
LOCAL RINGS WITH THE OUTER PRODUCT PROPERTY

BY

JACOB TOWBER

A commutative ring R is said to have the outer product property if, given
any ordered n-tuple of elements in R, there exists an (n 1) n matrix over
R whose (n 1) X (n 1) subdeterminants are exactly the given n ele-
ments. The object of this paper is to prove that a local ring (R, M) has the
outer product property if and only if the V-dimension of R, i.e. the minimal
number of generators of M, is _< 2.
In [2] and [3], D. Lissner defined the outer product property, observed that

a classical result of Hermite asserts the ring Z has this property, and proved
that a polynomial ring A Ix] (with .4 a principal ideal domain) has the outer
product property (thus generalizing a well-known result of Seshadri [4]) and
also that Dedekind domains have this property. The author, in [5], proved
that D[x] (with D a Dedekind domain) and regular local rings of dime.sion
_< 2 have a rather stronger property, which implies the outer product prop-
erty; the same paper gives a necessary condition for a ring to have the outer
product property (see Prop. 1.4 in the present paper), and the result we are
about to prove asserts that for local rings this condition is also sufficient.

1. Definitions and preliminaries
Let R be a commutative ring with identity. With R denoting the R-module

of ordered n-tuples of elements in R, we say two elements , in R are
R-equivalent if there exists an invertible R-homomorphism R -- R which
maps into t. We say

is the outer product of the (n 1) )< n matrix B over R (or of the rows of
this matrix) if (-1)-la equals the determinant of the matrix obtained
from B by deleting its i-th column. If such a matrix B exists, we say a is an
outer product over R. R has the outer product propery if, for all n >_ 2, every
element of R is an outer product over R. If a a, a I1, we denote
the ideal Rat by

PROPOmION 1.1. If a is an outer product over R, so is ra (r R).

PROPOmIO 1.2. If a, in R are R-equivalent, then a is an outer product
over R iff is.

Proof. If a is the outer product of the matrix B, and T is an invertible
n n matrix over R, then aT is the outer product of the matrix BT-.
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PROPOSITION 1.3. I] R has the outer product property, so does any homo-
morphic zmage of R.

PROPOSITION 1.4. If R has the outer product property, and P is any prime
ideal of R, then Re has V-dimension

_
2.

Proof. This is Theorem 2 in [5].

2. The outer product property
PROPOSITION 2.1. Let R be a local ring, a and in R"; then a and are

R-equivalent if and only if I(a) I().

Proof. "Only if" is clear; "if" is a consequence of Nakayama’s Lemma.

PROPOSITION 2.2. Let (R, M) be a local ring, {} a sequence of elements in
R" converging in the M-adic topology to the element in R", and suppose I()
is M-primary or R. Then, for all i large enough, and a are R-equivalent.

Proof. I()

_
M for some s; for i large enough,

M’+IR R".a a e " MI(a)

By Nkym’s lemm, I(a) I(a) hence a nd a are R-equiwlent.

ToM. A necessary and sucient condition for a local ring (R, M) to
have the outer product property is that it hae V-dimension <_ 2.

Proof. Necessity follows from Prop. 1.4; we now prove sufficiency. Let
(R, M) be local ring of V-dimension __< 2.

By [5, Theorem 1.1], regular local rings of dimension _< 2 hve the outer
product property; hence, if R is complete, Prop. 1.3 nd the following lemm
imply that R hs the outer product property.

LEMMX 2.3. If (R, M) is a complete local ring, then R is the homomorphic
image of a regular local ring of dimension equal to the V-dimension of R.

Proof. It follows from the Cohen structure theorem [1, Theorem 9 nd
Theorem 12] that R is the homomorphic image of ring S which is the ring of
formal power series in n indetermintes, either over RIM in equal character-
istiz cse, or over a complete local domain in which the mximl ideal is prin-
tip,l, nd generated by prime integer p, if R/M hs unequal characteristic
p. Thus, S is regular local ring of dimension n or n -t- 1; suppose R S/I.
If S hs dimension n -- 1, then since

V-dim R V-dim S 1,

I contains an element a in N N, nd R is homomorphic image of the
regular local ring S/aS of dimension n.
We have established the truth of our theorem when R is regular or com-

plete. R has dimension

_
2; if dim R 2, or dim R V-dim R 1, then
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R is regular, while if dim R 0, R is complete.
considered; we now assume

Only one more case need be

dim R 1, V-dim R 2.

We must show every a in R is an outer product; we consider two cases.
Case 1. There is no minimal prime containing all coordinates of o. Note

that here I (a) is M-primary. Since the completionofR has theouter product
property, there exists a sequence {B} of (n 1) n matrices over R,
converging element-wise to a matrix B over R* whose outer product is a.

Denoting by the outer product of B, we see that converges to a, and
each a is an outer product over R. By Prop. 2.2, a is R-equivalent to a

for i large enough, and so a is an outer product.
Case 2. Some minimal prime P contains all coordinates of a. We begin

by showing every minimal prime P is principal. It suffices to show PR* P*
is principal in the completion R* of R. M* is not one of the prime divisors
of P*, because

P*:M* (P:M)* P*
and since dim R* 1, P* is of unmixed dimension 1. By Lemma 2.3, there
is a regular local ring (S, N) of dimension 2 and a homomorphism from S
onto R*, since V-dim R* 2. Since -l(p.) has unmixed dimension 1,
and hence unmixed rank 1, in S, and S is a unique factorization domain, it
follows that -1(P*), hence P*, and hence P, are principal. Let P p R,
a !I a, am II, all a in P. We must show a is an outer product. This
is clear if a 0; if a 0, let p be the highest power of p dividing all
non-zero entries in , and let

a p b, ] b, ..., b ],

p[l)I’
ot 11 coordinates of I lie i P1 if II coordinates lie in, sy, P, the sme
reasoning gives p2 a PPsa2 with neither P nor P contain-
ing all coordinates of a. Continuing in this way, we obtain

p p: (lsr)
with no minimal prime containing all coordinates of . By Case 1, a is an
outer product. Hence, a is an outer product by Prop. 1.1, and our proof is
complete.

Remark. This proof also shows that if R is any commutative ring with
identity, the condition "for all prime ideals P in R, V-dim R 2" of Prop.
1.4 is satisfied if it holds for all maximal ideals P. Namely, if M is maxi-
mal, M contains P properly, and V’dim RM 2; then either RM is a regular
local ring of dimension 1, whence

PRM PR 0
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or RM is a regular local ring of dimension 2, whence PR and hence PR
is principal, or dim RM 1 and V-dim RM 2, in which case by the argu-
ment in Case 2 of the above proof, PR and hence PR is principal. Thus,
V-dim R 0 or 1.

BIBLIOGRAPHY
1. I. S. COHEN, On the structure and ideal-theory of complete local rings, Trans. Amer.

Math. Soc., vol. 59 (1946), pp. 54-106.
2. D. LISSNV.R, Outer product rings, Trans. Amer. Math. Soc., vol. 116 (1965), pp. 526-535.
3. -----, OP-rings and Seshadri’s theorem, J. Algebra, vol. 5 (1967), pp. 362-366.
4. C. SESHDRI, Triviality of vector bundles over the ane space K, Proc. Nat. Acad.

Science U.S.A., vol. 44 (1958), pp. 456-458.
5. J. TOWBER, Complete reducibility of exterior algebras over free modules, J. Algebra,

vol. 10 (1968), pp. 299-309.

DEPAUL UNIVERSITY
CHICAGO, ILLINOIS


