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Let K be a commutative ring with identity and G an abelian group. Then
the structure of KG as a K-algebra depends to some extent upon the primes
p for which the torsion subgroup of G has non-trivial p-components and the
relationship of these primes to the arithmetic of K. The case in which these
primes are not invertible in K has been investigated in [2] and it was seen that
the algebraic structure of these p-components is intimately connected with
that of the algebra. If the ring K is especially nice, namely an integral ex-
tension ring of the integers, then it is shown in [3] that the isomorphism class
of KG determines the isomorphism class of G, hence this latter class is a com-
plete set of invarints for commutative group algebras over K.

Ia this paper we consider a case at the opposite extreme. Take K to be aa
algebraically closed field and G an abeliaa group having no element whose
order is equal to the characteristic of K. Then all primes of the type men-
tioned above are iavertible in this ring and so we should expect the structure
of KG to be related only weakly to that of G. Of course when G is finite it is
well known that KG is isomorphic to the direct product of n copies of K where
n is the cardinality of G, hence ia the finite case the cardinality of G (or the
dimension of KG) constitutes a complete set of iavariants. We shall show
that ia general, a complete set of invariants for the structure of KG consists
of the cardinality of Go and the isomorphism class of G/Go (where Go is the
torsion subgroup of G). Moreover we shall say something about how these
invariants can be determined from the algebra.
For the rest of this paper, K will denote an algebraically closed field. In

addition we shall tacitly assume that every group considered will have no
element of order equal to the characteristic of K.

PROPOSiTiOn. Let G be an abelian group with torsion subgroup Go. Then

KG KGo (R) K(G/Go).

Proof. Define H Go X (G/Go). Since KH . KGo (R) K(G/Go), it will
suffice to show that KG

_
KH. This will be accomplished by finding a group

of units in KH which is isomorphic to G and is a K-basis for KH. First we
must choose a certain generating set for G.
We wish to construct a family of subgroups of G, {G}, indexed by some ini-

tial segment of ordinals. Start with Go. Define G+I to be the subgroup
generated by G and an element g G in case G G. If a is a limit ordinal,
define G (J< G. Then G [2 G. Now for each , let n be 0 in case
(g) n G {1}, otherwise let n be the least positive integer such that
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ga e G.. Finally, for each a, we may choose v. and t. where v. is a word
in g < a} andt, e Go, such that g. v.t.. This is so since Go u {ga
generates G.. It now follows from the nature of the choices made that G is
isomorphic to the group generated by Go u {g.} subject to the relations

v. t.}.
We claim that G/Go cat be given by generators [h.} subject to relations

{h.*" w.} where w. is the same word as v., but with the g’s replaced by cor-
responding h’s. Define h. by h. g. Go. Then clearly {h.} generates G/Go
and h.TM w. is satisfied for every a. To show that these are actually defining
relations for G/Go, it is sufficient to verify that if 0 < m < n. (or just 0 < m
in case n. 0), then h. G./Go. But this follows immediately from the
definition of n.. Hence H is generated by Go u {h.} subject to the relations

Next construct units c, ia KGo of augmentation 1 (augmentation means
sum of coefficients as an element of KH). Start with co 1. Now suppose
ca has been defined for all < a. Let w, be the same word as w,, but with
the h’s replaced by corresponding c’s. We shall show that c, e KGo can be
chosen such that c w, t and c is a unit of augmentation 1. Now there is

KG Because of our hypothesesa finite subgroup G of Go such that w. t. e

on K and G, we know that KG’o --__ qKq where G I. But we may take
arbitrary roots in Kq, hence there exists c . KGo such that c"" to. t.. If
the augmentation of c is a e K, then the augmezttation of w. t. being I implies
a" 1. Therefore c. a-lc satisfies the desired conditions. (Note it is a
unit since a product of units.)
Now define elements f. KH by f. h. c.. Let u. be the same word as

v., but with the g’s replaced by corresponding f’s. Then w. w. u. and so

f.a u.t.. Since each f. is u unit in KH, we may consider the group of units
in KH generated by Go and {f.}, call it U. For each , let U. be the subgroup
generated by Go and {fa < al. In order to show that U is isomorphic to G
(where f. corresponds to g. and u. to v.), we must show that f. U. for
0 < m < n. (or just 0 < m in case n. 0). So consider the map KH --K(G/Go) induced by the projection of H onto G/Go. Then since each c. has
augmentation 1, we have (c.) I so q(f.) h.. Therefore f. e U. would
imply h. G./Go contrary to fact. Hence U _--_. G.

All that remains is to show that U is a basis for KH. The linear subspace
generated by U is the same as the subalgebra generated, hence c. and f. in this
subalgebra imply h. is in it and so the subspace is all of KH. Now let a,

am be finitely many indices and define V to be the group of units generated
by Go and f., f... Then to show U is a K-independent set, it suffices
to show such a V is, since any finite subset of U is contained in such a V.
In addition, define Wto be the group of units generated by Go and
Because Go is the torsion subgroup of W, we may choose words y, y in
h., h.. such that

W Go X (y) X X
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as an inner direct product where each (y) is infinite cyclic. Now let x be the
same word as y, but with the h’s replaced by corresponding f’s. Then if
is as previously, we have

and Go is the kernel of .
that

Moreover (x) y for each i allows us to conclude

V G0X <x> X X
as an inner direct product where each <x> is infinite cyclic.
linear combination of elements from V and suppose that 7 0.
write

Let be a K.
We can

ik

for certain () e KGo. It follows that

for certain units c() KGo. Since yl, yk are algebraically independent
over KGo (because of the decomposition of W), we must have ()c() 0
for all (i). But then () 0 for all (i) and hence the coefficients of , which
are the coefficients of the various fl’s, are all zero. Therefore V is a K-inde-
pendent set. |

It will be convenient to express the following lemma in terms of K-algebras
of a certain type. We require all idempotents to be non-zero.

LMA 1. Let A and B be two commutative K-algebras which are algebraic,
have trival nilradicals, and are such that every idempotent decomposes into a sum
of two orthogonal idempotents. Then if A and B are both of countable dimen-
sion, they are isomorphic.

Proof. We shall show that A is a certain direct limit of subalgebras. But
this direct system will be seen to be independent of A up to isomorphism.
Hence we will conclude A B.
A has infinitely many idempotents from the hypotheses. To see that there

are countably many, select a countable K-basis for A, say al, a, .... Let
A be the subalgebra generated by al, a. Then A1 A.

_
and

A (J A. Moreover, A algebraic implies that eachA is finite dimensional,
hence we may conclude that A K" since K is algebraically closed and
A has trivial nilradical. In particular, A has only finitely many idempotents
and so A has countably many. Let f, f, be the distinct idempotents
of A which are different from 1.
We now want to choose certain idempotents in A. These idempotents

will be written e, where the index a is a finite sequence of l’s and 2’s. We
put al equal to the number of terms in the sequence. To begin with, let
1 e W e. be a decomposition of 1 into orthogonal idempotents. This
defines e and e. Now suppose that e, is defined for all a with a n and
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that, moreover, 1 11- e is a decomposition of 1 into orthogonal idem-
potents. For each a with I1 n, consider

e, e,f, + e,(1 --f).

Suppose first that both right hand summands are non-zero. Then define
e, e,f and e,. e,(1 f). In this case, let us say a e I. If either
summand above is zero, then take e, e, -t- e,. to be any decomposition of
e,. In case e,f 0, let us say a I, and in case e,(1 f) 0, let us
say a e In. Hence we have chosen e, for al n - 1 and moreover it is
clear that I 1,I--+ e, is a decomposition of I into orthogonal idempotents.
Now let S @l,l=Ke-. Then S

_
S.

_
are subalgebras of A

and the inclusion map S - S+ is determined by the decompositions
e, e, + e,. for all with al n. The direct system of {S} under the
inclusion maps is therefore independent of A up to isomorphism. We will
be finished if we can show that the limit, S U S, is A. By the local
structure of A which we have previously examined, it is sufficient to show
that f S for all n. But we have

This is an element of S+. |

ConoaY. Let G and H be countably infinite torsion abelian groups.
Then KG KH.

Proof. Given a e KG, then a e KG for some finite subgroup G G.
Hence a is contained in a finite-dimensional subalgebra, and moreover it
cannot be nilpotent unless zero. Suppose a is idempotent. We may select a
finite subgroup G.

___
G, but G. G. Every minimal idempotent in KG

decomposes in KG., hence so does a. The hypotheses of the lemma are
therefore satisfied by KG (and KH). |

This corollary has been proved by S. D. Bermaa (see [1, Theorem 5]).
The author has not seen Berman’s proof, but it seems reasonable to include
the lemma for completeness and since the approach to the problem may
differ. Of course there is a bonus result implicit in our considerations, namely
that ny algebra of countable dimension which satisfies the "local" conditions
of the lemma is seen to satisfy the "global" conclusion that it is a group al-
gebra. It would be interesting to know whether the restriction on the dimen-
sion can be dropped.

LEMMA 2. Let G be a torsion abelian group with subgroup H of index n.
Then KG (KH) as KH-algebras.

Proof. Choose a finite subgroup G1 such that GIH G and put
H, G nil. Then (G,:H) n and it is known that KGI (KH) ’ as
KH,-algebras. Let a, a be orthogonal idempotents in KG giving such
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a decomposition as a KHl-algebra. Note that if t e KHI and ta 0 for
some i, then/ 0. We claim that KG KH.a. This follows since

gH.a KH. gH.a KH.KG KG

and because the a’s are orthogonal. Let t e KH be such that a 0. If
we can show this implies/ 0, then KH.a KH and we will be finished.
Choose {h.} to be a complete family of representatives of cosets of H in H.
Then hj for certain tjeKH. Now 0 ta .h.a
implies t ai 0 for all j since aie KG1 and {h} are coset representatives of
G1 in G. Hence 0 for all j as remarked earlier and so t 0. I

IEMMA 3. Let G and H be p-primary abelian groups such that G H ].
Then KG KH.

Proof. If G and H are finite, then the result is true, hence we may assume
both are infinite. It suffices to consider G @ x Z where I is an index set
such that II ]HI (for then [G[ HI). Let J be an index set with
]JI > III andput M jZ. Consider triples (Ma,a,H) where
M is a subgroup of M, H is a subgroup of H, and ’KMa -- KH is a
K-isomorphism. Order in the obvious fashion and select a maximal such
triple by Zorn’s lemma, call it (M’, ’, H’). We claim H’ H. If not, let
H" be generated by H’ and an element of H outside H’. Then (H" :H’) p’
for some r > 0 and KH" (KH’)r as KH’-algebras. But KM’ --" KH’
implies M’ ]H’[ < ]MI and hence there is a subgroup M" of M such
that M"

_
M’ and (M"’M’) p. We have KM" (KM’) as KM’-

algebras and therefore there exists an isomorphism ":KM" KH"--, extend-
ing ’. This contradicts the maximality of (M’, ’, H’) and so H’ H.
But now M’ H I implies M’ =@’Z and so M’ =’ G. Therefore
KG |

LEMMA 4. Let G be a p-primary and H a q-primary abelian group. Then
[V[ H implies KG KH.

Proof. By the previous lemma it suffices to consider the case G x Z
and H @ j Z where I and J are infinite index sets such that ]I] J ].
Consider triples (G,, H) where G is a subgroup of G, Ha a subgroup of
H, and ’KG KH a K-isomorphism. As before select a maximal triple
(G’, ’, H’). Suppose first that (G’G’) and (H’H’) . Then
there exist subgroups G" G’ and H" H’ such that G"/G’ and H"/H’ are
countably infinite torsion groups. Moreover G’ and H’ are direct summands
of G" and H" respectively so that we may write G" G’ X L and
H" H’ X M as inner direct products for some subgroups L G"/G’ and
M H"/H’. By the corollary to Lemma 1, there is a K-isomorphism
b:KL KM. Hence’ and induce a natural isomorphism from KG’ (R) KL
to KH’ (R) KM. By combining this with the natural isomorphisms of
KG" and KH" with the corresponding tensor products above, we get an iso-
morphism "’KG" KH" which extends ’. By contradiction, one of the



indices, say (G:G’), must be finite. But then GI G’] and so G
_

G’
since the dimension of a vector space over a finite field is determined by the
cardinality of the vector space. Further we have H’ G’ G H I,
hence H H. Therefore KG KH. |

Let G be an abelian group. Then the maximal algebraic subalgebra of KG
is KGo where Go is the torsion subgroup of G (see [3, corollary to Lemma 2]).
Hence the cardinal number G0 is algebraically characterized as the dimen-
sion of this subalgebra. Now let i:KG K be a "splitting" (i.e., a K-homo-
morphism) and let I be the ideal of KG generated by the intersection of the
maximal algebraic subalgebra with the kernel of i. Then G/Go is isomorphic
to the group of units in KG/I modulo the multiplicative group of K (see [3,
corollary to Proposition 4]). Hence G/Go can be deduced algebraically from
KG, although not canonically.

THEOREM. Let K be an algebraically closed field and G an abelian group with
torsion subgroup Go having no element of or der equal to the characteristic of K.
Then a complete set of invariants for KG as a K-algebra is Gol and the iso-
morphism class of G/Go.

Proof. From the preceding discussion we see that if KG --_ KH for another
such group H, then G01 H01 and G/Go --_ H/Ho. Conversely assume
that Go[ H01 and G/Go H/Ho. We must show that KG KH. By
the proposition, it suffices to show that KGo . KHo. In case Go and H0 are
finite, it is trivial so we may assume they are infinite.

Let q denote a fixed prime (different from the characteristic of K) and let
p denote arbitrary primes. It will suffice to show that KGo . K(x Zq)
where I is an index set such that II G0 I. Write G0 G where G
is the p-primary component of Go. Let P1 {Pll GI < } and
P,. {PI[GI }. For each p e P,. let Jbe an index set satisfying
Jl G !. First suppose that P 0. Then Go is countably infinite

and so by the corollary to Lemma 1 we have KGo -- K( Zq). So now we
may suppose that P,. t. Then by Lemma 4,

where]J] supelJ] ]G01 ]II. Hence

K( G) K(x Zq)

and we are finished if P1 0. So assume finally that P i.
into a family of subsets {I,[p e P} such that every I is infinite.
have

Partition I
Then we

KGo -- K(, G,) @ K(e, G,) K(p G,) @ K(@r Zq)

K(,(G, Zq)) ---K(e(G rZ,)) K(,

since p eP implies G r. Z rZ ]. |
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