CLOSED ONE-SIDED IDEALS IN CERTAIN B*-ALGEBRAS

BY
BrucE A. BARNEs!

1. Introduction

Throughout this paper we work in a B*-algebra B with a special property we
call Property A (Definition 2.4). Essentially this property assures that B has
enough projections for our purposes. AW™*-algebras have Property A. We
relate the closed left ideals of B to subsets of a certain ordered set of sequences
of projections in B (Theorem 3.8). Then this relationship between closed
left ideals of B and sets of projections in B is used to characterize the maximal
left ideals of B. When B is commutative, a proper closed ideal M of B is
maximal if and only if whenever FE is a projection on B such that E ¢ M, then
(I — E) ¢ M. This can be verified for AW*-algebras using the results of
(7). We generalize this result to the case where B is non-commutative (and
say an AW™*-algebra) as follows. When E and F are projections in B such
that EnF = 0 and E + F is invertible in B then we call F a strong comple-
ment of E. Then a proper closed left ideal M of B is maximal if and only if
whenever E ¢ M, then E has a strong complement in M (Theorem 4.5).

In the last two sections of the paper we apply the results relating closed left
ideals and sets of projections in B. First we give a new proof (and a slight
generalization) of the known theorem that E is a central projection of B if and
only if E has a unique complement in B (Theorem 5.1). Then in the last
section we characterize the null space of a pure state of B and use this result to
give a necessary and sufficient condition that a pure state of a closed *-sub-
algebra of B with property A have a unique extension to a pure state of B.

2. Preliminaries

Throughout this paper we assume that B is a B*-algebra with an identity I.
E ¢ Bis a projection if E = E* = E*. If {E,} is a sequence of projections in
B with the property that lim,.., (I — E.)E, = 0 for every fixed m, then { E,}
is called an admissible sequence. In particular any decreasing sequence of
projections is admissible. We denote the set of all admissible sequences of
projections in B as 8. If {E,} and {G,} are in 8, we define {E,}] <
{G,} if lim,,, (I — Gn)E, = 0 for every m.

ProrosiTioN 2.1. < s reflexive and transitive on 8.

Proof. Reflexivity is immediate since every sequence in § is admissible.
Now assume that {G.}, {Fn}, {E.} €8, and {G.} < {F.} and {F,} < {E.}. Fix
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m and assume that € > 0. Choose k so large that | (I — En)F: || < /3.
Then choose N so large that n > N implies || (I — Fi)G. || < €/3.

(I - Em)Gn = (Gn - Fan) + (Fan - EkaGn) + (EkaGn - EmGn)
= (I — F)G, + (I — En)FiGy + EW(Fr, — I)G, .
Therefore whenn > N,

| I =Eu)G| S| =Fo)Gu| + 11 I —En)Fu| + || (I —F)Gu| <e.
This proves that limg.e (I — E»)G, = 0. Therefore {G,} < {E.}.

If {E,} and {F,} arein 8, and {E,} < {F,.} and {F.} < {E,}, we call { E,} and
{F,} equivalent and we write {E,} ~ {F.}. It follows from Proposition 2.1
that ~ is an equivalence relation on 8. Let & denote the set of equivalence
classes of $ determined by ~. When {E,} €8, we denote the equivalence class
in X containing {E,} by [E.]. We extend the ordering from § to X in the
usual way: If a, b € X, then ¢ < b if there exists {E,} ¢ @ and {F,} ¢b such that
{Ba} < {Fa}.

If E is a projection in B we identify the sequence {E, E, E, ---} in 8 with E.
Furthermore we again identify E with the equivalence class containing
{E,E, E, ---}. It is not difficult to verify that {E,} ~{E, E, E, ---} if and
only if there exists an integer N such that E, = E for alln > N. Also
W{E,E,E, ---}] < {F,F,F, - -}]in R if and only if E < F in the usual order-
ing of projections in B (E < F means EF = E). Thus from now on we con-
sider the lattice of projections of B as embedded in 8§ and X, and we write
without confusion, F ¢ 8 or E ¢ X.

DeriniTioN 2.2. Given T ¢ B, we call {E,} ¢$ an annihilating sequence of
T if

(1) E, = 0alln,

(2) limpyee TF, =0,

(8) forevery m, there exists T'», ¢ Bsuch that T,T = I — E,, .

ProrosiTioN 2.3. Assume T ¢ B and {E,}, {F.} ¢S. Then:

(1) If{F.} <{E.}andlim,,, TE, = 0, then lim,.., TF. = 0.

(2) If limpew TF, = 0 and {E,} is an annihilating sequence of T, then
{Fa} < {E.}.

(8) If{F.} and {E,} are annihilating sequences of T, then {F,} ~ {E.,}.

Proof. Assume that {F,} and {E,} satisfy the hypotheses given in (1).
Then TF, = TE.F, + T(I — E,)F, for all n, m. Given ¢ > 0, choose m,
so large that || TEn., || < €/2. Since {F.} < {E.}, there exists an integer N
such that whenever n > N, then || T || |( — En,)Fx | < €/2. Therefore
whenn > N, then || TF, || < e. This proves that lim,.. TF, = 0.

Now assume that {E,} and {F,} are as given in (2). Let T, ¢ B be such
that T,T = I — E, foreverym. Then

limpsw (I — En)Fn = liMpse (TwTFa) =0
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for each m. Therefore {F,} < {E.}. This proves (2). (3) follows imme-

diately from (2) and Definition 2.2.

The theorems that we prove in this paper hold when B is an AW *-algebra.
However the results are true for more general algebras B. Therefore we
introduce a property which is sufficient for our purposes. An additional hy-
pothesis concerning B will be assumed in Section 5 and part of Section 4.

DeriniTION 2.4. B has property A if whenever T is a noninvertible posi-
tive element in B, then there is an annihilating sequence of 7' in 8.

B will have property A if every maximal commutative *-subalgebra of B is
generated by projections. We shall not prove this. Particular examples are
AW*-algebras (see [3, p. 236]), and the B,*-algebras introduced by C. Rickart
(see [5, pp. 534-536]; Lemma 2.9, p. 535 is especially relevant). For the re-
mainder of this section we shall be concerned with the proof that when B has
property A, then every two elements of & have a greatest lower bound. The
formal statement of this result is given in Theorem 2.8. Now we prove sev-
eral technical lemmas.

Lemma 2.5.  Assume that {E,}, {Fn} €8 and that for each m > 1, there exists
{G. ™} €8 such that G,"™ 5= 0 for all n, m,

limpsw (I — En)Gn = 0 for all m,
and

liMe (I — Fr)GSY =0 for all m.
Then the operator,

T = 205 (HNT — E) + (I — Fy))
18 not invertible.

Proof. Assume ¢ > 0. Take N so large that Do (3)F < /6. Choose
m so large that || (I — Ex)En|| < ¢/6and | (I — Fiu)Fn| < €/6 forall k
such that 1 <k < N.

TG = S, ()(I — E)Em + (I — Fu)F,)G
+ T BT = B) + I = Fi)G
+ 2 BT — BT — En)G” 4+ (I — Fu)(I = F)G).
Therefore,
[ TG || £ 20 (1)¥(e/3) + v (1)*(2)
+ 2 BT = B)E |+ | (T = Fa)G” ).

We can choose n o0 large that thislast termislessthane/3. Then || TGS || < e.
This proves that T can not be invertible.
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Levma 2.6. (1) If T and S are positive elements in B and
limpse (T 4+ 8)G. =0

where {G,} €8, then limy.., TG, = 0 and lim,., SG, = 0.

(2) Assume that {T,} is a bounded sequence of positive elements in B, and let
T =22 3)T. Iflimg.. TG, = 0 where {G,)} €8, then limy.e T Gr = 0
for all m.

Proof. First we note the following results concerning sums of positive ele-
ments of a B*-algebra. Any finite sum of positive elements is positive by
[6, Lemma (4.7.10), p. 234]. Also a limit of a sequence of positive elements is
again positive by the remarks on p. 37 in [6]. We assume these results in the
proof of (1) and (2).

Assume that (1) holds and 7 is defined as in (2). We can write T as the
sum of two positive elements:

T = (3)"Tw + 2 wetsim (3)"Tn .

Then if limg,e TGy = 0, liMn, T G» = 0 by (1).

Now we prove (1). Assume that T, S and {G.} satisfy the hypotheses of
(1). Then || (T4 8S)G.| = enand &, — 0. By [6, Theorem (4.8.11), p. 244],
we may assume that T, S and G, , » > 1, are operators on a Hilbert space
3¢, and that || - || is the operator norm. For any 4 in the unit ball of 3,

(T + 8)Go hy G h) < €.
Then (TG, h, G, b) + (SG, h, G, b) < €., and therefore
(TG h, Go h) < &, and (8SG.h, G, h) < &,.

It follows that || G, TG, || > 0and || G, 8G, | = 0. | G. TG, || = || T*G. |I%,
so that
| TG || < | T || TY*Ga || — o

Similarly || SG. || — 0.

LemMa 2.7.  Assume that B has property A. Suppose that {E,} and {F,} €8
have the property that (I — E,) 4+ (I — F.) is not inverttble for all n > 1.
Then there exists {J.} € $ with the following properties:

(1) {J.} is not equivalent to 0.

(2) {Ja} < {Eu} and {Ja} < {Fu}.

Proof. Let
T = 2325 U — B) + (I — F)).

Since (I — Ey) + (I — F}) is not invertible for any k, there exist for each k,
an annihilating sequence for (I — E) + (I — F), {GP}. Then

litnae (I — E)GP =0 and lima., (I — F2)GP =0
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by Lemma 2.6 (1). By Lemma 2.5, T is not invertible. Let {J.} €8 be an
annihilating sequence of T'in B. By Lemma 2.6, limy.., (I — Ey,)J, = 0
and lim,., (I — Fn)J, = 0 for every m. It follows that {J,} < {E.} and
{Jn} < {F.}. Now assume that {G.} € 8, {Ga} < {E.}, and {Gx} < {Fa}.
Then for each m,

limpse ((I = En) + (I — Fu))Gn = 0.

It is easy to verify that this implies lim,., TG. = 0. Then by Proposition
2.3 (2), {Ga} £ {J.}. This completes the proof.

Now we are in a position to prove that any two elements in X have a great-
est lower bound in X.

TueoreM 2.8. Assume that B has property A. If a, b ¢ X, then ¢ and b
have a greatest lower bound in X which we denote a /\ b. Furthermore [E,] /\
[F.) # 04 and only if (I — E.) + (I — F.) is not invertible for all n.

Proof. Given [E,]and [F,] eX. If (I — E,) + (I — F,) is not invertible
for all n, then we can choose {J,} € 8 with the properties listed in Lemma 2.7.
Then clearly [J,] is a greatest lower bound of [E,] and [F,]. Now assume that
there exists m such that (I — E,) + (I — F.) is invertible. Assume
{G.} < {E,} and {G,} < {F.}. Then

limsw [(I = En) + (I — Fu)lGn = 0.

It follows that G, = O for all but a finite number of n. Therefore [G.] = 0.
This proves that 0 is the greatest lower bound of [E,] and [F.,].

3. The closed left or right ideals of B
Throughout this section we assume that B has property A.

DeriNiTiON 3.1. 9 is a proper ideal of X if
(1) a ¢ 9M implies @ #= 0,

(2) aandb e M implies a A b e M,

(8) aeM,beX, and a < b, implies b € IN.

Assume 91 is a proper ideal of X. We define L(91) to be the set of all
T ¢ B with the property that there exists [E,] ¢ 9% such that lim,., TE, = 0.
Similarly we define B(9) to be the set of all T ¢ B with the property that
there exists [E,] e M such that lim,., E, T = 0. We restrict our attention to
the sets L(91). Results concerning L(9M) are easily extended to R(9N) using
the fact that R(9M) = (L(9M))*.

LemMa 3.2.  If 9 is a proper ideal of K, then L() ©s a proper left ideal of B.

Proof. Assume T ¢ L(9M) and S ¢ B. Then there exists [E.] ¢ 9 such
that lim,.., TE, = 0. Then clearly lim,.., (STE,) = 0. Now assume T,
S e L(9M). There exist [E,], [F.] ¢ 9 such that lim,., TE, = 0 and
limpeew SF, = 0. Assume [G,] = [E.] A [F.). Then {G.,} < {E,} and
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{G,} < {F.} soby Proposition 2.3 (1), limy.e (T + 8)G» = 0. Since [G,] €N,
T+ SeL(). IfIe L(M), then for some [E,] ¢ M, lim,,, I(E,) = 0.
This contradicts the hypothesis that 9 is proper. Therefore L(9) is a proper
left ideal of B.

Lemma 3.3. Assume T and S are positive elements in B such that T + S s
not invertible. Let {E,}, {Fa}, and {G,} be annihilating sequences of T, S, and
T + 8, respectively. Then

[En] AN [Fn] = [Gn]°

Proof. limg.. (T + S)G, = 0. Then by Lemma 2.6 (1), limy. TG, = 0
and lim,., SG, = 0. By Proposition 2.3 (2), {G,} < {E.} and {G.} < {Fa}.
Therefore

[Ga] < [Ex] A [Fal.

Conversely assume {J.} € [E,] A [F.]. Then by Proposition 2.3 (1),
limnse TJr = 0 and lim,,, SJ, = 0. Thus lim,., (T + S)J, = 0 which
imnlies by Proposition 2.3 (2) that {J.} < {G.}. Thus

[E.] A [Fa] < [Gal.
This proves the lemma.

Assume that N is a proper left ideal of B. Define 9 (N) to be the set of all
a e K with the property that there exists a positive element T ¢ N with an-
nihilating sequence {E,} such that [E,] < a.

YEmMA 3.4. If N is a proper left ideal of B, then SN(N') 1s a proper ideal of K.

Proof. Assume that ¢ ¢ M(N), b ¢ X, and a < b. By definition there
exists a positive element T ¢ N with annihilating sequence {E,} such that
[E.) < a. Then [E,] < b,s0beM(N). Nextassumea,b e M(N). Let T
and S be positive elements in N with annihilating sequence {E,} and {F,}
respectively such that [E,] < a and [F,] < b. Let {G,} be an annihilating
sequence of T 4+ S. Then by Lemma 3.3,

[Gn] = [En] A\ [Fn] <aA b)

andsince T + SeN,a A beNM(N). Finally assume 0 ¢ MW(N). Then there
exists a positive element 7 ¢ N and an annihilating sequence {E,} of T such
that [E,] = 0. But this is impossible by the definition of annihilating se-
quence. Thus IMN(N) is proper.

The purpose of this section is to describe precisely the relationship between
the closed left ideals of B and the ideals in X. Lemmas 3.2 and 3.4 are the
beginning of this program. The full results are stated in Theorems 3.7 and
3.8. We now prove a technical lemma.

LemMA 3.5. Assume that N is a proper closed left ideal of B. Assume that
{E.} eSand E, e W(N) foralln. Then I — E, e N for all n.

Proof. For each m there is a positive element T, ¢ N and an annihilating
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sequence {G™} of T, such that {GY”} < E,. Therefore for each m,
limpe (I — En)G{™ = 0. Also for each m, n > 1, there exists Sp,m ¢ B
such that Sp,m Tw = I — GY”. Since N is a left ideal (I — GY) ¢ N for all
m, n. Then

| I = En) — I —En)T —G") || >0

as n — o, and since N is a closed left ideal, (I — E,) ¢ N forallm > 1.
In order to relate closed left ideals in B to ideals in &, we need the concept
of a closed ideal in X.

DeriniTioN 3.6. An ideal 9 in XK is closed if whenever {E,} ¢ $ and
E, € 9 for all n, then [E,] € 9.

TuroreM 3.7. If I s a closed proper ideal in X, then L(IN) s a closed
proper left ideal of B. If N is a closed proper left ideal in B, then IM(N) is a
closed proper ideal in X.

Proof. Let 9N and N be as in the statement of the theorem. Then by
Lemma 3.2, L(9N) is a proper left ideal of B, and by Lemma 3.4, 9M(N) is a
proper ideal in . It remains to be shown that L(9) and M (N) are closed.

Assume that {T,} is a sequence in L(9M) and that T, — T. Then
T T e L(9N) for all m and T, Tm — T*T. We choose a projection B e 91
such that | 7¥T: E; | < 1. Assume we have chosen projections E; e N,
1 € k < n, with the properties that

| TE Tv B || < 1/k and || (I — E)E|| < 1k

whenever 1 < j < k. Let Soy1 = Tsi Tutr + 2 =1 (I — Ei). Then
Sni1 € L(9M), and therefore there exists [F] ¢ MM such that limm,e Spt1 Fm = 0.
By Lemma 2.6 (1),

limmow (751 Tust)Fm = 0 and limpew (I — Ep)Fp = 0

for 1 < k < n. Therefore we can choose a projection E,.; ¢ 9 with the
properties

| Thsi Tas1Bosa | <1/n+1 and || (I —E)Eapn || <1/n+1,1<k <.

By induction we define a sequence of projections {E,} which is admissible by
the construction. Since E, € 9N for all n and N is closed, [E,] e M. Further-
more,

| TEa |* = || En T*TE, |

S | Eu(T*T — Ta To)En | + | Eo T3 To B ||
S|\ T = T Ta || + 1/n—0

asn — o, This proves that 7' ¢ L(9M).
Now assume that N is a proper closed left ideal of B. Assume {E,} ¢ §
and E, ¢ M(N) for all n. By Lemma 3.5, — E, ¢ N foralln. Let

T = 235 ()" — Ea).
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Since N is closed, T is a positive element in N. Let {F,} €8 be an annihilating
sequence of 7. Then by Lemma 2.6 (2), limyse (I — En)F, = 0 for all m.
Therefore {F,} < {E.}. It follows by definition that [E,] ¢ M (N). There-
fore M (N') is closed.

TueoreM 3.8. If N is a proper closed left ideal of B, then N = L((N)).
If N 4s a proper closed ideal of K, then 9 = M(L(N)).

Proof. Assume N is a proper closed left ideal of B. First assume
T e L(M(N)). Then there exists [E,] ¢ M(N) such that lim,.., TE, = 0.
By Lemma 3.5, — E, ¢ N foralln. Then |T — T(I — E,) | — 0 as
n — oo, which implies T ¢ N. Conversely assume T ¢ N. Then T*T ¢ N.
Let {E,} be an annihilating sequence of T*T. By definition, [E,] ¢ 9(N).
Then || T*TE, | »0asn— «,and || TE, ||* = || E, T*TE, | > 0asn — .
Therefore T' ¢ L(M(N)). This completes the proof that N = L(9M(N)).

Now assume 9 is a proper closedideal of X. If [E,] ¢, then (I — E,) e L(9T)
alln. Let T = >3 (3)*(I — Ei). By Theorem 3.7, L(:) is closed, so
that T e L(9t). Let {F,} be an annihilating sequence of T. Then by Lemma
2.6 (2), limyue (I — Ey)F, = Ofor allm. Therefore {F,} < {E,}. By defi-
nition [E,] ¢ M(L()). Conversely assume [E,] ¢ M(L(N)). Then there
exists a positive element T ¢ L(9) and an annihilating sequence {F.} of T
such that {F,} < {E,}. Since T e L(91), there exists [G,] ¢ 9 such that
limuee TG, = 0. By Proposition 2.3 (2), {G.} < {F.}. Therefore {G,} <
{E,}, so that [E,] e 9.

COROLLARY 3.9. I — L(9M) ¢s a one-to-one order preserving map from the
set of all proper closed ideals of 3 onto the set of all proper closed left ideals of B.

CoroLLARY 3.10. If N and M are two closed left ideals of B which contain
the same projections, then N = M.

Proof. Assume N = L(N) and M = L(9M) where 3 and 9N are ideals in
K. Assume T ¢ N. Then there exists [E,] ¢ 9 such that lim,., TE, = 0.
AlsoI — E, ¢ N for alln. Then by hypothesis I — E, ¢ M for alln. Then
since |T — T(I — E,) || 0, T e M. Thus N © M. By symmetry
M CcN.

4. The maximal left ideals of B

We assume throughout the remainder of the paper that B has property A.
It is well known that N is a maximal closed left ideal of B if and only if N is a
maximal left ideal of B. Using this we prove that 91 is a maximal closed ideal
of & if and only if 9 is a maximal ideal of X. First assume that 9 is a maxi-
mal closed ideal of X, and suppose that 9 C g where g is a proper ideal of
K. Suppose that M #= g. Then ¢ is not closed, and therefore there exists
{E,} €8, E, e gforalln, and [E,] ¢ g. It follows that g contains a projection
E such that E ¢ 9. But L(91) is a maximal left ideal of B by Corollary 3.9,
L(g) is a proper left ideal of B by Lemma 3.2, L(9M) € L(g),and I — E ¢
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L(g),I — E ¢ L(9). This is a contradiction which proves that 9 = .
Conversely assume that 9% is a maximal ideal of . Then L(91) is a proper
left ideal of B. Let N = L(9M). 9M(N) D I, and therefore M(N) = .
Finally an is closed by Theorem 3.7. By this result and Corollary 3.9 we have
that N is a maximal left ideal of B if and only if N = L(91) where 9 is a
maximal ideal of X. Now we characterize the maximal left ideals of B in
another fashion. We prove the following result.

THEOREM 4.1. Assume that N 1s a closed left ideal of B. Then the following
are equivalent:

(1) N 4s mazximal.

(2) N = L(9n) where I is a maximal ideal of XK.

(8) 1If E is a projection in B and E ¢ N, then there exists a projection F ¢ N
such that E -+ F 1is invertible in B.

We have already noted the equivalence of (1) and (2). Before completing
the proof of the theorem, we establish a lemma.

LEMMA 4.2, Assume that I is a proper ideal of X and that a ¢ X has the

property that @ /\ b £ 0 for all b € W. Then there is a proper ideal g of X
such that a ¢ § and M C ¢.

Proof. Let g be the set of all ¢ ¢ & such that there exists b ¢ 9N with
aAb<ec Clearlyaeganddt C g. We verify that g is a proper ideal of
K. Firstif ¢ € g and ¢ < d, then it is obvious that d ¢ §. Assume ¢, d € g.
Then there exists e, f e M such thata A\ e < canda N f < d. Then

aN(ENf)=(@Ne)N(aNf)ScAd
By the definition of g, ¢ A d € §. 0 ¢ g since by hypothesis it is not true that
a A\ b<0foranyb ed. Thiscompletes the proof.

Now we complete the proof of Theorem 4.1. Assume (3) holds. N is
contained in some maximal left ideal M of B. Assume that E is a projection
in M. Then E ¢ N; for if not, there exists a projection ¥ ¢ N such that E + F
is invertible. Thus N and M contain the same projections. By Corollary
3.10, N = M. Conversely assume that N = L(9) where 91 is 2 maximal
ideal of X. Assume E ¢ N. Suppose that whenever [E,] e M, E + (I — E,)
is not invertible for alln. Then (I — E) A [E,] # 0 by Theorem 2.8. By
Lemma 4.2, there is a proper ideal g in & such that (I — E) ¢ g and M C 4.
But this is impossible since 91T is maximal and (I — E) ¢ 9. Therefore there
exists an idempotent (I — F) € 91 such that E 4 F isinvertible. This proves
(3).

If B has an additional property that we now describe, then we can sharpen
the result in Theorem 4.1. We assume for the remainder of this section that
whenever E and F are projections in B, then E and F have a greatest lower
bound in B with respect to the usual ordering of projections (E < F means
EF = E). We denote this glb as E n F. Any AW™-algebra has this addi-
tional property.
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DeriniTioN 4.3. Let E and F be projections in B. Then F is a strong
complement of Eif En F = 0 and E + F is invertible in B.

If F is a strong complement of E in B, then F is a complement of E in the
usual sense that En F = 0and E u F = I. However it is not difficult to find
examples of complements which are not strong complements.

LemMa 4.4. Assume that E and F are projections and that E + F is in-
vertible in B. Let G = En F. Then (F — @) is a strong complement of E.

Proof. Tirst we verify that En (F — @) = 0. ForletJ = En (F — G).
J < E,J < F and therefore J/ < EnF = G. ThenJ = J(F — () =
JF — JG@ =J — JG Thus JG = 0. Therefore J = JG = 0. Now there
exists K ¢ B such that K(E + F) = I. Then

(K+ KG)(E+ (F—-G)) =1 —KG+ KG+ KG — KG =1.

Therefore (F — @) is a strong complement of E.
Now we have the following result.

TueoreM 4.5. Assume that whenever E and F are projections in B, then
E n F exists in B.  Assume that N 1s a proper closed left ideal of B. Then N 1s
a maximal left ideal of B if and only if whenever E is a projection in B and
E ¢ N, then E has a strong complement in N.

Proof. Assume that N is a maximal left ideal of B and E is a projection in
B such that E ¢ N. Then by Theorem 4.1 there exists F ¢ N such that
E + Fisinvertiblein B. Let G = En F. Since F ¢ N and GF = G, then
G eN. Therefore F — G e N. Finally (F — @) is a strong complement of £
by Lemma 4.4.

5. Central projections

We assume throughout this section that whenever E and F are projections
in B, then E and F have a greatest lower bound in B. A linear functional «
on Bis a state of Bif a(T) > 0 for all positive elements T'in B and a(I) = 1.
If o is an extreme point of the convex set of all states of B, then « is a pure
state. Given a state a, let

Ko = {T ¢ B| a(T*T) = 0}.

K, is a closed left ideal of B and when « is a pure state, then K, is a maximal
left ideal of B by [1, Théoréme 2.9.5, p. 48].

It is a well-known theorem that when B is an AW ™*-algebra, then a projec-
tion E in B is central if and only if E has a unique complement; see [4, Theorem
70, p. 119]. We prove a slightly more general form of this theorem.

TarEoREM 5.1. A projection E € B is a central projection if and only if E has a
unique strong complement in B.

Proof. We prove the “if”” direction of the theorem. By hypothesis the
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unique strong complement of £ is I — E. Assume that « is any pure state.
K. is a maximal left ideal of B, and therefore by Theorem 4.5 either E ¢ K,
or] — E ¢ K,. The generalized Cauchy-Schwartz inequality, [6, p. 213],
states that when R, S ¢ B,

| 2(R*S) P < a(R*R)a(S*8).
Therefore given any T ¢ B we have,

; | «(BET(I — E)) ' £ a(E)a((TI — E))*T(I — E))
an
| «(BET(I — E)) [' < «((ET)(ET)")a(I — E).

But by the previous part of the proof either a(E) = 0 or (I — E) = 0.
In either case a(ET(I — E)) = 0. This proves that for an arbitrary pure
state o of B, a(ET(I — E)) = 0. Since the pure states of B separate the
elements of B by the remarks in [2, p. 112], then ET(I — E) = 0. A similar
proof shows that (I — E)TE = 0. Therefore ET = ETE = TE which proves
the theorem.

6. The null space of a pure state and an application

Assume that o is a pure state of B and let 91 be the unique maximal ideal
of & such that K, = L(9). We define N (91) to be the set of all T ¢ B with
the property that there exists [E,] ¢ 9% such that || B, TE. | — 0. It is not
difficult to verify that N(9M) is a proper subspace of B. Note that
L) + (L(mM))* < N(on). Itis a result of R. V. Kadison [1, Proposition
2.9.1, p. 46] that o (0) = K, + (K.)* for a a pure state. Therefore
o (0) = N(). If T ¢ B, then T — «(T)I ¢ N(9m), and therefore there
exists [E,] € M such that || E, TE, — ao(T)E. | — 0. We state these results
as a lemma.

LemMA 6.1.  Assume that « is a pure state of B and K, = L(9), I a maxi-
mal ideal of X. Then o™(0) = N () and for any T e B, there exists [E,] € 9N
such that || E, TE, — a(T)E, || — 0.

We apply this result to the question of when a pure state of a subalgebra of
B has a unique extension to a pure state of B. Let By be a closed *-subalgebra
of B which contains I and such that B, has property A. Let X, be the set of
all equivalence classes of admissible sequences of projections in By . Assume
that ap is a pure state of By, and let 91, be the unique maximal ideal of X,
such that L(9) = K., .

TuEOREM 6.2. ap has a unique extension to a pure state of B if and only if
given any T e B, there exists a scalar N and [E,] € Mo such that

| En TE, — \E, || — 0.

Proof. Assume that given any T e B there exists a scalar A and [E,] € 9
such that | E, TE, — AE, | — 0. Let o be any state of B which extends
ap. Let T e B, and assume \ and [E,] are as given in the previous hypothesis.
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Since E, € 9, for all n, then a(I — E,) = ay(I — E,) = 0for alln. We
write T as
T=E,TE,+ E,T(I — E,) + (I — E,)T.

By the general Cauchy-Schwarz inequality,
a(By T(I — Eu)) = (I — Ex)T) = 0.
Therefore a(T) = a(E, TE,) for all n. Then
|a(T) — N| = |a(E, TE, — \E,) | < | E.TE, — \E, || — 0.

This proves that any state a of B which extends oy takes the values N at 7.
It follows that oo has a unique extension to a state « of B. « must be a pure
state of B by [1, Lemma 2.10.1, p. 50].

Conversely assume that «, has a unique extension to a pure state o of B.
Let Lo be the set of all T ¢ B with the property that there exists [E.] ¢ M
such that || TE, || = 0. Lo is a closed left ideal of B by the proof of Theorem
3.7. Suppose L, were not a maximal left ideal of B. Then by [1, Théoréme
2.9.5, p. 48] there exist maximal left ideals of B, Ly and L, , such that Ly C L, ,
Ly C Ly,and Ly # L,. By this same Theorem there exist corresponding pure
states a; and o of B such that K,, = L, and K., = L,. Assume T ¢ By.
Then there exists [E,] € 9, such that

| En TE, — ao(T)E, || =0 (Lemma, 6.1).

Since Ly < Lyand Ly < L, , then oy (E,) = ae(E,) = 1foralln. By the same
argument as used in the first paragraph of the proof it follows that a.(7) =
ao(T) and a2(T) = ao(T). Therefore ey and oz extend ap which is a contra-
diction. It follows that L is a maximal left ideal and K, = L,. Therefore
@ (0) = Ly + (Lo)*. Then by the definition of Lo, given any T ¢ B there
exists [E,] € M, such that

| E» TE, — a(T)E, || — 0.
This completes the proof of the theorem.
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