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1. Introduction

The main purpose of this paper is to prove the

THEOREM. Let F be a semigroup of linear fractional transformations acting
on the Riemannsphere $. Then if every punctured neighborhood of some p e $ con-
tains both fixed points of infinitely many elliptic transformations of F, F contains
elements whose trace is arbitrarily large in absolute value.

In 3 this is used to give a new proof of the well-known fact that a discrete
group of 2 X 2 elliptic matrices is finite [Lehner, pp. 91-92].
By definition, a semigroup F of linear fractional transformations consists of

elements V such that for z e $

V (z (az - b / (cz - d); a,b,c,d complex, ad bc 1.

With V it is convenient to associate the two matrices :t: V’,

since whenever V1, V. F, V1 V is then associated with V V. The prime
marks will be dropped for notational convenience; this causes no cousion.
For V F, let x (V) denote the trace of V. If x (V) is real, V is said to be

elliptic, parabolic, or hyperbolic depending upon whether x(V) < 2, 2, or
> 2 respectively. It is well known that if V is elliptic, and has finite fixed
points a, a, then V (z) z’ where

(z’- ,,)/(z’- ,) (z ,)/(z ,); e’, 0 < e < 2.

Thus

V

Here is called the multiplier of V.
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LEMMA.
e ei-multipliers {ax a2 }, {1 2 respectively.

where

( )( ) 2 2,

2. Proof of the theorem

Le V1, V be elliptic transformations with finite fixed points and
Then

1 (al (a ), and (a ( ).

Proof. Let K e1, ’ e. A direct calculation from (2) yields

Xx (V V) (’) + (’)-] (a + . a . )

+ [/’-/ + C/’/]( 2 + ).

Formula (3) follows.

Remark. If V and V have a ed point common, say a , it follows
from (3) that V V ie elliptic or parabolic, since x (V V) 2 cos ( + )/2].

To prove the theorem we clearly may assume p is finite. Let S V}

_
be a sequence of elliptic elements of r such that V has fixed pots (n),

(n), neither of which is p, multiplier, 0 < O(n) < 2, and

lim (n) lim (n) p.

We may also assume lira (n) , 0 2. For each W e S with ed
pots a, a2 and multiplier e there is a a > 0 such that a P > ,
i 1,2. Sett(n) ((n) 2(n))x(WV=)ndf(x) cosxJ. Then
by (3),

limsup$(n)] x_ f 2 2

Thus it suffices to show S cn be chosen so that > 0.
f(x) f(y) yields x y k or x W y W vk, where k is n integer, so

the only cses which cuse ny fficulty re 0 0, , 2 nd 0 . If
0 , nd this cnnot be voided by new choice of W, then clearly 0 .
If 0 0 or 2, V is rotation through n ngle which tends to zero s
n , so there is n integer m m (n) such that V tends to rotation
through n ngle of s n . Replace S by S’ }. Hence only the
cse 0 need be considered. Choose W so that 0 W e, ]e < /2.
By (3),

( 2)
cos

2
cos 2
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4 (a- p)(a. p)
cos e/2 > 0,

and this proves the theorem.

3. An application
Topologize any set 1 of 2 ) 2 matrices by embedding it in 4-space in the

obvious manner. Let S {V}

___
r denote a sequence of dis$inc$ elliptic

elements V having fixed points (n), . (n), with lim/ (n) ,
lira . (n) .,/, . possibly infinite. From (2), if & then some subse-
quence of S converges to an elliptic or parabolic transformation.

THSORE. A discrete group F of 2 2 elliptic matrices is finite.

Proof. If 1 is infinite, choose S as above. Then t, and by applying
the theorem of 1 there is a subsequence S’ of S such that (n) for all
V S’. Only now is 1 required to be a group rather than a semigroup:
the commutator V,, V,, V-V- is parabolic and not the identity for n m
[Lehner, p. 73], a contradiction.

Remark. The author would like to thank Professor Marvin Knopp for
much encouragement.
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