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1. Introduction

Throughout this paper we work in a B*-algebr B with a special property we
call Property A (Definition 2.4). Essentially this property assures that B has
enough projections for our purposes. AW*-algebras have Property A. We
relate the closed left ideals of B to subsets of a certain ordered set of sequences
of projections in B (Theorem 3.8). The this relationship between closed
left ideals of B and sets of projections in B is used to characterize the maximal
left ideals of B. When B is commutative, a proper dosed ideal M of B is
maximal if and only if whenever E is a projection on B such that E M, then
(I E) e M. This can be verified for AW*-algebras using the results of
(7). We generalize this result to the case where B is non-commutative (and
say an AW*-algebra) as follows. When E and F are proiections in B such
that E a F 0 and E - F is invertible in B then we call F strong comple-
ment of E. Then a proper closed left ideal M of B is maximal if and only if
whenever E M, then E has a strong complement in M (Theorem 4.5).

In the last two sections of the paper we apply the results relating closed left
ideals and sets of projections in B. First we give a new proof (and a slight
generalization) of the known theorem that E is a central proiection of B if and
only if E has unique complement in B (Theorem 5.1). Then in the last
section we characterize the null space of a pure state of B and use this result to
give a necessary and sufficient condition that a pure state of a closed *-sub-
algebra of B with property A have a unique extension to a pure state of B.

2. Preliminaries
Throughout this paper we assume that B is a B*-algebra with an identity I.

E e B is a proiection if E E E*. If {E} is a sequence of projections in
B with the property that lim. (I E,,)E, 0 for every fixed m, then
is culled an admissible sequence. In particular any decreasing sequence of
projections is admissible. We denote the set of all admissible sequences of
projections in B as 8. If {E} and {G} are in $, we define {E}
G} if lim (I G,,)E, 0 for every m.

PnOeOSTON 2.1. <_ is reflexive and transitive on $.

Proof. Reflexivity is immediate since every sequence in $ is admissible.
Now assume that G}, {F}, {E} e S, and {G} <_ {F} and {Fn}

__
{En}. Fix
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m and assume that > 0. Choose ] so large that ]1 (I E,)Fk II "< /3.
Then choose N so large that n >_ N implies (I Ek)G, "< /3.

(I E,)G, (G, FG,) -[- (FG, E=FG,) + (E,FG, E,G,)

(I F)G, + (I E,)FkG,, + E:(F I)G,.

Therefore when n >_ N,

This proves that lim,. (I E,)G, O. Therefore G,} _< {E,}.
If E,} and F,} are in $, and E,} _< F,} and F,} _< {E,}, we call E,} and

{F,} equivalent and we write {E,} {F,}. It follows from Proposition 2.1
that is an equivalence relation on 3. Let denote the set of equivalence
classes of $ determined by --. When {E,} e 3, we denote the equivalence class
in containing {E,} by [E,]. We extend the ordering from $ to in the
usual way" If a, b e , then a _< b if there exists {E,} e a and {F,} e b such that
/E.} < {F}.

If E is a projection in B we identify the sequence {E, E, E, in $ with E.
Furthermore we again identify E with the equivalence class containing
{E, E, E, }. It is not difficult to verify that {E,} {E, E, E, ..-} if and
only if there exists an integer N such that E, E for all n >_ N. Also
[{ E, E, E, _< [{ F, F, F, in if and only if E < F in the usual order-
ing of projections in B (E < F means EF E). Thus from now on we con-
sider the lattice of projections of B as embedded in $ and , and we write
without confusion, E e $ or E e .
DEFINITION 2.2. Given T e B, we call E} e $ an annihilating sequence of

T if
(1) E 0alln,
(2) lim. TF, O,
(3) for every m, there exists T e B such that T,T I E,.

PROPOSITION 2.3. Assume T e B and {E,}, {F,} e 3. Then:
(1) If F,} <_ E,} and lim,. TE, O, then lim, TF, O.
(2) If lim,_. TF, 0 and {E,} is an annihilating sequence of T, then

{F,} _< {E}.
(3) If F,} and E,} are annihilating sequences of T, then F,} E,}.

Proof. Assume that {F} and {E} satisfy the hypotheses given in (1).
Then TF, TE,F, - T(I E,)F for all n, m. Given > 0, choose m0
so large that I1 TE,,o < /2. Since {F} _< {E}, there exists an integer N
such that whenever n >_ N, then 11 T II I](I E,o)F, < v/2. Therefore
when n >_ N, then TF < . This proves that lim TF, O.
Now assume that {E} and {F} are as given in (2). Let T e B be such

that T,T I E, for every m. Then

limn (I E)F, limn. (T,TF,) 0



CLOSED ONE-SIDED IDEALS IN CERTAIN B*-ALGEBRAS 505

for each m. Therefore {F}

_
{E}. This proves (2). (3) follows imme-

diately from (2) and Definition 2.2.
The theorems that we prove in this paper hold when B is an AW*-algebra.

However the results are true for more general algebras B. Therefore we
introduce a property which is sufficient for our purposes. Aa additional hy-
pothesis concerning B will be assumed in Section 5 and part of SectioI 4.

DEFINITION 2.4. B has property A if whenever T is a noninvertible posi-
tive element in B, then there is an annihilating sequence of T in 6.

B will have property A if every maximal commutative *-subalgebra of B is
generated by projections. We shall not prove this. Particular examples are
AW*-algebras (see [3, p. 236]), and the B*-algebras introduced by C. Rickart
(see [5, pp. 534-536]; Lemma 2.9, p. 535 is especially relevant). For the re-
mainder of this section we shall be concerned with the proof that when B has
property A, then every two elements of have a greatest lower bound. The
formal statement of this result is given in Theorem 2.8. Now we prove sev-
eral technical lemmas.

LEMMA 2.5. Assume that {E}, {Fn} e $ and that for each m >_ 1, there exists
{G()} e $ such that G(’) 0 for all n, m,

and

Then the operator,

lim. (I Era)G 0 for all m,

limn (I Fro) G() 0 for all m.

T ’k+-- (1/2)k((I E) + (I F))
is not invertible.

Proof. Assume > 0. Take N so large that ---N+I (1/2) < /6. Choose
m so large that (I E)E < /6 nd (I F)F < /6 for all
such that 1 < k < N.

()((I E)E + (I F)F)()

+ =+ ()((I S) + (I F))G)

W = ()((I S)(I E)G( + (I- F)(I F)G()).

Therefore,

g + (2)

+ ()(l (I E)G( + (I F)G( ).

We cn choose n so large that this last term is less than s/3. Then
This proves that T cuu not be iavertible.
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LEMMA 2.6. (1) If T and S are positive elements in B and

lim.. (T + S)G,, =0

where G,} e $, then lim_. TG, 0 and lim. SG, O.
(2) Assume that T,} is a bounded sequence of positive elements in B, and let

q-coT ,,.-1 (1/2) T,. If lim,. TG, 0 where {G} e $, then lim,. T G. 0
for all m.

Proof. First we note the following results concerning sums of positive ele-
ments of a B*-algebra. Any finite sum of positive elements is positive by
[6, Lemma (4.7.10), p. 234]. Also a limit of a sequence of positive elements is
again positive by the remarks on p. 37 in [6]. We assume these results in the
proof of (1) and (2).
Assume that (1) holds and T is defined as in (2). We can write T as the

sum of two positive elements"
oT (1/2)T: + ,--x.,,: (1/2) T,.

Then if lim,++ TG, 0, lim++ T: G, 0 by (1).
Now we prove (1). Assume that T, S and {G.} satisfy the hypotheses of

(1). Then (T + S) G, e, and e. --. 0. By [6, Theorem (4.8.11), p. 244],
we may assume that T, S and G,, n >_ 1, are operators on a Hilbert space, and that !1 II is the operator norm. For any h in the unit ball of C,

((T -k S)G,h, G,h) <_ ,.
Then (TG h, G,, h) -b ( SG, h, G, h) <_ , and therefore

(TG, h, G,h) <_ e, and (SG,h, G,h)

It follows that G, TG, ’ 0 and G, SG,
so that

TG, <- Tl1 TIIG O.

Similarly SG, O.

LEMMA 2.7. Assume that B has property A. Suppose that
have the property that (I E,) T (I F,) is not invertible for all n >_ 1.
Then there exists {J} e $ with the following properties:

(1) J,d is not equivalent to O.
(2) {J}

_
{E} and {J} _< {F}.

(3) If G, e g and G} _< {E,} and G, <_ f then

Proof. Let
T +.- (1/2)((I E) + (I F)).

Since (I E) -b (I F) is not invertible for any k, there exist for each/,
an annihilating sequence for (I E) - (I F), {G()}. Then

lim,_, (I E)G) 0 and lim,_, (I F)G) 0
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by Lemma 2.6 (1). By Lemma 2.5, T is not invertible. Let {J} e $ be an
annihilating sequence of T in B. By Lemma 2.6, m,-..o (I E)J,, 0
and lim (I F)J,, 0 for every m. It follows that {J} _< {E} and
{J} _< {F}. Now assume that {G} $, {G} <_ {E}, and{G} _< {F}.
Then for each m,

lim.. ((I E) -[- (I- F))G. 0.

It is easy to verify that this implies lim. TG,, O. Then by Proposition
2.3 (2), G} <_ J.}. This completes the proof.
Now we are in a position to prove that any two elements in have a great-

est lower bound in .
THEOREM 2.8. Assume that B has property A. If a, b , then a and b

have a greatest lower bound in which we denote a
[F] 0 if and only if (I E,) - (I F,,) is not invertible for all n.

Proof. Given [E.] and [F] e . If (I E) -{- (I F.) is not invertible
for all n, then we can choose {J.} e $ with the properties listed in Lemma 2.7.
Then clearly [J,] is a greatest lower bound of [E.] and [F]. Now assume that
there exists m such that (I E) -[- (I F) is invertible. Assume
{G} _< {E} and {G} _< {F}. Then

lim,. [(I- E,) + (I F,)]G O.

It follows that G, 0 for all but a finite number of n. Therefore [G,] 0.
This proves that 0 is the greatest lower bound of [E,] and [F].

3. The closed left or right ideals of B
Throughout this section we assume that B has property A.

DEFINITION 3.1. iE is a proper ideal of if
(1) a e 9T implies a 0,
(2) a and b e 9 implies a/ b e

(3) a e 9T, b e , and a _< b, implies b

Assume fflZ is a proper ideal of . We define L(9) to be the set of all
T e B with the property that there exists [E.] e i) such that lim. TE,, O.
Similarly we define R(1)r) to be the set of all T e B with the property that
there exists [E.] e such that lim.. E. T 0. We restrict our attention to
the sets L(9). Results concerning L(gr) are easily extended to R() using
the fact that R(glZ) (L(gT))*.
LEMMA 3.2. If9 is a proper ideal of, then L(E) is a proper left ideal of B.

Proof. Assume T e L(E) and S e B. Then there exists [E] e 9 such
that lim TE, O. Then clearly lim. (STE) O. Now assume T,
S e L(). There exist [E.], [F,] e 9r such that lim. TE, 0 and
lim, SF O. Assume [G] [E,] / [F]. Then {G} _< {E} and
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G} _< F} so by Proposition 2.3 (1), lim. (T + S)G, 0. Since [G] e

T + S e L()). If I e L(I), then for some [E] e , lim I(E,,) O.
This contradicts the hypothesis that is proper. Therefore L(I) is proper
left ideal of B.

LEMMA 3.3. Assume T and S are positive elements in B such that T S is
not invertible. Let {E}, {F}, and {G} be annihilating sequences of T, S, and
T S, respectively. Then

[E.] A IF.] [G.].

Proof. lim.= (T + S)G, 0. Then by Lemma 2.6 (1), lim.+= TG, 0
nd lim, SG, 0. By Proposition 2.3 (2), G,} _< {E,} and G,} _< F,}.
Therefore

[G.] _< [E.] A IF.].

Conversely assume {J.} e [E.] / [F.]. Then by Proposition 2.3 (1),
lim.= TJ. 0 and litany= SJ. 0. Thus lim. (T -k- S)J. 0 whieh
imnlies bv Proposition 2.3 (2) that J,} _< {G,}. Thus

[E,] A [F,] _< [G,].
This )roves the lemma.

Assume that N is proper left ideal of B. Define (N) to be the set of all
a with the property that there exists a positive element T e N with
nihilating sequence {E,} such that [E,] _< a.

[EMMA 3.4. IfN is a proper left ideal of B, then 9(N) is a proper ideal of
Proof. Assume that a e (N), b e 3, nd a _< b. By definition there

exists u positive element T e N with annihilating sequence {E,} such that
[E,] <_ a. Then [E,] _< b, so b e (N). Next assume a, b e i)(N). Let T
and S be positive elements in N with annihilating sequence {E,} and {F,}
respectively such that [E,] _< a and [F,] _< b. Let {G,} be an annihilating
seauence of T -+- S. Then by Lemmu 3.3,

[G,] [E,]/ [F,] _< a/ b,

and since T + S e N, a/ b e I(N). Finally assume 0 e i)(N). Then there
exists a positive element T e N and a annihilating sequence {E,} of T such
that [E,] 0. But this is impossible by the definition of annihilating se-
quence. Thus i)(N) is proper.
The purpose of this section is to describe precisely the relationship between

the closed left ideals of B and the ideals in . Lemmas 3.2 and 3.4 are the
beginning of this program. The full results are stated in Theorems 3.7 and
3.8. We now prove a technical lemma.

LEMlgA 3.5. Assume that N is a proper closed left ideal of B. Assume that
{E,} e $ and E, e (N) for all n. Then I E,, e N for all n.

Proof. For each m there is a positive element T e N and an annihilating
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sequence {G()} of Tm such that G <_ E. Therefore for each m,
lim+ (I E,)G(,’’) 0. Also for each m, n >_ 1, there exists S. e B
such that S. Tm I G(,). Since N is a left ideal (I G()) e N for all
m, n. Then

II (I E,) (I E.)(I G(:)) II-+ 0

as n -+ , and since N is a closed left ideal, (I E) e N for all m >_ 1.
In order to relate closed left ideals in B to ideals in , we need the concept

of a closed ideal in .
DEFINITION 3.6. Au ideal 9E in is closed if whenever {E,} $ and

E, e for all n, then [E,] e .
THEOREM 3.7. If 9E is a closed proper ideal in , then L(gE) is a closed

proper left ideal of B. If N is a closed proper left ideal in B, then E(N) is a
closed proper ideal in .

Proof. Let 9E and N be as in the statement of the theorem. Then by
Lemma 3.2, L() is a proper left ideal of B, and by Lemma 3.4, (N) is a
proper ideal in . It remains to be shown that L()) and 9(N) are closed.
Assume that {Tin} is a sequence in L() and that T -+ T. Then

T* T e L() for all m and T T, --> T*T. We choose a projection E1 e 9
such that TT1 E1 < 1. Assume we have chosen projections Eke ,
1 <_ k <_ n, with the properties that

IIT*TkE[I < 1// and (I- E)Ek < l/k,

whenever 1 _< j <_ k. Let S+1 T,*+ T+ -t- - (I E). Then
S+1 e L(), and therefore there exists [F] e such that lim. S+1Fm 0.
By Lemma 2.6 (1),

lim *T,+ T,+)F 0 and lim. (I E)F 0

for 1 < k < n.
properties

Therefore we can choose a projection E,+I e 9 with the

I[ *T,+ T,+E,+ < 1In -t- 1 and (I E)E,+ < 1In + 1, 1 <_ <_ n.

By induction we define a sequence of projections {E,} which is admissible by
Since E. for all n and 9 is closed, [E,] 9. Further-the construction.

more,
TEn

E(T*T T*. T.)E. =+= E. T*. T. E.

<- [I T*T Y* T. !1 / --+ o
as n --+ +. This proves that T L().
Now assume that N is a proper closed left ideal of B. Assume

and E, (N) for all n. By Lemma 3.5, I E, e N for all n. Let

T ,- (1/2) (I E,).
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Since N is closed, T is a positive element in N. Let {F} e $ be an annihilating
sequence of T. Then by Lemma 2.6 (2), lim_, (I E,)F,, 0 for all m.
Therefore {F} <_ /E}. It follows by definition that [En] e (N). There-
fore i)(N) is closed.

THEOREM 3.8. If N is a proper closed left ideal of B, then N L((N) ).
If 9 is a proper closed ideal of , then 9 9(L(9) ).

Proof. Assume N is a proper closed left ideal of B. First assume
T e L(9(N)). Then there exists [E.] e 9(N) such that lim. TE,, O.
By Lemma3.5, I E. eNforalln. Then lIT T(I E) -cOns
n - o, which implies T e N. Conversely assume T e N. Then T*T N.
Let {E} be an annihilating sequence of T*T. By definition, [E.] e (N).
Then T*TE, ]1 --* 0 as n --* , and TE, II E, T*TE, II-* 0 as n --. .
Therefore T e L (gE(N)). This completes the proof that N L(gE(N)).
Now assume9 is a proper closed ideal of. If [E.] e 9, then (I E.) e L(9)

all n. Let T k+- (1/2)k(I E). By Theorem 3.7, L(9) is closed, so
that T e L (9). Let {F} be an annihilating sequence of T. Then by Lemma
2.6 (2), lim_. (I E,)F, 0 for all m. Therefore IF.} _< {E}. By defi-
nition [E.] e 9(L(9)). Conversely assume [E.] e 91Z(L(9)). Then there
exists a positive element T e L(9) and an annihilating sequence {F} of T
such that (F} <_ {E,}. Since T e L(), there exists [G.] e such that
lim TG, O. By Proposition 2.3 (2), G,} < {F,}. Therefore {G/ _<
{E.}, so that [E] e .
COROLLARY 3.9. 9E --* L(E) is a one-to-one order preserving map from the

set of all proper closed ideals of 3 onto the set of all proper closed left ideals of B.
COROLLARY 3.10. If N and M are two closed left ideals of B which contain

the same projections, then N M.

Proof. Assume N L(9) and M L(93Z) where 9 and 9 are ideals in. Assume T e N. Then there exists [E.] e such that lim. TE, O.
Also I E e N for all n. Then by hypothesis I E e M for all n. Then
since II T T(I E,) II-* O, T M. Thus N c M. By symmetry
McN.

4. The maximal left ideals of B
We assume throughout the remainder of the paper that B has property A.

It is well known that N is a maximal closed left ideal of B if and only if N is a
maximal left ideal of B. Using this we prove that i) is a maximal closed ideal
of if and only if 9 is a maximal ideal of . First assume that 9 is a maxi-
mal closed ideal of , and suppose that 93 c q where q is a proper ideal of
3. Suppose that q. Then is not closed, and therefore there exists
{E} e $, E e for all n, and [E] q. It follows that q contains a projection
E such that E 9E. But L(E) is a maximal left ideal of B by Corollary 3.9,
L(q) is a proper left ideal of B by Lemma 3.2, L(1)) c L(q), and I E e
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L(), I E L(). This is a contradiction which proves that .
Conversely assume that 9 is a maximal ideal of :E. Then L() is a proper
left ideal of B. Let N L(). 9(N) 9Z, and therefore (N) .
Finally is closed by Theorem 3.7. By this result and Corollary 3.9 we have
that N is a maximal left ideal of B if and only if N L() where is a
maximal ideal of . Now we characterize the maximal left ideals of B in
another fashion. We prove the following result.

THEOREM 4.1. Assume that N is a closed left ideal of B. Then the following
are equivalent:

(1) N is maximal.
(2) N L ( where 9 is a maximal ideal of .
(3) If E is a projection in B and E N, then there exists a projection F e N

such that E F is invertible in B.
We have already noted the equivalence of (1) and (2).

the proof of the theorem, we establish a lemma.
Before completing

LEMMA 4.2. Assume that is a proper ideal of and that a has the
property that a / b 0 for all b 9. Then there is a proper ideal
such that a and c .

Proof. Let be the set of all c e such that there exists b e with
a/ b

_
c. Clearly a e and 9 c . We verify that is a proper ideal of. First if c e g and c

_
d, then it is obvious that d

Then there exists e, f e such that a/k e

_
c and a/k f

___
d. Then

aA (eAr) (aA e) A (aAf) _< cad.
By the definition of , c/ d e . 0 since by hypothesis it is not true that
a/ b _< 0 for any b e 9. This completes the proof.
Now we complete the proof of Theorem 4.1. Assume (3) holds. N is

contained in some maximal left ideal M of B. Assume that E is a projection
in M. Then E e hr; for if not, there exists a projection F e N such that E W F
is invertible. Thus N and M contain the same projections. By Corollary
3.10, N M. Conversely assume that N L() where i) is a maximal
ideal of . Assume E N. Suppose that whenever [En]
is not invertible for all n. Then (I E) /k [E,] 0 by Theorem 2.8. By
Lemma 4.2, there is a proper ideai in 3 such that (I E) e and i) 09.
But this is impossible since is maximal and (I E) ;. Therefore there
exists an idempotent (I F) e 9r such that E - F is invertible. This proves
(3).

If B has an additional property that we now describe, then we can sharpen
the result in Theorem 4.1. We assume for the remainder of this section that
whenever E and F are projections in B, then E and F have a greatest lower
bound in B with respect to the usual ordering of projections (E < F means
EF E). We denote this glb as E n F. Any AW*-algebra has this addi-
tional property.
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DEFINITION 4.3. Let E and F be projections in B. Then F is a strong
complement of E if E n F 0 and E + F is invertible in B.

If F is a strong complement of E in B, then F is a complement of E in the
usual sense that E n F 0 and E u F I. However it is not difficult to find
examples of complements which are not strong complements.

LEMMA 4.4. Assume that E and F are projections and that E + F is in-
vertible in B. Let G E n F. Then (F G) is a strong complement of E.

Proof. First we verify that E n (F G) 0. For let J E n (F G).
J < E, J < F and therefore J < EnF G. Then J J(F G)
JF-- JG= J- JG. ThusJG=0. ThereforeJ JG=O. Now there
exists K e B such that K(E + F) I. Then

(K + KG)(E + (F-- G) I KG + KG + KG- KG I.

Therefore (F G) is a strong complement of E.
Now we have the following result.

THEOIEM 4.5. Assume that whenever E and F are projections in B, then
E n F exists in B. Assume that N is a proper closed left ideal of B. Then N is
a maximal left ideal of B if and only if whenever E is a projection in B and
E N, then E has a strong complement in N.

Proof. Assume that N is a maximal left ideal of B and E is a projection in
B such that E N. Then by Theorem 4.1 there exists F e N such that
E+FisinvertibleinB. LetG EnF. SinceFeNandGF G, then
G e N. Therefore F G N. Finally (F G) is a strong complement of E
by Lemma 4.4.

5. Central projections
We assume throughout this section that whenever E and F are projections

in B, then E and F have a greatest lower bound in B. A linear functional a

on B is a state of B if a(T) _> 0 for all positive elemelltS T in B and a(I) 1.
If is an extreme point of the convex set of all states of B, then a is a pure
state. Given a state , let

K, {Ve B (T*T) 0}.
K, is a closed left ideal of B and when a is a pure state, then K, is a maximal
left ideM of B by [1, Th6orme 2.9.5, p. 48].

It is a well-known theorem that when B is an AW*-algebra, then a projec-
tion E in B is central if and only if E has a unique complement; see [4, Theorem
70, p. 119]. Weprove a slightly more general form of this theorem.

TIEOREM 5.1. A projection E e B is a central projection if and only ifE has a
unique strong complement in B.

Proof. We prove the "if" direction of the theorem. By hypothesis the
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unique strong complement of E is I E. Assume that is any pure state.
K, is a maximal left ideal of B, and therefore by Theorem 4.5 either E e K,
or I E e K,. The generalized Cauchy-Schwartz inequality, [6, p. 213],
states that when R, S e B,

Therefore given any T e B we have,

and
a(ET(I E) [2 <_ a(E)a( T(I E) *T(I E)

a(ET(I E))[ <_ a((ET)(ET)*)a(I E).

But by the previous part of the proof either a(E) 0 or a(I E) O.
In either case a(ET(I E)) O. This proves that for an arbitrary pure
state a of B, a(ET(I E)) O. Since the pure states of B separate the
elements of B by the remarks in [2, p. 112], then ET(I E) 0. A similar
proof shows that (I E) TE O. Therefore ET ETE TE which proves
the theorem.

6. The null space of a pure state and an application
Assume that a is a pure state of B and let be the unique maximal ideal

of such that K L(1)). We define N() to be the set of all T e B with
the property that there exists [E] e i) such that E TE, -* O. It is not
difficult to verify that N(gr) is a proper subspace of B. Note that
L (1)) + (L())* c N(). It is a result of R. V. Kadison [1, Proposition
2.9.1, p. 46] that a-l(O) K, (K,)* for a a pure state. Therefore
a-l(0) N(r). If T e B, then T a(T)I e N(), and therefore there
exists [E] e 9r such that E TE, a(T)E, --* 0. We state these results
as a lemma.

LEMMA 6.1. Assume that a is a pure state of B and K, L(), a maxi-
mal ideal of 3. Then a-(O) N(9) and for any T e B, there exists [E] e 9
such that II E, TE a(T)E, II O.
We apply this result to the question of when a pure state of a subalgebra of

B has a unique extension to a pure state of B. Let B0 be a closed *-subalgebra
of B which contains I and such that B0 has property A. Let 0 be the set of
all equivalence classes of admissible sequences of projections in B0. Assume
that a0 is a pure state of B0, and let 0 be the unique maximal ideal of 0
such that L(90) K,o
THEOREM 6.2. ao has a unique extension to a pure state of B if and only if

given any T e B, there exists a scalar and [E] e i)0 such that

E, TE, hE, 11- 0.

Proof. Assume that given any T e B there exists a scalar and [E] e 0
such that E, TE, E -- 0. Let a be any state of B which extends
a0. Let T e B, and assume h and [E.] are as given in the previous hypothesis.



Since E. e o for all n, then a(I E.) ao(I E.) 0 for all n. We
write T as

T E, TE, -t- E, T(I E,) -t’- (I E,,)T.

By the general Cauchy-Schwarz inequality,

a(E, T(I E,)) ((I E,)T) O.

Therefore (T) (E, TE,) for all n. Then

in(T) ,1 [a(E, TE, E,)

_
TE, E,, II-’* O.

This proves that any state a of B which extends a0 takes the values k at T.
It follows that ao has a unique extension to a state a of B. a must be a pure
state of B by [1, Lemma 2.10.1, p. 50].

Conversely assume that ao has a unique extension to a pure state a of B.
Let Lo be the set of all T B with the property that there exists [E,] 0
such that II TE, -’* O. Lo is a closed left ideal of B by the proof of Theorem
3.7. Suppose L0 were not a maximal left ideal of B. Then by [1, Thdorme
2.9.5, p. 48] there exist maximal left ideals of B, L and L, such that Lo L,
Lo L, andL L. By this same Theorem there exist corresponding pure
states a and a. of B such that K, L and K,: L. Assume T Bo.
Then there exists [E,] 90 such that

E, TE ao( T)E, "-* 0 (Lemma 6.1).

SinceL0 L andLo L, thena(E) a(E,) I for alln. Bythe same
argument as used in the first paragraph of the proof it follows that a(T)
a0(T) and a(T) no(T). Therefore a and a. extend ao which is a contra-
diction. It follows that Lo is a maximal left ideal and K: L0. Therefore
a-(0) Lo + (L0)*. Then by the definition of L0, given any T B there
exists [E,] o such that

E, TE, a( T)E, "- O.

This completes the proof of the theorem.
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