ON FINITE SOLVABLE LINEAR GROUPS

DAVID L. WINTER

Introduction

The following theorem of N. Itô [3] is well known.

Let G be a finite solvable group and let p be a prime. Let G have a faithful representation of degree n over the complex number field. If n < p, then G has a normal abelian p-Sylow subgroup unless p is odd, n = p - 1 and p is a Fermat prime.

We shall prove here the following generalization.

Theorem. Let G be a finite solvable group, p a prime. Let G have a faithful irreducible representation of degree n over the complex number field. Then G has an abelian normal p-Sylow subgroup unless, for some positive integer m, n=mp or $n=mq^*$ where q^* is a positive power of a prime with $q^*\equiv \pm 1 \pmod{p}$.

The theorem is "best possible" in the sense that for each of the exceptional values of n mentioned there is a finite solvable group which has a faithful irreducible representation of degree n over the field of complex numbers and which does not have a normal p-Sylow subgroup (§2). The proof of the theorem is not applicable to p-solvable groups as is the proof given by Itô for his theorem and leaves open the question as to whether or not there is an analogue for p-solvable groups. The reader is referred to [1] for another kind of generalization of Itô's theorem. We shall make frequent use of the following statement which is a well known consequence of Clifford's theorem and the Frobenius reciprocity theorem.

Lemma. Let H be a normal subgroup of prime index p of the finite group G and let θ be an irreducible complex character of H with inertia group $I(\theta)$ in G. If $I(\theta) = H$, then the induced character θ^* is an irreducible character of G and is the only irreducible character of G whose restriction to G contains G and is a sum of G distinct conjugate characters of G. If G is G then there are G distinct characters of G which are extensions of G and these are the only irreducible characters of G whose restriction to G contains G.

1. Proof of the theorem

Let G be a counterexample to the theorem of minimal order. A contradiction is obtained after a series of steps. Let χ denote the given faithful irreducible character of G.

Received January 20, 1969.

(I) Let H be a proper subgroup of G such that the degree of each irreducible constituent of $\chi \mid H$ is neither a multiple of p nor a multiple of any prime power $q^s > 1$ with $q^s \equiv \pm 1 \pmod{p}$. Then H has a normal abelian p-Sylow subgroup.

Proof. Let χ_1, \dots, χ_t be the irreducible constituents of $\chi \mid H$ and let their kernels be K_1, \dots, K_t . By minimality of the order $\mid G \mid$ of $G, H/K_i$ has a normal abelian p-Sylow subgroup for all i. Therefore

$$H \cong H/(K_1 \cap \cdots \cap K_t)$$

has a normal abelian p-Sylow subgroup because the latter group is isomorphic to a subgroup of the direct product of the groups H/K_i , $i = 1, \dots, t$.

(II) If H is a proper normal subgroup of G, then H has a normal abelian p-Sylow subgroup.

Proof. It follows from Clifford's theorem that all irreducible constituents of $\chi \mid H$ have the same degree z. Since $\chi(1)$ is not a multiple of p and not a multiple of q^s for any prime power $q^s \equiv \pm 1 \pmod{p}$, $q^s > 1$, the same is true of z and (II) follows from (I).

As an easy consequence we have

(III) A proper normal subgroup of G cannot contain a Sylow p-subgroup of G.

Now let P_0 be the maximal normal p-subgroup of G. All irreducible constituents of $\chi \mid P_0$ have the same degree which is a power of p but not a multiple of p; hence $\chi \mid P_0$ is a sum of linear characters and P_0 must be abelian. Let N/P_0 be the maximal normal subgroup of G/P_0 which has order prime to p and P_1/N be the maximal normal p-subgroup of G/N. It then follows from (II) that $P_1 = G$ for otherwise the definition of P_0 would be contradicted. For the same reason we have $|P_1:N|=p$. We write G=PN where P is a Sylow p-subgroup of P_0 and $P:P_0|=p$. Notice that P_0 is irreducible for otherwise P_0 is the lemma.

(IV) $P_0 \leq Z(G)$ where Z(G) is the center of G.

Proof. Suppose (IV) is false. Let M be a normal subgroup of G such that $P_0 \leq M$ and N/M is a chief factor of G. By Clifford's theorem, $\chi \mid M = e \sum_{i=1}^r \theta_i$ where e is a positive integer and $\theta_1, \dots, \theta_r$ are distinct irreducible characters of M conjugate in G. They are also conjugate in N since $\chi \mid N$ is irreducible.

Suppose r=1 and $\chi \mid M=e\theta_1$. Then by the lemma all irreducible constituents of $\chi \mid PM$ are extensions of θ_1 . (I) now implies that P is abelian. Hence $P \leq C(P_0) \iff G$ where $C(P_0)$ is the centralizer of P_0 in G. This contradicts (III) and therefore r > 1.

Since $p \nmid r$, $P \leq I(\theta_1)$, replacing θ_1 by a suitable conjugate if necessary. Therefore P normalizes $I(\theta_1) \cap N$ and since N/M is abelian, N normalizes it also. Thus $I(\theta_1) \cap N \triangleleft G$. Since N/M is a chief factor of G, $I(\theta_1) \cap N$ is

M or N. The latter is impossible since $|N:I(\theta_1) \cap N| = r > 1$. Therefore $I(\theta_1) \cap N = M$ and $\theta_1^N = \chi \mid N$ where θ_1^N is the character of N induced by θ_1 . Hence $\chi(1) = |N:M| \theta_1(1) = q^s\theta_1(1)$ for some prime $q \neq p$.

Let F denote the subgroup, $M \leq F \leq N$ such that F/M is the set of fixed points of N/M under the action of PM/M. Then $F \triangleleft G$ and so F = M or F = N. If F = N, then $G/M = (PM/M) \times (N/M)$ and PM is a proper normal subgroup of G contradicting (III). Therefore PM/M acts fixed-point-free on N/M. Hence $q^s \equiv 1 \pmod{p}$. (IV) is now proved.

(V)
$$P_0 = \langle 1 \rangle$$
, $G = PN$, $|P| = p$, $p \nmid |N|$.

Proof. Since $P_0 \leq Z(G)$, Burnside's transfer theorem yields that N has a normal p-complement N_1 which is also a normal p-complement of G. $\chi \mid P_0 = \chi(1)\lambda$ where λ is a linear character of P_0 . Also $\chi \mid P$ contains a linear character μ since $p \not\mid \chi(1)$. Then $\mu \mid P_0 = \lambda$. Further we may consider μ as a character of G/N_1 . Then μ_X is a faithful, irreducible character of G/P_0 having the same degree as χ . If $P_0 \neq \langle 1 \rangle$, minimality of |G| yields $P \triangleleft G$ and then P is abelian since $\chi \mid P$ is a sum of linear characters. This proves (V).

Now let $\langle 1 \rangle \leq M < N < PN = G$ be a series of subgroups of G such that N/M is a chief factor of G. Then $|N:M| = q^t$ for some prime q and $q^t \equiv 1 \pmod{p}$ since P acts fixed-point-free on N/M. Let $\chi \mid M = e \sum_{i=1}^r \theta_i$ be the Clifford decomposition, $r \geq 1$. Since $p \nmid r$, we again obtain $I(\theta_1) \cap N \leq G$ and $I(\theta_1) \cap N = M$ or N.

If $I(\theta_1) \cap N = M$, then $\theta_1^N = \chi \mid N$ and $q^t \mid \chi(1)$. So we may assume $I(\theta_1) \cap N = N$. Then $\chi \mid M = e\theta_1$ and by the lemma all irreducible constituents of $\chi \mid PM$ are extensions of θ_1 . By (I), $P \triangleleft PM$. Since $P \cap M = \langle 1 \rangle$, $P \leq C(M) \triangleleft G$. By (III), C(M) = G and it follows that M = Z(G). Let Q be a Sylow q-subgroup of N and let Z_1 be the normal q-complement of Z(G). Then $G = PQ \times Z_1$ and by (III), G = PQ, $Z_1 = \langle 1 \rangle$, N = Q and $M = Z(G) \leq Z(Q)$. Since $\chi \mid Q$ is irreducible, Q is non-abelian. Since Z(Q) is invariant under P, we must have Z(G) = Z(Q) = M. In particular, Z(Q) is cyclic. If $Q' \leq_{\neq} Z(Q)$, a transfer theorem ([4], page 173) yields that G/Q' has a normal subgroup of index q which is not the case. Therefore Q' = Z(Q) and Q/Q' is elementary abelian. It follows [2] that Q is extraspecial, $Q \in Z(Q)$ and Q/Q' is elementary abelian. It follows $Q \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q' \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q' \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q' \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q' \in Z(Q)$ has degree $Q' \in Z(Q)$ and Q'(Q') is elementary abelian. It follows $Q' \in Z(Q)$ has degree $Q' \in Z(Q)$ has a contradiction. The proof of the theorem is complete.

2. Exceptional cases

We first show that if H is a solvable group which does not have a normal p-Sylow subgroup and which has a faithful irreducible complex character of degree z, then for each m, there is a finite solvable group G which does not have a normal p-Sylow subgroup and which has a faithful irreducible complex

character of degree mz. For, let

$$G = \langle y \rangle (H_1 \times \cdots \times H_m)$$

where each H_i is an isomorphic copy of H and where y is an element of order m which permutes the H_i cyclically. Let λ be the given character of H_1 considered as a character of

$$H_1 \times \cdots \times H_m/H_2 \times \cdots \times H_m$$
.

Then the induced character λ^* is a faithful, irreducible character of G of degree mz as desired.

First let r be a prime different from p and let R_i be a group of order r, $i = 1, \dots, p$. Adjoin to $R_1 \times \dots \times R_p$ an element w of order p which permutes the R_i cyclically and let $H = \langle w \rangle (R_1 \times \dots \times R_p)$. Let λ be a faithful linear character of

$$R_1 \times \cdots \times R_p / R_2 \times \cdots \times R_p$$
.

Then λ^* is a faithful irreducible character of H of degree p and H is solvable but does not have a normal p-Sylow subgroup.

Next let q be a prime different from p and s a positive integer such that $q^s \equiv \pm 1 \pmod{p}$. Then it may be verified that there is an extraspecial q-group Q of order q^{2s+1} which has an automorphism α of order p which acts trivially on Z(Q). Let θ be a non-linear irreducible complex character of Q. Then $[2] \theta(1) = q^s$ and it follows from $\sum_{Q} |\theta|^2 = |Q|$ that θ vanishes outside of Z(Q) and is faithful. Hence α fixes θ and by the lemma, θ has an extension to an irreducible character of the semidirect product $H = \langle \alpha \rangle Q$. Therefore H has a faithful irreducible complex character of degree q^s and does not have a normal p-Sylow subgroup.

REFERENCES

- J. D. Dixon, Normal p-subgroups of solvable linear groups, J. Austral. Math. Soc., vol. 7 (1967), pp. 545-551.
- 2. B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
- 3. N. Itô, On a theorem of H. F. Blichfeldt, Nagoya Math. J., vol. 5 (1954), pp. 75-77.
- 4. H. Zassenhaus, The theory of groups, Chelsea, New York, 1958.

MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN