). Suppose that $\left(\left.X_{i}\right|_{A}, \gamma\right)_{A}>0$ for every irreducible character γ of A / H_{i}. Then

$$
\left(\left.\beta\right|_{A}, \sigma\right)_{A}>0
$$

for every irreducible character σ of A / A_{0}.
Since $A_{0}=\cap H_{i}$ it is not difficult to see that A / A_{0} is isomorphic to a subgroup of $\Pi \odot A / H_{i}$.

Next, let Y_{i} be the sum of every irreducible character of A / H_{i}. We prove that if the direct product character ΠY_{i} is considered as a character of A^{Δ} then Y_{i} contains every character of A / A_{0}.

Now Y_{i} is a character of A / H_{i}. Further, A / A_{0} is a "subgroup" of $\Pi \odot A / H_{i} . \quad$ Suppose μ is any irreducible character of $B=\Pi \odot A / H_{\boldsymbol{i}}$. Then

$$
\mu=\Pi_{\mu_{i}}
$$

where μ_{i} is an irreducible character of A / H_{i}. But $Y_{i}=\mu_{i}+\mu_{i}^{\prime}$. Hence

$$
\Pi Y_{i}=\Pi\left(\mu_{i}+\mu_{i}^{\prime}\right)=\left(\Pi \mu_{i}\right)+\mu^{\prime}=\mu+\mu^{\prime}
$$

Therefore, \prod_{i} contains every character of B.
Finally, if σ is any irreducible character of A / A_{0}, a subgroup of B, then there is a character μ on B such that $\left.\mu\right|_{A / A_{0}}$ contains σ. But $\prod Y_{i}$ contains μ so $\left.\left(\prod Y_{i}\right)\right|_{A / A_{0}}$ contains σ.

The result is immediate since Y_{i} is contained in $\left.X_{i}\right|_{A}$ by hypothesis.
Character Values. From (IV.3), (IV.5), and (IV.6) it is evident that, in order to compute the character values on $A R$, we need only consider the spaces V_{i}. In other words, we need only consider submodules of V which are faithful on A / H_{i}.

The next few lemmas are technical in nature and are used to compute actual character values.
(IV.7) Suppose A is cyclic and $H_{i}=C_{A}\left(R_{i}\right) . N o w \operatorname{dim}_{\mathbf{K}} V_{i}=n_{i} d_{i}$ where $n_{i}(=1,2)$ is the number of $\mathrm{K}[A]$ irreducible submodules of V_{i} and d_{i} is the dimension of one of these. Then $r^{n_{i} d_{i} / 2} \equiv(-1)^{n_{i}}\left(\bmod \left[A: H_{i}\right]\right)$.

If $\left[A: H_{i}\right]=1$ the result is trivial. If $\left[A: H_{i}\right]=2$ then $\left(\left[A: H_{i}\right], r\right)=1$ by hypothesis so r is odd and again we are done. So we may assume $\left[A: H_{i}\right]>2$.

Let $e \epsilon \mathbf{K}[A]$ be a primitive central idempotent such that $e V_{i} \neq(0)$. For the antiautomorphism $\alpha, e^{\alpha} V_{i} \neq(0)$. In particular, (IV.2) says that $\operatorname{dim} e V_{i}=\operatorname{dim} e^{\alpha} V_{i}$. That is, every $K[A]$ irreducible submodule of V_{i} has the same dimension since there are at most two. Hence $\operatorname{dim} V_{i}=n_{i} d_{i}$.

Let t be the smallest positive integer such that $r^{t} \equiv 1\left(\bmod \left[A: H_{i}\right]\right)$. Now $e \mathrm{~K}[A]$ is an extension of $\mathrm{K}=G F(r)$ by a primitive [$A: H_{i}$] root of unity. Therefore $e \mathbb{K}[A] \simeq G F\left(r^{t}\right)$. In particular,

$$
\operatorname{dim}_{\mathbb{K}} e \mathbb{K}[A]=\operatorname{dim}_{\mathbb{K}} G F\left(r^{t}\right)=t=d_{i}
$$

the dimension of an irreducible submodule of V_{i}.
Suppose $V_{i}=W_{i}+W_{i}^{*}$. Then $n_{i}=2$ and we get

$$
r^{n_{i} d_{i} / 2}=r^{2 t / 2}=r^{t} \equiv 1=(-1)^{2}=(-1)^{n_{i}} \quad\left(\bmod \left[A: H_{i}\right]\right)
$$

So we assume V_{i} is irreducible. Since V_{i} is nonsingular, its dimension is even. So $n_{i}=1$ and $d_{i}=t$ is even. By the choice of t we get

$$
r^{n_{i} d_{i} / 2}=r^{t / 2} \equiv-1=(-1)^{n_{i}} \quad\left(\bmod \left[A: H_{i}\right]\right)
$$

This completes the proof.
We now build a character. Fix i. Consider R_{i}, the inverse image in R of V_{i}. Suppose $\operatorname{dim} V_{i}=n_{i} d_{i}$ where n_{i} is the number of irreducible $\mathbf{K}[A]$ submodules in a reduction of V_{i} and d_{i} is the dimension of one of these. Assume $H_{i}=C_{A}\left(R_{i}\right)$
(IV.8) Suppose A is cyclic and λ is a nontrivial linear character of $D\left(R_{i}\right)$. Then

$$
\begin{aligned}
X_{\lambda i}(x) & =r^{n_{i} d_{i} / 2} \lambda(z) ; \quad x=y z, \quad y \in H_{i}, \quad z \in D\left(R_{i}\right) \\
& =(-1)^{n_{i}} \lambda(z) ; \quad x \sim y z, y A-H_{i}, \quad z \in D\left(R_{i}\right) \\
& =0 \quad \text { elsewhere }
\end{aligned}
$$

is an irreducible character of $A R_{i}$.
This result is well known [3, 4 (13.6)]. A remark on its proof: Let $n_{i}=n$, $d_{i}=d, R_{i}=R, H_{i}=H, X_{\lambda i}=X_{\lambda}$.

$$
\begin{aligned}
\beta_{\lambda}(x) & =r^{n d / 2} \lambda(x) ; \quad x \in D(R) \\
& =0 \quad \text { elsewhere }
\end{aligned}
$$

is an irreducible character of R. The character β_{λ} extends to the direct product $H \odot R$ so that the extended character β_{λ}^{e} is trivial on H. Set

$$
\begin{aligned}
N_{\lambda}(x)=\left.\beta_{\lambda}^{e}\right|^{A R}(x) & =[A: H] r^{n d / 2} \lambda(z) ; \quad x=y z, \quad y \in H, \quad z \in D(R) \\
& =0 \quad \text { elsewhere } .
\end{aligned}
$$

The character λ extends to a linear character λ^{e} of $A \odot D(R)$ which is trivial
on A. Set

$$
\begin{aligned}
M_{\lambda}(x)=\left.\lambda^{\ell}\right|^{A R}(x) & =r^{n d} \lambda(z) ; \quad x=y z, \quad y \in H, \quad z \in D(R) \\
& =\lambda(z) ; \quad x \sim y z, \quad y \in A-H, \quad z \in D(R) \\
& =0 \quad \text { elsewhere. }
\end{aligned}
$$

By (IV.7), $\left(1-(-1)^{n} r^{n d / 2}\right) /[A: H]$ is an integer.
Further

$$
X_{\lambda}=\left[\frac{1-(-1)^{n} r^{n d / 2}}{[A: H]}\right] N_{\lambda}-(-1)^{n} M_{\lambda}
$$

From this remark, the proof is straightforward. Further, this way of writing X_{λ} gives:
(IV.9) Assume the conditions of (IV.8). Suppose $r^{d_{i}}+1 \neq\left[A: H_{i}\right]$. Then $\left.X_{\lambda i}\right|_{\Delta}$ contains every character of A / H_{i}.

For we get

$$
\left.X_{\lambda}\right|_{A}=\left[\frac{r^{n_{i} d_{i / 2}}-(-1)^{n_{i}}}{\left[A: H_{i}\right]}\right] \rho_{A / H_{i}}+(-1)^{n_{i}} 1_{A}
$$

where $\rho_{A / H_{i}}$ is the regular character of A / H_{i}.
We still consider A to be cyclic, but now we want to find a character on all of R rather than just R_{i}. First we define some numbers.

Definition. Let $x \in A$. By (IV.2) $C_{V}(x)=C_{R}(x) / D(R)$ is of even dimension since it is non-singular. Let

$$
2 m(x)=\operatorname{dim}_{\mathbf{K}} C_{V}(x)
$$

Also let

$$
n(x)=\text { number of nontrivial } \mathbf{K}[\langle x\rangle] \text { irreducible submodules }
$$

in a direct decomposition of V.
It is not difficult to see that

$$
m(x)=\sum n_{i} d_{i} / 2
$$

where summation is over all i such that x centralizes V_{i}. And in the same fashion

$$
n(x) \equiv \sum n_{i} \quad(\bmod 2)
$$

where summation is over all i such that x is nontrivial on V_{i}. So that (IV.5) applied to $A R$ using the character of (IV.8) gives
(IV.10) Assume that A is cyclic. Suppose that λ is a nontrivial linear character of $D(R)$. For $x \in A$ we consider $m(x)$ and $n(x)$ as defined above. Then

$$
\begin{aligned}
Y_{\lambda}(y) & =r^{m(x)}(-1)^{n(x)} \lambda(z) ; \quad y \sim x z, \quad x \in A, \quad z \in D(R) \\
& =0 \text { elsewhere }
\end{aligned}
$$

is an irreducible character of $A R$.
We may also apply (IV.5), (IV.6), and (IV.9) to prove
(IV.11) Assume the conditions of (IV.10). If $A_{0}=C_{A}(R)$ then $\left.Y_{\lambda}\right|_{A}$ contains every character of A / A_{0} provided that $r^{d i}+1 \neq\left[A: H_{i}\right]$ for every i.

The inequality here may be restricted under certain conditions.
(IV.12) Assume that A is cyclic and A^{*} is a subgroup. Suppose that ρ_{A} is the regular character of A and $\rho_{A}^{*}=\rho_{A}-1_{A}$ and $\rho_{A / A^{*}}^{*}=\rho_{A / A^{*}}-1_{A}$. If β is any linear character of A and $\gamma=\left(\rho_{A}^{*}\right)\left(\rho_{A / A^{*}}^{*}\right)$ then

$$
\begin{aligned}
(\gamma, \beta)_{A} & =\left[A: A^{*}\right]-1 ; & & \beta=1_{\Delta} \\
& =\left[A: A^{*}\right]-2 ; & & \beta \neq 1_{\Delta},\left.\quad \beta\right|_{A^{*}}=1_{A^{*}} \\
& =\left[A: A^{*}\right]-1 ; & & \left.\beta\right|_{A^{*}} \neq 1_{A^{*}}
\end{aligned}
$$

The proof of this is a direct computation.
(IV.13) Suppose A is a cyclic odd p group. Assume the hypothesis of (IV.10). Also assume $A_{0}=C_{\Delta}(R)$. Then $\left.Y_{\lambda}\right|_{\Delta}$ contains every character of A / A_{0} except when

$$
\left[A: A_{0}\right]=\sqrt{\left[R: C_{R}(A)\right]}+1
$$

and $R / C_{R}(A)$ is a faithful irreducible A / A_{0} module. In this exceptional case

$$
\left.Y_{\lambda}\right|_{A}=\sqrt{\left[C_{R}(A): D(R)\right]}\left(\rho_{A / A_{0}}-1_{A}\right)
$$

Consider the decomposition of (IV.3). Suppose e is that primitive central idempotent of $\mathrm{K}[A]$ yielding $e \mathrm{~K}[A]$, the trivial A module. Then for the antiautomorphism $\alpha, e^{\alpha}=e$. Hence $C_{R}(A) / D(R)=e V$ is nonsingular. So also is $(1-e) V=R / C_{R}(A)$. The decomposition into V_{i} then splits into V_{i} nontrivial on A and V_{i} trivial on A. Let $X_{\lambda i}$ be the character of $A R_{i}$ given in (IV.8). If $R_{i} \leq C_{R}(A)$ then $\left.X_{\lambda i}\right|_{A}=h_{i} 1_{A}$ is a multiple of 1_{A}. If $R_{i} \leq[R, A]$ then $\left.X_{\lambda i}\right|_{A}=g_{i} \rho_{A / A_{i}} \pm 1_{A}$ for some g_{i} by the proof of (IV.9).

Now by the construction in (IV.5) we get

$$
\left.Y_{\lambda}\right|_{A}=\Pi^{\prime}\left(g_{i} \rho_{\Delta / \Lambda_{i}} \pm 1_{\Delta}\right) \cdot h 1_{A}
$$

where the product is over some i s. But by (IV.12) we see that only one i can appear in the product since p is odd. And for that i,

$$
\left.Y_{\lambda}\right|_{\Lambda}=\left(\rho_{\Delta / \Lambda_{0}}-1_{A}\right) h 1_{A}
$$

Hence $\left[A: A_{0}\right]=\sqrt{\left[R: C_{R}(A)\right]+1}$. For this i we also have

$$
r^{n_{i} d_{i / 2}}+(-1)^{n_{i}} 1_{A}=\left[A: A_{0}\right]
$$

So $n_{i}=1$. Finally it is not difficult to see that $h=\sqrt{\left[C_{R}(A): D(R)\right]}$.

This method of proof also gives another conclusion. Recall the map ϕ of section II.
(IV.14) For ϕ of sectionII and A cyclic we get

$$
\phi\left(\left.Y_{\lambda}\right|_{A}\right)= \pm 1_{A} .
$$

If $|A|$ is odd then it is $+1_{A}$.
In the proof of (IV.13) we did not use the fact that A was an odd p group until we applied (IV.12). So as before we have

$$
\left.Y_{\lambda}\right|_{\Lambda}=\Pi^{\prime}\left(g_{i} \rho_{\Delta / \Lambda_{i}} \pm 1_{\Lambda}\right) \cdot h 1_{\Lambda} .
$$

This character corresponds to a tensor product of representations. Each representation Λ_{i} in the product which is not trivial has a character $g_{i} \rho_{A / A_{i}} \pm 1_{A}$. Clearly $\phi\left(g_{i} \rho_{A / A_{i}} \pm 1_{A}\right)= \pm 1_{A}$ where the sign is + if $|A|$ is odd. Since $\operatorname{det}\left(\Lambda_{i} \otimes \Lambda_{j}\right)=\left[\operatorname{det} \Lambda_{i}\right]^{\operatorname{deg} \Lambda_{j}}\left[\operatorname{det} \Lambda_{j}\right]^{\operatorname{deg} \Lambda_{i}}$ we easily see that (IV.14) is true.
(IV.15) Theorem. Assume that $A R$ is a group with normal extra special subgroup R of order $r^{2 m+1}$ and $(|A|, r)=1$. Suppose A centralizes $D(R)$. Assume that λ is a nontrivial linear character on $D(R)$. Then there exists a class function
$\gamma: A \rightarrow\{1,-1\}$ such that

$$
\begin{aligned}
\mathfrak{X}_{\lambda}(y) & =r^{m(x)}(-1)^{n(x)} \gamma(x) \lambda(z) ; \quad y \sim x z, x \in A, z \in D(R) \\
& =0 \text { elsewhere }
\end{aligned}
$$

is an irreducible character of $A R$. Further $\gamma(x)=1$ whenever $|\langle x\rangle|$ is odd.
Let λ_{0} be the irreducible character of R lying over λ. Then λ_{0} is fixed by A. By (II.1) we may choose an extension χ of λ_{0} on $A R$ such that
(i) $\left.x\right|_{R}=\lambda_{0}$
(ii) $\phi\left(\left.\chi\right|_{A}\right)=1_{\Delta}$.

This choice of χ is unique. Further, if $A^{*} \leq A$ is a subgroup then $\left.\chi\right|_{A^{* R}}$ is the unique character on $A^{*} R$ satisfying (i) and (ii).

Let $x \in A$. By (II.2) and (IV.10)

$$
\left.x\right|_{\langle x\rangle R}=Y_{\lambda} \beta_{x}
$$

for some linear character β_{x} of $\langle x\rangle R / R$. But $\phi\left(\left.\chi\right|_{\langle x\rangle}\right)=1=\phi\left(Y_{\lambda}\right) \phi\left(\beta_{x}\right)$ $= \pm \beta_{x}$. Hence $\beta_{x}= \pm 1_{\langle x\rangle}$ and is a character of $\langle x\rangle R /\left\langle x^{2}\right\rangle R$. That is, β_{x} maps x into $\{1,-1\}$. Further $\beta_{x}(x)=1$ if $|\langle x\rangle|$ is odd. Therefore $\chi=\mathfrak{X}_{\lambda}$ has the values of (IV.15) where $\gamma(x)=\beta_{x}(x)$.

Remark: If $x \in A$ and $x^{2}=y$ and $[\langle x\rangle:\langle y\rangle]=2$ then $\gamma(y)=1$. This follows by looking at $\left.\mathfrak{X}_{\lambda}\right|_{\langle x\rangle \mathrm{L}}$.

V. Class two extensions

Following (IV.10) we proved (IV.11) and finally (IV.13) which concerned themselves with which characters appear in $\left.Y_{\lambda}\right|_{A}$. We now derive an analogous result to follow (IV.15) when A is an odd class two p group.

Assume that p, r are distinct primes and p is odd. Suppose that P is a class two p group of order $p^{2 d}|Z(P)|$ where $|Z(P)|=p^{a}$. Assume that $P R$ is a group with normal extra special r subgroup R of order $r^{2 m+1}$. Suppose that every irreducible P submodule of $R / D(R)=V$ is faithful, and P centralizes $D(R)$. Let $\mathrm{K}=G F(r)$ and $\mathbf{k}=\mathbf{Q}(\delta)$ as before. All characters are \mathbf{k} characters unless otherwise specified.

Recall that V is a symplectic space. The Brauer character of P on $V(p \neq r)$ is a sum of t characters as in (III.2). Hence, $\operatorname{dim}_{K} V=t p^{d}$. We must find out what t is. Let m_{b} be the smallest positive integer such that

$$
r^{m_{b}} \equiv 1 \quad\left(\bmod p^{b}\right)
$$

Then for $b=1$,

$$
r^{m_{1}} \equiv 1 \quad(\bmod p)
$$

As an obvious result we have
(V.1) Suppose c is the largest positive integer such that $r^{m_{1}} \equiv 1\left(\bmod p^{c}\right)$. Then $m_{b}=m_{1}$ if $b \leq c$ and $m_{b}=m_{1} p^{b-c}$ if $b>c$.

Further, we have
(V.2) $\quad G F\left(r^{m_{a}}\right)$ is the splitting field for P on V where $|Z(P)|=p^{a}$.

The Brauer character of an absolutely irreducible P module over an extension of $G F(r)$ is given by (II.2) and "lifts" values from $G F\left(r^{m_{a}}\right)$ exactly. If $|P|=p^{2 d}|Z(P)|$ then an irreducible $G F\left(r^{m_{a}}\right)[P]$ module has dimension p^{d} over some finite division algebra by the Wedderburn Structure Theorems. So by the Wedderburn theorem on finite division algebras, $G F\left(r^{m_{a}}\right)$ is the splitting field for P.
(V.3) If $|Z(P)|=p^{a}$ then $t=m_{a} n$ where n is the number of irreducible $G F(r)[P]$ modules in a decomposition of V.

The dimension of V over $G F(r)$ is $t p^{d}$. By (V.1) and (V.2) every irreducible $G F(r)[P]$ submodule must have dimension $m_{a} p^{d}$. There are n of them so $t p^{d}=m_{a} n p^{d}$. Hence the result.

Next we compute information concerning $m(x)$ and $n(x)$.
(V.5) (a) $n(1) \equiv 0(\bmod 2), m(1)=m$.
(b) If $x \in P$ and $\langle x\rangle \cap Z(P) \neq 1$ then $n(x) \equiv n(\bmod 2)$ and $m(x)=0$.
(c) If $x \in P,\langle x\rangle \cap Z(P)=1$ and $|\langle x\rangle|=p^{f}$ then $n(x) \equiv 0(\bmod 2)$ and $m(x)=m / p^{f}$.

The K dimension of V is $2 m$. Hence (III.3) shows immediately that $m(1)=m$. Further, $n(1)=2 m$ so $n(1) \equiv 0(\bmod 2)$.

Next, $Z(P)$ is fixed point free elementwise on V. So if $x \in P$ and $\langle x\rangle \cap Z(P) \neq 1$ then $\langle x\rangle$ is fixed point free elementwise on V. Therefore, $m(x)=0$. If $|\langle x\rangle|=p^{f}$ then an irreducible $\mathrm{K}[\langle x\rangle]$ submodule is faithful of dimension m_{f}. Hence

$$
n(x)=2 m / m_{f} \equiv t / m_{f}=m_{1} n p^{a-c} / m_{1} p^{f-c} \equiv n \quad(\bmod 2)
$$

since p is odd.
Finally, for $x \in P,\langle x\rangle \cap Z(P)=1$, and $|\langle x\rangle|=p^{f}$ we find from (III.3) that $\langle x\rangle$ acts as $t p^{d-f}$ regular representations on V. Therefore, $m(x)=t p^{d-f} / 2$ $=m / p^{f}$. Now $[V,\langle x\rangle]$ has dimension $2 m-\left(2 m / p^{f}\right)=\left(2 m / p^{f}\right)\left(p^{f}-1\right)$. In other words, if ρ is the regular representation of $\langle x\rangle$ then $\langle x\rangle$ is represented upon [$V,\langle x\rangle$] as $2 m / p^{f}$ times $\rho-1$. Let n_{0} be the number of irreducible $\mathbf{K}[\langle x\rangle]$ representations in $\rho-1$. Then $n(x)=\left(2 m / p^{f}\right) n_{0}$. But p is odd so $2 m / p^{f}$ is even and hence

$$
n(x) \equiv 0 \quad(\bmod 2)
$$

This completes the proof of (V.5).
(V.6) (a) $r^{m / p^{i}} \equiv(-1)^{n}\left(\bmod p^{d-i+a}\right), 0 \leq i \leq d$.
(b) $\quad\left[r^{m / p^{i-1}}-(-1)^{n}\right]-p\left[r^{m / p^{i}}-(-1)^{n}\right]=s_{i} p^{2(d-i)+2+1}>0$
for $1 \leq i \leq d$ unless $d=i, a=n=1, p=3, m=p^{d}$ and $r=t=2$.
(c)

$$
\begin{aligned}
0= & w_{0}<w_{1}<\cdots<w_{\theta} \\
= & 2 d+a r^{m}+\sum_{i=1}^{e} r^{m / p^{i}}\left(p^{w_{i}}-p^{w_{i-1}+1}\right)+\sum_{i=1}^{e}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i}-1}\right) \\
& -p^{w_{e}} r^{m / p^{e}}>0
\end{aligned}
$$

for $e \geq 1$ unless $e=1, d=a=n=1, m=p=3$, and $r=t=2$.
To do this we require (IV.7). We examine the representation of $Z(P)$ on V. Since an irreducible faithful $\mathbf{K}[Z(P)]$ module always has dimension m_{a} and since $\left.V\right|_{z(P)}$ is a sum of such modules, $\left.V\right|_{z(P)}$ must contain $t p^{d} / m_{a}=n p^{d}$ irreducible $Z(P)$ modules. In our case p is odd. If n is even then

$$
(-1)^{n}=1 \equiv\left(r^{m_{a}}\right)^{n p^{d} / 2 p^{i}}=r^{m / p^{i}} \quad\left(\bmod p^{d+a-i}\right)
$$

Now suppose n is odd. We look at V as a $Z(P)$ module. Here (IV.3) tells us that there must be some V_{j} irreducible. So for that j, (IV.7) tells us, $n_{j}=1$ and $r^{d_{j} / 2} \equiv-1 \quad\left(\bmod p^{a}\right)$. But then $d_{j}=m_{a}$ by (V.1). Hence

$$
\left(r^{m_{a} / 2}\right)^{n p^{d} / 2 p^{i}}=r^{m / p^{i}} \equiv(-1)^{n}=-1 \quad\left(\bmod p^{d+a-i}\right)
$$

For (b) we rewrite

$$
\begin{aligned}
& {\left[r^{m / p^{i-1}}-(-1)^{n}\right]-p\left[r^{m / p^{i}}-(-1)^{n}\right] } \\
&=r^{m / p^{i}}\left(r^{[m(p-1)] / p^{i}}-p\right)+(p-1)(-1)^{n}
\end{aligned}
$$

Using (a) we have $r^{m(p-1) / p^{i}}=h p^{d-i+a}+1$ for some $h>0$. Hence our expression becomes

$$
r^{m / p^{i}}\left(1+h p^{d-i+a}-p\right)+(p-1)(-1)^{n}
$$

We assume this number is less than or equal to zero. So

$$
r^{m / p^{i}}\left(1+h p^{d-i+a}-p\right) \leq(p-1)(-1)^{n+1}
$$

But $i \leq d$ so the left hand side is positive and hence $n+1$ is even. Further, the left hand side is greater than $p-1$ unless $h=1$ and $d+a-i=1$.

Now

$$
m(p-1) / p^{i}=t p^{d}(p-1) / 2 p^{i}=t(p-1) / 2 p^{a-1}
$$

So $r^{t(p-1) / 2 p^{a-1}}=1+p$. Therefore $r=2$. But $t=m_{1} p^{g} n$ for some $g \geq 0$ by (V.1). And $r^{m_{1}}=1+f p$ for some $f \geq 0$. But

$$
m_{1} \leq t(p-1) / 2 p^{a-1}
$$

so $f=1$ and

$$
m_{1}=m_{1} p^{g} n(p-1) / 2 p^{a-1}
$$

Therefore $p^{g} n=p^{a-1}$, and $p=3$. Hence $m_{1}=2$ and $m_{a}=2 p^{a-1}$ again by (V.1). So $g=a-1$ and $n=1$. Therefore, we have $r=m_{1}=m_{1} n=t=2$, $p=3$. Now $m(p-1) / p^{i}=m_{1}=2$ so $m=p^{i}=t p^{d} / 2=p^{d}$. And $d=i$, $a=n=1$. And we have the exceptional case.

We argue on congruences for the rest of (b). By (a) we have

$$
r^{m / p^{i}} \equiv(-1)^{n} \quad\left(\bmod p^{d-i+a}\right)
$$

Therefore $r^{m / p^{i}}=(-1)^{n}+f p^{d+a-i}$. Next

$$
\begin{aligned}
r^{m / p^{i-1}} & =\left[(-1)^{n}+f p^{d+a-i}\right]^{p} \\
& =(-1)^{n}+f p^{d+a-i+1}+\sum_{j=2}^{p}\binom{p}{j}\left(f p^{d+a-i}\right)^{j}(-1)^{n(p-j)} .
\end{aligned}
$$

And finally

$$
\begin{aligned}
& {\left[r^{m / p^{i-1}}-(-1)^{n}\right]-p\left[r^{m / p^{i}}-(-1)^{n}\right] } \\
&=\sum_{j=2}^{p}\binom{p}{j}\left(f p^{d+a-i}\right)^{j}(-1)^{n(p-j)} \equiv 0 \quad\left(\bmod p^{2(d-i)+2 a+1}\right)
\end{aligned}
$$

From this and the above, (b) follows.
Now consider (c). We rearrange terms.

$$
\begin{aligned}
r^{m}+\sum_{i=1}^{e} r^{m / p^{i}}\left(p^{w_{i}}\right. & \left.-p^{w_{i-1}+1}\right)+\sum_{i=1}^{e}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)-p^{w_{6}} r^{m / p^{e}} \\
& =\sum_{i=1}^{e} p^{w_{i-1}}\left[\left(r^{m / p^{i-1}}-(-1)^{n}\right)-p\left(r^{m / p^{i}}-(-1)^{n}\right)\right] \\
& =\sum_{i=1}^{e} p^{w_{i-1}} s_{i} p^{2(d-i)+2 a+1}
\end{aligned}
$$

Now $s_{i}=0$ by (b) only if $d=i$. Hence (c) holds unless $e=1$ and the exceptions of (b) hold. This completes the proof.

The preceding will help us evaluate inner products of characters. To take
the inner products we must know more about the elements of P. Suppose $x \in P$. If $\langle x\rangle \cap Z(P) \neq 1$ then we say x has central intersection, otherwise we say x has noncentral intersection. Now p is odd and P is class two; so P is a regular p group. Suppose P has exponent p^{e}. For $i \leq e$, setting $\Omega_{i}=\left\langle x \mid x^{p^{i}}=1, x \in P\right\rangle$, we have Ω_{i} of exponent p^{i} and; the elements of P of order p^{i} are exactly the elements in the set $\Omega_{i}-\Omega_{i-1}$. Suppose $\left|\Omega_{i}\right|=p^{w_{i}}$ and set $\Omega_{0}=1, w_{0}=0$. Then P contains $\left|\Omega_{i}-\Omega_{i-1}\right|=p^{w_{i}}-p^{w_{i-1}}$ elements of order p^{i}.
(V.7) Suppose that P has exponent e. Then for $1 \leq i \leq e P$ contains
(a) $p^{w_{i}}-p^{w_{i-1}+1}$ elements of order p^{i} with noncentral intersection, and
(b) $p^{w_{i-1}+1}-p^{w_{i-1}}$ elements of order p^{i} with central intersection.

We have the subgroups Ω_{i} of P. We want to define a new collection of subgroups Θ_{i} with

$$
\Omega_{i} \geq \Theta_{i} \geq \Omega_{i-1}
$$

Further, the elements in $\Omega_{i}-\Theta_{i}$ are precisely those of order p^{i} with noncentral intersection and $\Theta_{i}-\Omega_{i-1}$ those with central intersection. The order of Θ_{i} is $p^{w_{i-1}+1}$. Hence (a) follows from $\left|\Omega_{i}-\Theta_{i}\right|=p^{w_{i}}-p^{w_{i-1}+1}$ and (b) follows from $\left|\Theta_{i}-\Omega_{i-1}\right|=p^{w_{i-1}+1}-p^{w_{i-1}}$.

Let $Z=\Omega_{1} \cap Z(P)$. Then define the map $\theta_{i}(x)=(x Z)^{p^{i-1}}=\bar{x}^{p^{i-1}}$ for $x \in \Omega_{i}$. Now θ_{i} is a homomorphism of Ω_{i}. For suppose $x, y \in \Omega_{i}$. Then $[x, y] \in Z(P) \cap \Omega_{i}$ so $[x, y]^{p^{i-1}} \in Z$. In other words,

$$
\theta_{i}(x) \theta_{i}(y)=\bar{x}^{p^{i-1}} \bar{y}^{p^{i-1}}=\bar{x}^{p^{i-1}} \bar{y}^{p^{i-1}}[\bar{y}, \bar{x}]^{c\left(p^{i-1}, 2\right)}=(x y)^{p^{i-1}} Z=\theta_{i}(x y)
$$

since p^{i-1} divides the binomial coefficient $C\left(p^{i-1}, 2\right)$.
Let $\Theta_{i}=\operatorname{ker} \theta_{i}$. Now clearly

$$
\Omega_{i-1} \leq \Theta_{i} \leq \Omega_{i}
$$

Suppose $x \in \Omega_{i}-\Omega_{i-1}$. Suppose x has noncentral intersection. Then $x^{p^{i-1}} \notin Z(P)$ hence $\theta_{i}(x) \neq 1$. Suppose x has central intersection. Then $x^{p^{i-1}} \epsilon Z(P) \cap \Omega_{1}=Z$ so $\theta_{i}(x)=1$. Hence Θ_{i} partitions $\Omega_{i}-\Omega_{i-1}$ as required.

Now we need only compute the order of $\Theta_{i} . \quad$ Consider the $\operatorname{map} \psi_{i}(x)=x^{p^{i-1}}$ of Θ_{i}. So for $x, y \in \Theta_{i}$,

$$
\left.\psi_{i}(x y)=x y\right)^{p^{i-1}}=x^{p^{i-1}} y^{p^{i-1}}[y, x]^{C\left(p^{i-1}, 2\right)}=x^{p^{i-1}} y^{p^{i-1}}=\psi_{i}(x) \psi_{i}(y)
$$

since $[y, x]^{c\left(p^{i-1}, 2\right)}=[y, x]^{p^{i-1} b}=\left[y, x^{p^{i-1}}\right]^{b}=1$. Next choose $x \in P$ of order p^{e}. We may choose x so that $x^{p^{e-1}} \in Z$. For suppose not. Then there is $y \in P$ so that $\left[x^{p^{e-1}}, y\right] \neq 1$. So $[x, y] \in Z(P)$ and $[x, y]$ has order p^{e}. Substituting $[x, y]$ for x we get the desired result, $x^{p^{-1}} \in Z$. But then $x^{p^{i-i}} \in \Theta_{i}-\Omega_{i-1}$. So $\psi_{i}\left(x^{p^{e}-i}\right) \neq 1$. And ψ_{i} is a nontrivial homomorphism of Θ_{i} with kernel Ω_{i-1} onto Z. Hence $\left[\Theta_{i}: \Omega_{i-1}\right]=p$ or $\left|\Theta_{i}\right|=p^{w_{i-1}+1}$. This completes the proof.

In what follows, we retain the notation for Ω_{i} and Θ_{i}.
(V.8) Assume that P is a class ≤ 2 odd p group. Suppose $P R$ is a group with normal extra special r subgroup $R(r \neq p)$. Assume that P centralizes $D(R) . \quad$ Suppose $P_{\mathrm{c}}=C_{P}(R) . \quad$ Also $p^{c} \neq r^{d}+1$ for any $r^{d} \mid r^{m}$ where $|R|=r^{2 m+1}$ and $p^{c} \leq \exp P=p^{e}$. Then

$$
\left(\left.\mathfrak{X}_{\lambda}\right|_{P}, \mu\right)_{P}>0
$$

for every character μ of P / P_{0} and $\left(\left.\mathcal{X}_{\lambda}\right|_{P}, \mu\right)_{P}=0$ for all $\mu \neq 1$ of P such that $\left.\mu\right|_{P_{0}} \neq 1$, if \mathfrak{X}_{λ} is the character of $P R$ given in (IV.15).

We proceed by induction on $|P|+|R|$. First, we use (IV.3) to decompose $V=R / D(R)$ into V_{i}. Then we define R_{i} as the inverse image in R of V_{i}. We consider the character $\mathcal{X}_{\lambda_{i}}$ of $P R_{i}$ given by (IV.15). Since $|P|+\left|R_{i}\right|<|P|+|R|$ if V decomposes we may apply (IV.5), (IV.6) and induction to obtain the result.

Therefore, V is irreducible or the sum of two irreducible isotropic subspaces, W, W^{*}. Further $P_{0}=C_{P}(V)=C_{P}(W)=C_{P}\left(W^{*}\right)$. From (IV.15) we see that $\left.X_{\lambda}\right|_{P_{0}}$ is trivial. So X_{λ} is a character of $P R / P_{0}$. So applying induction to $\left|P / P_{0}\right|+|R|$ we may assume that $P_{0}=1$.

If P is abelian then P must be cyclic. So (IV.13) gives the conclusion.
So we are reduced to the group described in the second paragraph of this section.

Now we start computing inner products. Consider an irreducible character μ of P. Suppose $\mu(1)>1$. Then applying (III.2) which gives the values of μ we see that if $P_{1}=\operatorname{ker} \mu$ then

$$
\begin{aligned}
\mu(x) & =p^{d} \nu(x) ; x P_{1} \in Z\left(P / P_{1}\right) \\
& =0 \text { otherwise }
\end{aligned}
$$

Letting $P_{2} / P_{1}=Z\left(P / P_{1}\right)$ we then get $\left|P_{2}\right|+|R|<|P|+|R|$. So by induction,

$$
0<\left(p^{d} /\left[P: P_{2}\right]\right)\left(\left.X_{\lambda}\right|_{P_{2}}, \nu\right)_{P_{2}}=\left(\left.X_{\lambda}\right|_{P}, \mu\right)_{P}
$$

Therefore we may assume that $\mu(1)=1$. Next suppose that $\mu^{p^{s}} \neq 1$, $\mu^{p^{s+1}}=1$ for $s \geq 0$. Let $P_{2}=\operatorname{ker} \mu^{p^{s}}$. We want to prove that for $s \geq 1$,

$$
\sum_{x \in P-P_{2}} \mathfrak{X}_{\lambda}(x) \mu\left(x^{-1}\right)=0 .
$$

In that case, $\left|P_{2}\right|+|R|<|P|+|R|$ so

$$
0<(1 / p)\left(\left.\mathfrak{X}_{\lambda}\right|_{P_{2}},\left.\mu\right|_{P_{2}}\right)_{P_{2}}=\left(\left.\mathfrak{X}_{\lambda}\right|_{P}, \mu\right)_{P} .
$$

So if we prove this, we may assume that $\mu^{p}=1$.
Let $P_{1}=\operatorname{ker} \mu$. Let $x \in P$ so that $\left\langle x, P_{1}\right\rangle=P$. For any $y \in P_{1},\left\langle x y, P_{1}\right\rangle=P$. Hence $|\langle x y\rangle| \geq p^{s+1}$. From (IV.15) it is clear that $\mathfrak{X}_{\lambda}(x y)=\mathfrak{X}_{\lambda}\left([x y]^{i}\right)$ for any $(i, p)=1$.

We now define a map η_{i} of P_{1} onto P_{1} which is one-one and given by
$\eta_{i}(y)=y^{*}$ where $x^{i} y^{*}=(x y)^{i}$. Suppose $(x y)^{i}=\left(x y^{\prime}\right)^{i}$. Fix m so that $i m \equiv 1\left(\bmod p^{e}\right)$. Then $x y=(x y)^{i m}=\left(x y^{\prime}\right)^{i m}=x y^{\prime}$. Therefore $y=y^{\prime}$. In other words, $\eta_{i},(i, p)=1$, is one-one onto.

Hence
(α) $\quad \sum_{x s P-P_{2}} \mathcal{X}_{\lambda}(x) \mu\left(x^{-1}\right)=\sum_{1 \leq i \leq p^{+1},(i, p)=1} \sum_{y \in P_{2}} \mathcal{X}_{\lambda}\left(x^{i} y\right) \mu\left(x^{-i}\right)$

$$
=\sum_{y \in P_{2}} \mathfrak{X}_{\lambda}(x y) \sum_{1 \leq i \leq p^{\theta+1,(i, p)=1}} \mu\left(x^{-i}\right) .
$$

So if $s \geq 1$ then $\sum_{1 \leq i \leq p^{s+1,(i, p)=1}} \mu\left(x^{-i}\right)=0$.
So finally we assume that $\mu^{p}=1$. Suppose $\mu \neq 1$. Then $\sum_{1 \leq i<p} \mu\left(x^{-i}\right)=-1$ and (α) gives (since $P_{2}=P_{1}$ here)

$$
\sum_{x \epsilon P-P_{1}} \mathfrak{X}_{\lambda}(x) \mu\left(x^{-1}\right)=-\sum_{y \epsilon P_{2}} \mathfrak{X}_{\lambda}(z y)=(-1 /(p-1)) \sum_{x \in P-P_{1}} \mathfrak{X}_{\lambda}(x)
$$

for $z \in P-P_{1}$. Therefore, with

$$
A=\left|P_{1}\right|\left(\left.\mathfrak{X}_{\lambda}\right|_{P_{1}}, 1_{P_{1}}\right)_{P_{1}}=\sum_{x \in P_{1}} \mathfrak{X}_{\lambda}(x), \quad B=\sum_{x \in P-P_{1}} \mathfrak{X}_{\lambda}(x)
$$

we get

$$
|P|\left(\left.\mathfrak{X}_{\lambda}\right|_{P}, \mu\right)_{P}=A-(1 /(p-1)) B \quad \text { and } \quad|P|\left(\left.\mathfrak{X}_{\lambda}\right|_{P}, 1_{P}\right)_{P}=A+B .
$$

These are the only two inner products which remain to be shown unequal to zero.

Suppose $P_{1} \geq \Theta_{j-1}$ but P_{1} is not $\geq \Theta_{j}$. Then $\left[\Omega_{j-1}: \Omega_{j-1} \cap P_{1}\right]=1$ or p. First we compute $B=\sum_{x \in P-P_{1}} \mathfrak{X}_{\lambda}(x)$. We sum up $\mathfrak{X}_{\lambda}(x)$ on the sets, $i \geq j$,

$$
\left(\Omega_{i}-\Theta_{i}\right)-\left(\Omega_{i} \cap P_{1}-\Theta_{i} \cap P_{1}\right) \quad \text { and } \quad\left(\Theta_{i}-\Omega_{i-1}\right)-\left(\Theta_{i} \cap P_{1}-\Omega_{i-1} \cap P_{1}\right)
$$

including finally the elements of

$$
\Omega_{j-1}-P_{1} \cap \Omega_{j-1}
$$

If $\left|\Omega_{i}-\Theta_{i}\right|=p^{w_{i}}-p^{w_{i-1}+1}$ then

$$
\left|\Omega_{i} \cap P_{1}-\Theta_{i} \cap P_{1}\right|=p^{w_{i}-1}-p^{w_{i}-1}
$$

and similarly for the second set since $\left[P: P_{1}\right]=p$. We set $\xi=0$ if $\left[\Omega_{j-1}: \Omega_{j-1} \cap P_{1}\right]=1$ and $\xi=1$ otherwise. So that

$$
\left|\Omega_{j-1}-\Omega_{j-1} \cap P_{1}\right|=\xi\left(p^{w_{j-1}}-p^{w_{j-1}-1}\right) .
$$

Now

$$
\left|\left(\Omega_{i}-\Theta_{i}\right)-\left(\Omega_{i} \cap P_{1}-\Theta_{i} \cap P_{1}\right)\right|=((p-1) / p)\left(p^{w i}-p^{w_{i-1}+1}\right)
$$

and

$$
\left|\left(\Theta_{i}-\Omega_{i-1}\right)-\left(\Theta_{i} \cap P_{1}-\Omega_{i-1} \cap P_{1}\right)\right|=((p-1) / p)\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)
$$

And so,

$$
\begin{aligned}
B= & \sum_{x \varepsilon P-P_{1}} \mathfrak{X}(x) \\
= & \sum_{i=j}^{e} r^{m / p^{i}}\left(p^{w_{i}}-p^{w_{i-1}+1}\right)((p-1) / p) \\
& +\sum_{i=j}^{e}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)((p-1) / p)+\xi r^{m / p^{i-1}}\left(p^{w_{j-1}}-p^{w_{j-1}-1}\right)
\end{aligned}
$$

Next we compute $A=\sum_{x \in P_{1}} \mathfrak{X}_{\lambda}(x)$. Here the computations are similar.

$$
\begin{aligned}
A= & r^{m}+\sum_{i=1}^{j-2} r^{m / p^{i}}\left(p^{w_{i}}-p^{w_{i-1}+1}\right)+\sum_{i=1}^{j-1}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right) \\
& +\sum_{i=j}^{e} r^{m / p^{i}}\left(p^{w_{i}}-p^{w_{i-1}+1}\right)(1 / p)+\sum_{i=j}^{e}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)(1 / p) \\
& +r^{m / p^{i-1}}\left(p^{w_{j-1}-1}-p^{w_{j-2}+1}\right)+(1-\xi) r^{m / p^{i-1}}\left(p^{w_{j-1}}-p^{w_{j-1}-1}\right)
\end{aligned}
$$

So we have

$$
\begin{aligned}
|P|\left(\left.\mathfrak{X}_{\lambda}\right|_{P}, \mu\right)_{P}= & A-(1 /(p-1)) B \\
= & r^{m}+\sum_{i=1}^{j-1} r^{m / p^{i}}\left(p^{w_{i-1}+1}\right) \\
& +\sum_{i=1}^{j-1}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)-\xi p^{w_{j-1}} r^{m / p^{i-1}}
\end{aligned}
$$

But this is greater than zero by (V.6) c). Finally

$$
\begin{aligned}
& |P|\left(\left.\mathfrak{X}_{\lambda}\right|_{P} 1_{P}\right)_{P} \\
& \quad=A+B=r^{m}+\sum_{i=1}^{e} r^{m / p^{i}}\left(p^{w_{i}}-p^{w_{i-1}}\right)+\sum_{i=1}^{e}(-1)^{n}\left(p^{w_{i-1}+1}-p^{w_{i-1}}\right)
\end{aligned}
$$

which again is greater than zero by (V.6) c). This completes the induction.
(V.9) Assume that P is a class ≤ 2 odd p group. Suppose that $P R$ is a group with normal extra specialr subgroup $R(r \neq p)$ of order $r^{2 m+1}$. Assume $C_{P}(R)=1$ and $C_{R}(P) \geq D(R)$. Suppose that $p^{c} \neq r^{d}+1$ for $p^{c} \leq \exp P=p^{e}$ of $d \leq m$. Suppose X is an irreducible character of $P R$ nontrivial on $D(R)$. Then

$$
\left(\left.X\right|_{P}, 1_{P}\right)_{P}>0
$$

For γ irreducible on $P,\left(\gamma \bar{\gamma}, 1_{P}\right)_{P}>0$. By (II.2) and (IV.15) $X=\gamma \mathfrak{x}_{\lambda}$ for some λ. But by (V.8), $\bar{\gamma}$ is in \mathfrak{X}_{λ}. Hence the result.

This theorem gives us the result like (IV.13) for class two odd p groups.

VI. The main lemma

In this section we prove the major result of this paper. For an abelian group a similar result was proven by E. Shult [10, (4.1)].
(VI.1) Theorem. Suppose that A is a p group of class ≤ 2 for odd p. Assume that $A G$ is a solvable group with normal subgroup G where $(|A|,|G|)=1$. Suppose that $|G|=q^{m} q_{0}(m \geq 0)$ for a prime $q \neq p$ and $\left(q, q_{0}\right)=1$. Assume $\mathbf{k}=\mathbf{Q}(\delta)$ where $\mathbf{Q}=G F(q)$ or the rational field and δ is a primitive $|A| q_{0}$ root of unity. Suppose V is $a \mathbf{k}[A G]$ module faithful on G. A ssume that
(i) V is a sum of equivalent irreducible $\mathbf{k}[A G]$ modules
(ii) if $\exp A=p^{e}$ then $p^{d} \neq r^{c}+1$ for $1 \leq d \leq e$ and any prime r such that $r^{2 c+1}$ divides $|G|$.

Then

(1) $\quad C_{V}(A) \neq(0)$ or
(2) $C_{V}\left(A^{\prime}\right)=(0)$ or
(3) $C_{V}\left(A^{\prime}\right) \neq(0)$ and there is cyclic $D \leq A$ with
(a) $C_{V}\left(A^{\prime} D\right)=(0)$
(b) $C_{G}\left(A^{\prime} D\right) \geq C_{G}\left(A^{\prime}\right)$.

We assume that (VI.1) is false and choose a counter example (A, G, V) minimizing $|A|+|G|+\operatorname{dim} V$. So we have the following:
$\left(1^{\prime}\right) \quad C_{V}(A)=(0)$ and
(2') $\quad C_{V}\left(A^{\prime}\right) \neq(0)$ and
(3^{\prime}) for any cyclic $D \leq A$
(a $\left.{ }^{1}\right) \quad C_{V}\left(A^{\prime} D\right) \neq(0)$ or
($\left.\mathrm{b}^{1}\right) \quad C_{G}\left(A^{\prime} D\right)$ is $\operatorname{not} \geq C_{G}\left(A^{\prime}\right)$.
(VI.2) V is an irreducible $\mathbf{k}[A G]$ module.

Here $V=V_{1}+\cdots+V_{t}$ is a sum of equivalent irreducible $\mathbf{k}[A G]$ modules. Hence $\left(A, G, V_{1}\right)$ is a counterexample if and only if (A, G, V) is also. So $t=1$.
(VI.3) $\left.V\right|_{A_{0} G}$ is a multiple of a single irreducible $A_{0} G$ module for every $A_{0} \triangle A$. In particular, $\left.V\right|_{G}$ is homogeneous.

Suppose not. By (II.10) there is $A_{0} \leq A_{1} \Delta A$ of prime index p so that

$$
\left.V\right|_{A_{1} G}=U_{1}+\cdots+U_{p}
$$

where the U_{i} are irreducible $A_{1} G$ module and $\left.V \simeq_{A G} U_{1}\right|^{A G}$. Let

$$
G_{i}=\operatorname{ker}\left[G \rightarrow \operatorname{Aut} U_{i}\right], \quad \bar{G}_{i}=G / G_{i}
$$

Clearly ($A_{1}, \bar{G}_{1}, U_{1}$) satisfies the hypotheses of (VI.1). Hence (VI.1) holds, in this case, by induction.

Now $\left.\left.\left.\left.\left.V\right|_{A} \simeq_{A} U_{1}\right|^{A G}\right|_{A} \simeq_{A} U_{1}\right|_{A_{1}}\right|^{A}$. So by (II.12),

$$
\begin{equation*}
C_{U_{1}}\left(A_{1}\right)=(0) \text { if and only if } C_{v}(A)=(0) \tag{1}
\end{equation*}
$$

Also by (II.12) we have, since $A_{1} \geq A^{\prime} \geq A_{1}^{\prime}$,

$$
\begin{equation*}
(0) \neq C_{V_{1}}\left(A_{1} \cap A^{\prime}\right)=C_{V_{1}}\left(A^{\prime}\right) \leq C_{V_{1}}\left(A_{1}^{\prime}\right) \tag{2}
\end{equation*}
$$

Hence we find
(3) there is $D, \leq A_{1}$ cyclic so that
($\mathrm{a}^{\prime \prime}$) $C_{V_{1}}\left(A_{1}^{\prime} D\right)=(0)$ and
($\left.\mathrm{b}^{\prime \prime}\right) \quad C_{\bar{\sigma}_{1}}\left(A_{1}^{\prime} D\right) \geq C_{\bar{G}_{1}}\left(A_{1}^{\prime}\right)$.
Using the fact that $A_{1} \geq A^{\prime} \geq A_{1}^{\prime}$, from ($\mathrm{a}^{\prime \prime}$) we get
(a $\left.\mathrm{a}_{1}\right) \quad C_{V_{1}}\left(A^{\prime} D\right) \leq C_{U_{1}}\left(A_{1}^{\prime} D\right)=(0)$
And $C_{\bar{\sigma}_{1}}(D) \geq C_{\bar{\sigma}_{1}}\left(A_{1}^{\prime} D\right) \geq C_{\bar{\sigma}_{1}}\left(A_{1}^{\prime}\right) \geq C_{\bar{G}_{1}}\left(A^{\prime}\right)$
so
($\left.\mathrm{b}_{1}\right) \quad C_{\bar{G}_{1}}\left(A^{\prime} D\right) \geq C_{\bar{G}_{1}}\left(A^{\prime}\right)$.
By choosing coset representatives of A_{1} in A we may prove that
($\left.\mathrm{a}_{i}\right) \quad C_{U_{i}}\left(A^{\prime} D\right)=(0)$ and
$\left(\mathrm{b}_{i}\right) \quad C_{\bar{\sigma}_{i}}\left(A^{\prime} D\right) \geq C_{\bar{\sigma}_{i}}\left(A^{\prime}\right)$
So finally
(a) $C_{V}\left(A^{\prime} D\right)=(0)$ and
(b) $C_{G}\left(A^{\prime} D\right) \geq C_{G}\left(A^{\prime}\right)$ by (II.5).

Therefore, $\left.V\right|_{A_{0} G}$ is homogeneous.
(VI.4) For every $A_{0}<A$ we have $C_{V}\left(A_{0}\right) \neq$ (0).

Suppose $A_{0}<A$ and $C_{V}\left(A_{0}\right)=(0)$. Hence we may choose $A_{0} \leq A_{1} \triangle A$ and $A_{1}<A$ of prime index since A is nilpotent, and $C_{V}\left(A_{1}\right)=(0)$. Clearly $A_{1}^{\prime} \leq A^{\prime}$. So $C_{V}\left(A_{1}^{\prime}\right) \geq C_{V}\left(A^{\prime}\right) \neq(0)$. So by (VI.3), $\left.V\right|_{A_{1} G}$ is homogeneous. Hence, using induction, we may apply (VI.1) to (A_{1}, G, V). From the foregoing, it is clear that we have

$$
\begin{array}{ll}
\left(\mathrm{a}^{\prime}\right) & C_{V}\left(A_{1}^{\prime} D\right)=(0) \tag{3}\\
\left(\mathrm{b}^{\prime}\right) & C_{G}\left(A_{1}^{\prime} D\right) \geq C_{G}\left(A_{1}^{\prime}\right)
\end{array}
$$

for cyclic $D \leq A_{1}$. So
(a) $\underset{C_{G}}{C_{V}^{\prime}}\left(A_{1}^{\prime} D\right) \leq C_{V}\left(A_{1}^{\prime} D\right)=(0)$ and $C_{G}(D) \geq C_{G}\left(A_{1}^{\prime} D\right) \geq C_{G}\left(A_{1}^{\prime}\right)$ $\geq C_{G}\left(A_{1}^{\prime}\right)$
or
(b) $C_{G}\left(A^{\prime} D\right) \geq C_{G}\left(A^{\prime}\right)$.

Hence the conclusion.
(VI.5) A is faithful on V.

Suppose not. Let $A_{0}=\operatorname{ker}[A \rightarrow$ Aut $V]$. Since G is faithful and V is an irreducible $A G$ module we must have $\left[A_{0}, G\right]=1$. Hence (VI.1) applies to $\left(A / A_{0}, G, V\right)$. In the usual way we obtain a contradiction.
Choose $M<G$ as a maximal $A G$ invariant subgroup of G. The group G / M is an irreducible A module, where the action, for $x \epsilon A$ and $\pi M \epsilon G / M$, is

$$
x(\pi M)=\pi^{x^{-1}} M=\left(x \pi x^{-1}\right) M
$$

From each A orbit on G / M choose a representative $\pi_{i} M$. So that $\pi_{1} M, \cdots, \pi_{m} M$ form a complete set of A orbit representatives. By (II.8) we may choose $\pi_{i}, i=1, \cdots, m$ so that

$$
C_{A}\left(\pi_{i}\right)=A \cap A_{i}^{\pi_{i}-1}=A \cap(A M)^{\pi_{i}-1}=A_{i}
$$

By taking A conjugates of $\pi_{1}=1, \cdots, \pi_{m}$ we get a complete set of coset representatives of M in $G ; \pi_{1}=1, \cdots, \pi_{m}, \cdots, \pi_{\mathrm{e}}$ where

$$
C_{A}\left(\pi_{j}\right)=A \cap A^{\pi_{j}-1}=A \cap(A M)^{\pi_{j}-1}=A_{j}, \quad j=1, \cdots, e .
$$

Further A permutes the π_{j} if we specify for $x \in A$ that,

$$
x\left(\pi_{j} M\right)=\pi_{j(x)} M .
$$

Now $\left.V\right|_{G}$ is homogeneous. Therefore, $\left.V\right|_{M}=V_{1} \dot{+} \cdots \dot{+} V_{f}$ with homogeneous components V_{i}. Further, G is transitive on the V_{i}^{\prime} 's and M fixes each one. That is, f divides $[G: M]$.
(VI.6) If $f \neq 1$ then $f=e=[G: M]$ and the V_{i} may be numbered so that A fixes $V_{1}, \pi_{i} V_{1}=V_{i}$, and A permutes the V_{i} exactly as it permutes the π_{i}.

Consider the permutation representation ϕ of $A G$ on the V_{i} 's. Now M is in the kernel of ϕ. Further $G \mathrm{n} \operatorname{ker} \phi$ is a proper $A G$ invariant subgroup of G containing M, so it is M. Since G / M is abelian, $G \cap \operatorname{ker} \phi$ is the subgroup fixing each V_{i}. And now $f=e=[G: M]$.
But ϕ is a transitive representation of $A(G / M)$ given on the cosets of a subgroup B of order $|A(G / M)| / e=|A|$. So B and A are Hall $|A|$ subgroups of $A(G / M)$. Hence they are conjugate in $A(G / M)$. In other words the representation is given on the cosets of A. Therefore A fixes, say, V_{1}. Setting $V_{i}=\pi_{i} V_{1}$ we get the result.
(VI.7) If $f \neq 1$ then for ($A, A M$) coset representatives $\pi_{1}=1, \cdots, \pi_{m}$ we have

$$
\left.V\right|_{\Delta} \simeq_{A} \sum_{i=1}^{m}+\left.\left.V_{1}\right|_{A_{i}}\right|^{A} \quad \text { and }\left.\quad V \simeq_{\Delta G} V_{1}(A M)\right|^{A G}
$$

Since $A M$ stabilizes V_{1} and $\left|\operatorname{Stab}\left(A G, V_{1}\right)\right|=|A G| / e=|A M|$ we have $A M=\operatorname{Stab}\left(A G, V_{1}\right) . \quad$ Now $M \Delta A G$ so $\left.V \simeq_{A G} V_{1}(A M)\right|^{\mid A G}$.
By the Mackey Decomposition we get

$$
\left.\left.\left.V\right|_{A} \simeq_{A} V_{1}(A M)\right|^{A G}\right|_{A} \simeq \sum_{i=1}^{m}+\left.\left.\pi_{i} V_{1}\right|_{(A M) \pi_{i}-1} \Lambda_{A}\right|^{A} \simeq_{A} \sum_{i=1}^{m}+\left.\left.V_{1}\right|_{A_{i}}\right|^{A}
$$

since $(A M)^{\pi_{i}^{-1}} \cap A=C_{A}\left(\pi_{i}\right)=A_{i}$.
Remark. If $\left.V_{1}\right|_{A_{j}}$ contains the trivial A_{j} module then $\left.\left.V_{1}\right|_{A_{j}}\right|^{4}$ contains the trivial A module by (II.12). So $C_{v}(A)=(0)$ implies that $C_{V_{1}}\left(A_{j}\right)=(0)$ for each $j=1, \cdots, m$. (Hence also for $j=1, \cdots, e$.)
Let $A_{\boldsymbol{M}}=\operatorname{ker}[A \rightarrow \operatorname{Aut} G / M]$.
(VI.8) If $\left.V_{1}\right|_{A_{M}}$ does not contain the trivial A_{M} submodule then $f=1$. (i.e. $\left.V\right|_{M}$ is homogeneous).

Suppose $\left.V_{1}\right|_{A_{M}}$ does not contain the trivial A_{M} submodule. Now $A_{M} M \Delta A G$ since $\left[A_{\mathcal{M}}, G\right] \leq M$ and $A_{M} \Delta A$. By (VI.3) $\left.V\right|_{A_{M_{G}}}$ is homogeneous and isomorphic to $\left.V_{1}\left(A_{M} M\right)\right|^{4_{M}{ }^{a}}$. Hence $V_{1}\left(A_{M} M\right)$ is homogeneous. Therefore (VI.1) applies to ($A_{M}, M / M_{1}, V_{1}$) where

$$
M_{1}=\operatorname{ker}\left[M \rightarrow \text { Aut } V_{1}\right]
$$

by induction.
By assumption $C_{V_{1}}\left(A_{\mu}\right)=(0)$.
$\operatorname{Next} A_{M} \leq A_{j}$ for every j. So $A_{M}^{\prime} \leq A_{j} \cap A^{\prime}$ for every j. If $C_{V_{1}}\left(A_{M}^{\prime}\right)=(0)$ then $C_{V_{1}}\left(A_{j} \cap A^{\prime}\right)=(0)$ for every . Hence by (II.12)

$$
C_{\nabla_{\nabla_{1}\left|A_{j}\right| A}}\left(A^{\prime}\right)=(0) \quad \text { for every } j .
$$

Thus $C_{V}\left(A^{\prime}\right)=(0)$. So we must have $C_{V_{1}}\left(A_{M}^{\prime}\right) \neq(0)$.
This means that when we apply induction to ($A_{M}, M / M_{1}, V_{1}$) we have a cyclic $D \leq A_{\mu}$ so that

$$
\begin{array}{ll}
\left(\mathrm{a}^{\prime \prime}\right) & C_{V_{1}}\left(A_{M}^{\prime} D\right)=(0) \\
\left(\mathrm{b}^{\prime \prime}\right) & C_{M / M_{1}}\left(A_{M}^{\prime} D\right) \geq C_{M / M_{1}}\left(A_{M}^{\prime}\right) \tag{3}
\end{array}
$$

Set $M_{i}=\operatorname{ker}\left[M \rightarrow\right.$ Aut $\left.V_{i}\right]$. Now $A_{M}^{\prime} D \leq A_{M}$ so $A_{M}^{\prime} D$ is centralized by each π_{i}. Hence conjugation of $A_{M}^{\prime} D$ by π^{i-1} fixes $A_{M}^{\prime} D$ elementwise. Therefore

$$
C_{M / M_{i}}\left(A_{M}^{\prime} D\right) \geq C_{M / M_{i}}\left(A_{M}^{\prime}\right)
$$

So by (II.8)

$$
C_{G}\left(A_{M}^{\prime} D\right) \geq C_{G}\left(A_{M}^{\prime}\right)
$$

That is,

$$
C_{G}(D) \geq C_{G}\left(A_{M}^{\prime} D\right) \geq C_{G}\left(A_{M}^{\prime}\right) \geq C_{G}\left(A^{\prime}\right)
$$

And
(b) $C_{G}\left(A^{\prime} D\right) \geq C_{G}\left(A^{\prime}\right)$.

Again since each π_{i} centralizes A_{M},

$$
C_{v}\left(A_{M}^{\prime} D\right)=(0) .
$$

That is,
(a) $C_{V}\left(A^{\prime} D\right) \leq C_{V}\left(A_{M}^{\prime} D\right)=(0)$.

Hence $f=1$.
(VI.9) If $A / A_{\boldsymbol{M}}$ is abelian then $f=1$.

If $f \neq 1$ then A is cyclic and irreducible on G / M. Every orbit $\left\{\pi_{i}^{x} \mid x \in A\right\}$ is regular on A / A_{M} except $\left\{\pi_{1}=1\right\}$. That is, $A_{i}=A_{M}, i \neq 1$. By the remark and (VI.8) we are done.
(VI.10) If $A / A_{M}=\bar{A}$ is non abelian then $f=1$.

Now G / M is an r group for some r. But \bar{A} is a class two p group which is faithful and irreducible on the $G F(r)$ module G / M. So we apply (III.4) to get a $\pi_{i} M$ which is fixed by no element of \bar{A}^{*}. In other words, $C_{\bar{A}}\left(\pi_{i}\right)=1$, or $C_{A}\left(\pi_{i}\right)=A_{i}=A_{\mathbb{L}}$. So again the remark and (VI.8) show $f=1$.

Under the hypotheses of (VI.1) this means $\left.V\right|_{M}$ is homogeneous or $f=1$.
Now G / M is an r section for some prime r. So by (II.6) we may choose an
r Sylow subgroup R_{0} of G fixed by A. Next choose R in R_{0} minimal such that
(i) R is A invariant, and
(ii) $R M=G$.

We will prove that R is extra special.
Next consider $\left.V\right|_{A M}=V_{1} \dot{+} \cdots+V_{t}$ where the V_{i} are homogeneous components. Since $\left.V\right|_{M}$ is homogeneous, each V_{i} is faithful and a multiple of a single irreducible M module. Since $C_{V}\left(A^{\prime}\right) \neq(0)$ we may choose V_{1} so that $C_{V_{1}}\left(A^{\prime}\right) \neq(0)$. Clearly, $C_{V}(A)=(0)$ implies $C_{V_{i}}(A)=(0), i=t, \cdots, t$. So we apply (VI.1) to (A, M, V_{1}) and obtain $D \leq A$ cyclic so that
$\left(\mathrm{a}^{\prime \prime}\right) \quad C_{V_{1}}\left(A^{\prime} D\right)=(0)$ and
$\left(\mathrm{b}^{\prime \prime}\right) \quad C_{M}\left(A^{\prime} D\right) \geq C_{M}\left(A^{\prime}\right)$.
(VI.11) If A is abelian then $C_{\Delta}(M)=A^{*} \neq 1$.

In this case, $A^{\prime}=1$ so $C_{M}\left(A^{\prime} D\right)=C_{M}(D) \geq C_{M}\left(A^{\prime}\right)=M$. Hence $D \leq C_{A}(M)$. But $C_{V_{1}}\left(A^{\prime} D\right)=C_{V_{1}}(D)=(0)$ so $1 \neq D \leq A^{*}$.
(VI.12) $C_{\Delta}(M)=A^{*} \neq 1$.

We may assume that A is nonabelian. Let U be a homogeneous component of $\left.V_{1}\right|_{A^{\prime} D M}$. Since $\left.V\right|_{M}$ is homogeneous, U is faithful on M. Now $\left(A^{\prime} D\right)^{\prime}=1$ since A is class two, $A^{\prime} \leq Z(A)$, and D is cyclic. Since $C_{V_{1}}\left(A^{\prime} D\right)=(0)$, $C_{U}\left(A^{\prime} D\right)=(0)$. Further, $C_{U}\left(\left[A^{\prime} D\right]^{\prime}\right)=U$. So in applying (VI.1) to ($A^{\prime} D, M, U$) we get (3) a cyclic $D_{1} \leq A^{\prime} D$ so that
$\left(\mathrm{b}^{*}\right) \quad C_{M}\left(\left[\mathrm{~A}^{\prime} D\right]^{\prime} D_{1}\right)=C_{M}\left(D_{1}\right) \geq C_{M}\left(\left[A^{\prime} D\right]^{\prime}\right)=M$.
Also since
$\left(\mathrm{a}^{*}\right) \quad C_{U}\left(\left[A^{\prime} D\right]^{\prime}\right)=C_{U}\left(D_{1}\right)=(0)$,
we have $D_{1} \neq 1$. Hence $D_{1} \leq C_{A}(M)=A^{*}$.
(VI.13) $A^{*} \cap A_{M}=1$ and $C_{G}\left(A^{*}\right)=M$.

Suppose $A^{*} \cap A_{M}=A_{0} \neq 1$. Now $A_{0} \triangle A$ so we may take

$$
A_{1}=Z(A) \cap A_{0} \neq 1
$$

since A is nilpotent. We know that A^{*} centralizes M and A_{M} centralizes G / M. Hence by (II.5), A_{1} centralizes A and G. So $A_{1} \leq Z(A G)$. But V is irreducible so A_{1} is cyclic and acts as scalar multiplication on V by (VI.5). Hence $C_{V}\left(A_{1}\right)=(0) . \quad$ By (VI.4) $A_{1}=A . \quad$ But then A is cyclic and
(a) $C_{V}\left(A^{\prime} A\right)=C_{V}(A)=(0)$ and
(b) $C_{G}(A)=G \geq C_{G}\left(A^{\prime}\right)=G$.

Hence $A^{*} \cap A_{M}=1$. But then $A^{*} A_{M} / A_{M} \Delta A / A_{M}$ so

$$
\left(A^{*} A_{M} / A_{M}\right) \cap Z\left(A / A_{M}\right) \neq 1 \quad \text { and } \quad C_{G / M}\left(A^{*}\right)=M
$$

(VI.14) We can choose R so that $R \leq C_{G}(M), R$ is extra special, and $R \triangle A G$. Further, $D(R) \leq M, D(R) \leq C_{G}(A G)$.

Now $G=N_{G}(M)$. But $M=C_{G}\left(A^{*}\right)$ so by (II.7) $G=C_{G}(M) C_{G}\left(A^{*}\right)=$ $C_{G}(M) M$. The group $C_{G}(M)$ is A invariant so R may be chosen in $C_{G}(M)$.

Let $R_{1}=Z(R)$. We know $R_{1} \leq C_{G}(M)$ so $R_{1} \leq Z(G)$, since $R M=G$. Further $\left.V\right|_{G}$ is homogeneous and faithful so R_{1} is cyclic and acts as scalar multiplication on V. In particular, because $A G$ is faithful, $R_{1} \leq Z(A G)$. So $R_{1} \leq M$ and $R_{1} \leq C_{G}(A G)$. In particular, R is nonabelian.

By the minimal choice of R we must have $M \cap R=D(R)$ as the unique maximal A invariant normal subgroup of R. Let R_{0} be any characteristic abelian subgroup of R. Now $R / D(R) \simeq_{A} G / M$ so if $R_{0}<R$ then $R_{0} \leq D(R)$. But R is nonabelian so $R_{0} \leq D(R)$. But then $R_{0} \leq M$. We already know that $R_{0} \leq C_{G}(M) \cap M=Z(M)$ and $\left.V\right|_{M}$ is homogeneous. So

$$
R_{0} \leq Z(R)=R_{1}
$$

and R_{0} is cyclic. By (II.13) R is the central product of a cyclic and extra special group. But by minimality of R, this means R is extra special.

Finally, $R \leq C_{G}(M)$ normalizes itself and is normalized by A. Hence $R \triangle A G$.
(VI.15) $\left.V\right|_{R}$ is homogeneous; $C_{V}\left(A_{M}\right)=(0)$.

Here $\left.V\right|_{G}$ is homogeneous. So, since $R \triangle G,\left.V\right|_{R}$ is completely reducible and the homogeneous components are permuted transitively by M since $M R=G$. But M centralizes R so $\left.V\right|_{R}$ is homogeneous.

Suppose next that $C_{V}\left(A_{M}\right) \neq(0)$. Now A_{M} centralizes $G / M \simeq_{A} R / D(R)$, so it centralizes R. Further, $A_{M} \triangle A$. Hence $C_{V}\left(A_{M}\right)$ is a $\mathrm{k}[A R]$ submodule of V. Let $V_{0} \leq C_{V}\left(A_{M}\right)$ be an irreducible $\mathbf{k}[A R]$ submodule. Since

$$
Z(R)=D(R) \leq Z(A G)
$$

it acts as scalar multiplication nontrivially on V hence also on V_{0}. Further, on V_{0}, A is represented as A / A_{M}. Now $A_{M}<A$ since $C_{V}(A)=(0)$. Therefore V_{0} is a $\mathbf{k}\left[\left(A / A_{M}\right) R\right]$ irreducible module. Also A / A_{M} is faithful and irreducible on $R / D(R)$. Now $|R|=r^{2 c+1}$ divides $|G|$. Further, by hypothesis, $p^{b} \neq r^{e}+1$ for any $e \leq c$ and any $p^{b} \leq \exp A$. Hence we may apply (V.9) to the Brauer character of V_{0} to find that (0) $\neq C_{V_{0}}(A) \leq C_{V}(A)$. But $C_{V}(A)=(0)$. Hence $C_{V}\left(A_{M}\right)=(0)$.
(VI.16) (VI.1) holds.

By (VI.12), $A^{*} \neq 1$. And by (VI.13) $A^{*} \cap A_{M}=1$. Hence $A_{M}<A$. So by (VI.4) $C_{V}\left(A_{M}\right) \neq(0)$. This contradicts (VI.15). Therefore (VI.1) holds.

We now curtail the hypothesis on k.
(VI.17) Corollary. In (VI.1) we may assume that \mathbf{k} is any subfeld of $\mathbf{Q}(\delta)$. In particular, we may take

$$
\mathbf{k}=G F(q)
$$

Suppose U is a homogeneous $\mathrm{K}[A G]$ module satisfying all of the hypotheses of (VI.1) except that $\mathrm{K} \leq \mathbf{Q}(\delta)$ is a subfield of $\mathbf{Q}(\delta)$. Let $\mathbf{K}(\delta)=\mathbf{k}=\mathbf{Q}(\delta)$. Then \mathbf{k} is a finite extension of \mathbf{K}. Let $\hat{\mathcal{O}}=\mathbf{k} \otimes_{\mathbf{K}} U$. Let V be any irreducible $\mathbf{k}[A G]$ submodule of $\hat{\mathcal{O}}$. Then V is a $\mathbf{K}[A G]$ module isomorphic to m copies of an irreducible submodule U^{*} of U for some integer dividing the degree of the extension $[\mathbf{k}: \mathbf{K}]$. We apply the theorem to (A, G, V). Suppose

$$
V \simeq_{\mathrm{K}[A G]} U^{*}+\cdots+U^{*} \quad(m \text { summands })
$$

It is clear that

$$
C_{V}(L) \simeq_{\mathrm{K}[A \in]} C_{V^{*}}(L)+\cdots+C_{V^{*}}(L) \quad(m \text { summands })
$$

for any $L \leq A$. Also G is faithful on V since it is on U^{*}. The two isomorphisms give (VI.17).
(VI.18) Corollary. Suppose that in (VI.17), conclusion (2) arises. That $i s$,
(2) $C_{V}\left(A^{\prime}\right)=(0)$.

Then there is $1 \neq D \leq A^{\prime}$ with
(a) $C_{V}(D)=(0)$ and
(b) $C_{G}(D)=G$.

Here $\left.V\right|_{A^{\prime} G}=V_{1}+\cdots \dot{+} V_{t}$ where the V_{i} are (in the case of (VI.1)) homogeneous components. Let $G_{i}=\operatorname{ker}\left[G \rightarrow \operatorname{Aut} V_{i}\right]$. Then we apply (VI.1) to $\left(A^{\prime}, G / G_{1}, V_{1}\right)$. Since $A^{\prime \prime}=1$, and $C_{V_{1}}\left(A^{\prime}\right)=(0)$ we get by (VI.1) a cyclic $D \leq A^{\prime}$ so that
(a) $C_{V_{1}}(D)=(0)$ and
(b') $C_{G / \sigma_{1}}(D)=G / G_{1}$.
Now $D \leq A^{\prime} \leq Z(A)$. So
(a) $C_{V}(D)=(0)$
(b) $C_{G}(D)=G$.

Remark. Again it is no trouble to extend this by the argument of (VI.17) to the field $\mathbf{K} \leq \mathbf{k}$.

VII. The main theorem

Let A be a class ≤ 2 odd p group. Suppose $A G$ is a group with normal subgroup G where $(|A|,|G|)=1$. We define a function $\psi(G)$. Now

$$
\left[A: C_{A} C_{G}\left(A^{\prime}\right)\right]\left[A^{\prime}: C_{A}(G) \cap A^{\prime}\right]=p^{f}
$$

for some f. Set

$$
\psi(G)=f
$$

Notice that $C_{A} C_{G}\left(A^{\prime}\right) \geq A^{\prime}$ so $\psi(G)=f \leq d$ where $|A|=p^{d}$.
(VII.1) Theorem. We assume that A is an odd p group of class ≤ 2. Further, $A G$ is solvable with normal subgroup G where $(|A|,|G|)=1$. Suppose G has fitting length n and A is fixed point free on G (i.e. $C_{G}(A)=1$). Then

$$
\psi(G) \geq n
$$

unless $p^{b}=r^{c}+1$ where $r^{2 c+1}$ divides $|G|$ and $p^{b} \leq \exp A$.
Proof is by induction on a minimal counter example G. First, G has a unique minimal normal A invariant subgroup M. Suppose not. Assume M_{1}, M_{2} are minimal normal A subgroups of G. Let $G_{i}=G / M_{i}, i=1,2$. Clearly $\psi\left(G_{i}\right) \leq \psi(G)$. Let

$$
\psi_{0}=\max \left\{\psi\left(G_{i}\right) \mid i=1,2\right\}
$$

Then by induction the Fitting lengths of G_{1} and G_{2} are bounded by ψ_{0}. So also the Fitting length of G, which is contained in $G_{1} \times G_{2}$, is bounded by $\psi_{0} \leq \psi(G)$.

Second, for some prime $q, 0_{q}(G)=M$. Suppose not. Now M is a q group so we consider $Q=0_{q}(G)$. Let $Q_{0}=D(Q)$. Then G / Q_{0} has the same Fitting length n as does G. But $\psi\left(G / Q_{0}\right) \leq \psi(G)$ and induction applies.

Finally we prove the result. Since $M=0_{q}(G)$ is unique minimal normal A invariant, $C_{G}(M)=M$. And as an $A G / M$ module, M is faithful on G / M and irreducible on $A G / M$. Applying (VI.17), (VI.18) we find that
(2) $C_{M}\left(A^{\prime}\right)=1$ and there is cyclic $D \leq A^{\prime}$ with
(a') $\quad C_{M}(D)=1$ and
$\left(\mathrm{b}^{\prime}\right) \quad C_{G / M}(D)=G / M$
or
(3) $C_{M}\left(A^{\prime}\right) \neq 1$ and there is cyclic $D \leq A$ with
(a) $C_{M}\left(A^{\prime} D\right)=1$ and
(b) $C_{G / M}\left(A^{\prime} D\right)=C_{G / M}\left(A^{\prime}\right)$.

In either case, $\psi(G / M) \leq \psi(G)-1$. But the Fitting subgroup of G is M so the Fitting length of G / M is $n-1$. So $n-1 \leq \psi(G / M) \leq \psi(G)-1$ by induction. Or $n \leq \psi(G)$.
(VII.2) Under the hypotheses of (VII.1), if $|A|=p^{d}$ then $n \leq d$.

Added in proof. (II.13) is stated only for odd p. The application is made for arbitrary p. The application is correct for the strong form of (II.13) given in D. Gorenstein, Finite groups, Harper and Row, New York, 1968, p. 198.

References

1. T. R. Berger, Class two p groups as fixed point free automorphism groups, Ph.D. thesis, California Institute of Technology, 1967.
2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Interscience, New York, 1962.
3. E. C. Dade, Group theory seminar 1964-1965, lecture notes, California Institute of Technology.
4. W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math., vol. 13 (1963), pp. 775-1029.
5. P. X. Gallagher, Group characters and normal Hall subgroups, Nagoya Math. J., vol. 21 (1962), pp. 223-230.
6. G. Glauberman, Fixed points in groups with operator groups, Math. Zeitschrift, vol. 84 (1964), pp. 120-125.
7. D. Gorenstein, On a theorem of Philip Hall, Pacific J. Math., vol. 19 (1966), pp. 77-80.
8. M. Hall, Jr., Group theory, Macmillan, New York, 1959.
9. E. Shult, Nilpotence of the commutator subgroup in groups admitting fixed point free operator groups, Pacific J. Math., vol. 17 (1966), pp. 323-347.
10. -, On groups admitting fixed point free abelian operator groups, Illinois J. Math., vol. 9 (1965), pp. 701-720.

University of Minnesota
Minneapolis, Minnesota

