FIRST COHOMOLOGY GROUPS OF SOME LINEAR GROUPS
OVER FIELDS OF CHARACTERISTIC TWO

BY
HARRIET POLLATSEK!

Introduction

A derivation (or crossed homomorphism) from a group G to a left (resp.
right) G-module V is a map § : G — V such that § (ST') = S(87T) + 6S (resp.
0(ST) = (BS)T + 8T) for all S, T ¢ G. An <nner derivation (or principal
crossed homomorphism) from @ to a left (resp. right) G-module V is a deriva-
tion § : G — V for which there exists an element v ¢ V with 67 = Ty — vy
(resp. 8T = vy T — vy) for all T ¢ G. The derivations from G to a (right or
left) G-module V form an abelian group Der (G, V') under point-wise addition,
and the inner derivations form a subgroup, Inn (G, V). If V is a K-space,
then Der (G, V) can be regarded as a K-space in the natural way. Inn (G, V)
is then also a K-space, and so

Der (G, V)/Inn (G, V) = H'(G, V),

the first cohomology group of G with coefficients in V [14, p. 130-131].

In this paper we use the representation of H' (G, V) as Der (G, V)/Inn (G, V)
to compute the K-dimension of H' (G, V) for certain linear groups G over K
and their standard modules V. In particular, we compute H (G, V) for
G = Sps, (K) withn > 2 and K either of odd characteristic or perfect of char-
acteristic two, and for G = 0., (K) with n > 2 and K perfect of characteristic
two. In addition, viewing S, as a linear group on the (n — 1)- (or (n — 2)-)
dimensional Fy-space V forn odd (or even), we compute H' (S, , V) forn > 5.
Each of these cohomology groups is found to have K-dimension at most one.

1. Preliminaries

In this section we collect some of the basic definitions and results on sym-
plectic and orthogonal groups over perfect fields of characteristic two that will
be used throughout this paper.

First a few remarks on notation and language. We will use G, G(V),
G.(K) and G (F) interchangeably to name the group G of transformations on
the n-dimensional K-space V that preserve the form F on V, or to name the
corresponding matrix group. We will also denote linear transformations and
their matrix representations (and vectors and their representations as n-
tuples) by the same symbol. A iransvection T is a linear transformation such
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that the image Im (T" — 1) of T — 1 is a line, and the kernel Ker (T — 1)
of T — lis a hyperplane. If T is a transvection, we will say that Im (T — 1)
is the center of T and Ker (' — 1) is its axzés. The symplectic transvections
T on V are of the form Tv = v + B (x,v)x for allv e V, where x ¢ V is arbitrary.
The orthogonal transvections 7 are all of the form Tv = v + B(x, v)x for all
v, where Q (z) = 1.

TuroreMm 1.1. The symplectic group Sp (V') is generated by the subgroups
Soy and Sy , wherex, y e V is a hyperbolic pasr and Sy = {TeSp (V) : Tx =«
and Tz = Z for all Z € {x) */ (x)}.

Proof. Arguing as in [16, Lemma 4, p. 194], we have that H = (S(,) , S))
is transitive on the lines of V, and hence that S,y < H forallve V. There-
fore H contains every symplectic transvection and so [2, Theorem 3.25, p. 139 ]
equals Sp (V).

TrEOREM 1.2. Suppose V.= U @ W, where U, W < V are totally isotropic.
Then Sp (V) = (Sp(V)v, Sp (V)w).

Proof. 1If the dimension of Vis 2, Sp (V) = SL(V), and the result is clear.
Suppose the dimension 2n of V is at least 4, and assume 1.2 is true for spaces of
dimension less than 2n. Let H = (Sp (V)v, Sp(V)w). Choose a hyperbolic
pairz, ywithze Uandye W. For T eSp(V),, T = RS for suitable R ¢ &Sz
< Sp(V)y and 8 fixing (x, y) point-wise. By the induction hypothesis,
S ¢ H. Hence Sp(V), < H. Similarly Sp(V), < H. Therefore, by 1.1,
H = Sp(V).

The map @ : V — K is a quadratic form on V if
Qaz + By) = Q) + AQW) + BB (x, y)

forallz, y e V, a, 8 ¢ K, where B is a bilinear form on V. We will say B is
assoctated with Q, @ is associated with B. If the characteristic of K is 2, the
form B determined by @ is alternate. From this point, we will consider only
fields of characteristic 2, unless we explicitly say otherwise. We will further
restrict our attention to those quadratic forms @ for which B is non-degenerate,
unless we specify otherwise, so that O (@) < Sp(B).

We denote the ndex of the form @ by »(Q) or »(V'). Since the index of a
quadratic form on a 2n-dimensional space over a perfect field isn orn — 1
[4, Theorem 1.3.2, p. 13], for K perfect we write O (+1, K) or O (41, V) for
the group of a form of maximal index, and O (—1, K) or O(—1, V) for the
group of a form of non-maximal index.

TarEOorREM 1.3. O (Q) ¢s primitive in its action on the singular lines of V, its
standard module.

Proof. The theorem is trivial if the dimension 2n of V is 2. Forn > 2
we will show that O is of rank 3 in its action on the singular lines of V. Choose
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a hyperbolic pair of singular vectors z, y ¢ V. Consider O, acting on I' (z),
the set of singular lines off (z)*. Choose (2) ¢ I'(z) and assume B(z, z) = 1.

The map T : (z, y) — (x, 2) defined by Tz = z and Ty = zisa Q-isomorphism
and, by Witt’s theorem [4, Theorem 1.4.1, p. 16], may be extended to an ele-
ment of Oy . Hence O,y is transitive on T (x).

Let A (x) be the set of singular lines > (x) on {(x)*. By Witt’s theorem, for
(v), (u) € A(x) such that (v,) (u) < (z,y)", there exists T e O ((z, y)™) taking v to
u. T may be extended to an element of O, by defining Tx = z, Ty = .
If {ax + u), (V) € A(x), with u, v € (x, ¥)* and @ 5= 0, then since u is singular,
Witt’s theorem implies that there is a T ¢ O ({z, y)*) taking » to 4. Define
A e Oy by Az = ax, As = aB(Ts, w)x + Ts for s ¢ (z, y)*, and
Ay = aQ(w)x + w + (1/a)y, where w e (z, )" is such that B (u, w) = 1.
Then AQ) = {(ax + u). Hence Oy, is transitive on A(z).

Now suppose a set I of singular lines is a set of imprimitivity for 0. Since
O is of rank 3 on the singular lines, for every (v) e I, I n A(w) = @ or A(v) and
InT@w) = @orT'(w). Choose (x) e I. Suppose I n A(z) = A(x) (so
v(Q) > 2). Then for 2) e A(x), I n A(z) # @, and so A(z) & I. Since
(x) # (&), (®)* # (&)*. Choose (') < (&)*, £ (x)*. Assume B(z,y') = 1,
andlety =y + Q¥ )z. Then(y)eInT(x),soT (x) & I, and I contains all
the singular lines of V. Suppose, on the other hand, that I n T'(z) = I'(z).
Let &) eT'(x). ThenT() & I. Ifn = 2and »(Q) = 1, then A(z) = §,
and we are done. Assume »(Q) > 2, and choose a singular (u) € (x, y)*.
Then (u + 2) e I'(x) & I, and so (4 + 2z)e I n A(z). Hence again I contains
all singular lines.

We remark that for z e V singular, 0 (V' ),y is a maximal parabolic subgroup.
Thus O (V), and so O (V), is primitive on the singular lines of V (see the
proof of 1.12).

TueoreEMm 1.4. Let K be perfect. Let x in the K-space V be singular, and let
T be the transvection taking v ¢ V to v + B(v, z)x. Then if 0 = O(V),
0 n OT = Ox .

Proof. If 8 € O,, then for v e V, TSTy = Sv, and S ¢ O n O”; thus 0, <
0nO". If K = F, (the field of two elements), O, is maximal in O by 1.3, and
we are done. So assume K # F,. Let S ¢ O n O7; then

Q(T8Tv) = Q) + B(Sv, z)* + B(v, 2)" + B, 2)'B(Sz, 2)" = Q(v),

and hence

B(Sv, z)" = B(v,z)*(1 + B(Sz, )")
forallve V. Ifoe(x)*, we see Sv e (x)*. Suppose y is chosen singular with
B(z, y) = 1, and suppose Sz = ax + u, with u € {z, y)*. If w e (z, y)*,
Sw = B(w)xr + Tw with (w) e K and T e 0((z, y)*). Thus0 = B(z, w) =
B(Sz, Sw) = B(Tw, u) for all w e {x, y)*;s0u = 0, S € O(zy and

Q(TSTv) = Q) + B(Sv, z)’ + B(v, x).
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Hence B(v, S 'z + ) = Oforallve V,and Se0,. ThereforeOn0” < 0,.

Tueorem 1.5. If v(Q) > 1, B is associated with Q, and K s perfect, then
0 (Q) s maximal in Sp (B).

Proof. TFirst we show that, for T' ¢ Sp (B), if T' () is singular whenever z is
singular, then 7¢O (@). Since K is perfect, it suffices to show that Q@ (Tz) = 1
whenever @ (z) = 1. Choosez e V with @ (z) = 1. The theorem is trivial if
0(Q) = 0y(+1, F,), for then O (Q) is of order 2 and Sp (B) is of order 6. Ex-
cluding this case, O(Q) is irreducible [4, Theorem 1.6.7, p. 33], so there are
singular vectors off (x)*. Choose y singular such that B(z, y) = 1. Then
x + yis singular, 800 = Q(Tz 4+ Ty) = Q(Tz) + 1, and Q(Tx) = 1.

Now we show thatif T e Sp(B), T ¢0(Q), then (0(Q), T) = Sp(B). Let
G ={0@), T). Since T ¢ O(Q), there is a singular z such that Tz is non-
singular. O (Q) contains a transvection with center (Tx), so G contains a
transvection with center (x). O(Q) is transitive on the singular vetors, so
G contains all symplectic transvections with singular centers. Since G thus
contains all the symplectic transvections with center (x), G contains all those
with center (Tz). K is perfect, so Q takes all values in K* (= K — {0}) on
(Tz). Foreach a ¢ K, O(Q) is transitive on the set of v ¢ V with @ (v) = o
Hence G also contains every symplectic transvection having a non-singular
center. Since Sp (B) is generated by the symplectic transvections, G = Sp (B).

TuroreM 1.6. Let K be a perfect field, and let B and Q be assoctated forms on
the K-space V. Define a map u: Sp (B) — V by
B (T), Tv) = v/Q(Tv) + Q@) forallv eV, for T ¢ Sp (B).

Then (1) u1s a derivation; (i) w(T) = 0¢f and only if T ¢ O (Q); (iii) for T the
transvection taking v € V to v + B(x, v)x, u(T) = V1 + Q@) x; and (iv)
X? 4+ X = Q(T)) has a solution in K for every T ¢ Sp (B).

Proof. (i), (ii) and (iii) are easily verified. By (iii), for a transvection T'
taking v ¢ V to v + B(z, v)z, Qu(T)) = Q@) + Q(z). Suppose for T,
SeSpB),Qu(T)) = & + aand Qu(S)) = 8* + B, with o, e K. Then

Q(TS)) = v+ v fory = VQ(Tu(S) + B + 2 ¢ K.

Since Sp (B) is generated by transvections, we see that X* + X = Q (u(T))
has a solution in K for every T e Sp(B).

TueoreM 1.7 Let K be a perfect field, and let x, y be a hyperbolic pair of
non-singular vectors with Q (x) = 1. Then a symplectic transformation A is
in 0 (Q)w if and only if Ax = x, Av = B(Tv, w(T))x + Tv for all v e {z, y)*,
and Ay = ax + u(T) + y, where T € Sp ({z, y)*), w is defined as in 1.6, and o
is a solution in K of X* + X = Qu(T)).

Proof. Clearly A ¢ Sp (B)(s) if and only if Az = Bz, Av = BB (T, u)x + Tv
for all v e (z, y)*, and Ay = ax + u + (1/8)y, with T ¢ Sp({z, y)*), a € K,
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BeK* AeSp(B)isa Q-isometryif andonlyif 8 = 1,a* + a = Q(u) and
u = u(T). Forsuchan A ¢0(Q)w), write A = A(T, a).

We remark further that for every T ¢ Sp ((x, ¥)*), there are two elements,
A(T, a) and A(T, @ + 1) in O, .

TaeorEM 1.8. Letn > 3, let K be a perfect field, and let O = 0y (K). Then
for x, y a hyperbolic pair of non-singular vectors O = (O , Oy).

Proof. Clearly O, contains all the orthogonal transvections centered in
(x)*. Suppose (u) is a non-singular line off both (z)* and (y)*. Then we may
assume v = & + v + By, with v € (z, y)* and B ¢ K*. If v # 0, then since
O ({x, y)*) is irreducible, there is a singular vector w e (x, y)*, ¢ (v)*; say
B, w) = 1. Let T be the transvection in Sp ((z,)*) taking se{x, y)* tos +
B(s,w)w. Then u(T) = wby 16,and Tv = w + v. Let A = A(T, 0).
Then

Au=v+ B+ Dw+ye™
If w = 2 + By, choose T ¢ Sp ({x, y)*), T ¢ O ({z, y)*), and let A = A(T, ).
Then
Au = (a8 + 1)z + Bu(T) + By.

If Au ¢ (y)*, proceed as above to obtain an A’ e O,y such that A'Au e (y)*.
Thus for u non-singular off (x)* and off (y)*, there is an A e O, such that
Au e {y)*. Oy contains the orthogonal transvection with center (Au), so
{O(zy , O¢yy) contains the orthogonal transvection with center (). Thus (O,
O(,) contains every orthogonal transvection. Since O is generated by the
orthogonal transvections [8, Proposition 14, p. 42], 0 = (O, Oyy).

TaeorEM 1.9. Supposen > 2. Then O = 03 (Q) = (O, Owy) for , y
a hyperbolic pair of singular vectors.

Proof. By 1.3, Oy and Oy, are maximal subgroups of 0. Since n > 2,
Oy # Oy, 50 0 = (Ow), Ow)).

LemMA. Let K be an arbitrary field, and let V be a K-space with a bilinear
form B. Letxy, - - - , % be linearly independent vectors in V, and let T'; be defined
by

T:) =v+ B, v)xs forallveV,i=1, -+ k.
Then Ty -+~ Tr v = v if and only if v e N¥oy ()™

Proof. Let T = Ty --- Tx. Obviously if v € Ni-y (z:)*, then Tv = o.
We will prove the converse by induction on k. If k = 1, it is clear. Suppose
k > 1 and assume the lemma is true for fewer than k vectors ;. Forve V,

Tz e Tk V=10 + Z’:—z o for some a; k.
Thus
To = v + B(w1, v)21 + D5 i (@i + B(®i, m1)m1).

If Tv = v, the linear independence of the x; implies a; = 0 for¢ = 2, -+ | k.
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But then T - -+ Tw = v, and the induction hypothesis implies v ¢ Nfuy (z:)*;
so T1v = v and v e (x1)" as well.

TuroreEm 1.10. Let K be a perfect field (of characteristic two). If
0 = 0 (K) # 0:(+1, Fy), then there exists T € O such that T + 1 is non-singu-
lar.

Proof. O is irreducible, so (x ¢ V : Q(xz) = 1) must be V. Hence V has a
basisz;, - -+ , L, WithQ (z;) = 1fore=1,---,2n, DefineT;,i=1,..-,2n,
asin the lemma, andlet T = Ty - - - Ta,. Then since N2z, {x;)* = 0, T hasno
non-zero fixed points, and so 7 4 1 is non-singular.

CoroLrLarY. For K a perfect field, if 6 : Sp (V) — V 18 a non-zero derivation
such that 8 | O (V) = 0,0 = 0,(+1, Fy), then 8 is non-inner. In particular,
the deriation u defined in 1.6 1s non-inner.

Let C (Q) denote the Clifford algebra of the quadratic form @, and C*(Q) its
even subalgebra. The elements of O(Q) induce automorphisms of C*(Q)
and so of its center, Z. For T ¢ O (Q), write D (T') for the automorphism of Z
induced by T. Z has a K-basis consisting of 1 and zg ;here ® = {xy, - - - , %o}
is a symplectic basis of V with B (z; , 2;) = 8jen—it1 (6 = 1if r = s,and é,, = 0
otherwise) and g = €1 %an + * * + + Ty Tuqa [4, Theorem 11.2.3, p. 44 ]. 2 satis-
fies 25 + 2a = Ag(Q), where the pseudo-discriminant

Ag (Q) = Z?-l Q (xt)Q (wzn_iﬂ).

Let 2 € V be non-singular, and let T be the orthogonal transvection defined by
Ty =v+ (1/Q(x))B(x,v)x for allv e V. Complete  to a symplectic basis
® as above, with * = z;. Then D(T)2g = 25 + 1, and so D is a homo-
morphism of O (@) onto the group of automorphisms of Z over K. Therefore,
if 2z is any generator for Z over K of the form zg for some symplectic basis ®,
and if T' is any element of O (Q), D (T')(¢) = 2z + d(T'), where d(T') = Oor 1
according as T e Ker D or not. The rotation subgroup 0% (Q) < 0(Q) is de-
fined tobe Ker D (or Kerd). The map dis the Dickson Invariant;itis a homo-
morphism from O (Q) into the additive group of K.

For B associated with @, the elements of Sp (B) not in O (Q) do not induce
automorphisms of C(Q). However, for T ¢ Sp(B) and for any symplectic
basis ®, zrg is an element of Z, 80 zrq = azg + B for some a, 8¢ K. From the
relation 25 + 2g = Ag(Q) we obtain

oo + B+ azg + B = Arg(Q) € K;

hence o = e and & = 1. Then 2,4 = 2¢ + 8. For T ¢ 0(Q), Dieudonné
[9] extends d to Sp (B), defining d(T') = 276 + 26 . However, this definition
depends on the choice of the basis ® as well as on the choice of @. Writing
da to denote this dependence, dg (ST) = dea(S) + da(T) for T, S ¢ Sp (B).
When Sp (B) is simple, d cannot be a homomorphism, hence drg (S) must be
different from dg (S) for some T' e Sp (B). If Sp(B) = Sp2(Fs) or Sp.(F:)
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and @ has non-maximal index, a direct computation shows that there exists
T ¢ Sp (B) such that dg(T") depends on the choice of ®.

Let K be perfect, and let B, and @, be associated forms on the K-space U.
Form the K-space V = U @ W, where W is a 2-dimensional K-space with as-
sociated forms B; and @». Then a qudaratic form @ and its associated bilinear
form B can be defined on beQI U= Ql,Q| W = @Q., and B(u, w) = 0 for
ue U, weW. Choose a hyperbolic pair of non-singular vectors z, y ¢ W and
assume Q(z) = 1. By 1.7, A ¢ Oy has the form Az = z, Av =
B (T), Tv)x + Tvforallve U and Ay = ax 4+ u(T) + y, where T e Sp (By),
u : Sp(Bi) — U is the derivation defined in 1.6, and «a ¢ K is a solution of
X4+ X = Q(T)). Write A = A(T, a).

Let T be the transvection takingve V tov + B(z,v)z. If dis the Dickson
Invariant on 0(Q), d(Ty) = 1. Now To A(T, a) = A(T, @ + 1), so, since
d is a homomorphism, A (T, &) ¢ 01 (Q) if and only if A (T, a + 1) ¢ 0T (Q).
That is, the subgroup O" (Q)(zy contains exactly one element A (T, a) for each
T ¢ Sp(B1). Thus we have defined a function a : Sp(B1) = Kby a(T) =«
if A(T, @) e0" (@) -

Suppose T €0 (Q1). Choose a symplectic basis ®; for Uand complete ®, with
x, y to a symplectic basis @ for V. Then

D(A(T, a))ze = z(ax + y) + D(T)ze, = o + ay + 28, + di(T)
a+ di(T) + 2a,

where d; is the Dickson Invariant on 0(Q:). If A(T, @) ¢ 07 (Q), then
A(T, a) e Ker D, and & = di(T). But for A(T, a) e 07(Q), & = a(T).
Thus for T € O (@,), a(T) = di(T), and a extends the Dickson Invariant on

0(Q:) to Sp(By). Although this extension depends on the choice of the quad-
ratic form @, it is independent of the choice of the basis ®; .

TaeoreM 1.11.  Let Q be a quadratic form on the K-space V for K a perfect
field. Let x,y € V be a hyperbolic pair of non-singular vectors with Q (x) = 1.
Then if V is of dimension at least 4, the linear transformation A ¢ 0% (Q)(z) if
and only if Ax = x, Av = B(T), Tv)x 4+ Tv for all v € (z, y)*, and
Ay = a(T)x + u(T) + y, where T ¢ Sp {z, y)*), u is defined as in 1.6, and a is
defined as above. If T € O ((z, y)*), a(T) = d(T), where d is the Dickson In-
variant on O ((x, y)*).

TrEOREM 1.12. Let Q be of maximal index on the Fao-space V of dimension
o2n > 4. Let V = U ® W with U, W totally singular. Then

0" (V) = 0V, 0(V)w).

Proof. TFirst we will show that Oy, Ow < 0. Choose bases u1, * -+ , Un
and wy, -+, w, of U and W respectively such that B (u;, w;) = 8,74, j =
1,---,n For X e Hom (U, U) and X’ e Hom (W, W), define T' (X, X') on
Vby T(X,X')u = Xuand T(X, X')w = X'wforallue U, we W. Then
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T(X,X') e Sp(B) if and only if X’ = X" for X ¢ GL, (F;). Write T'(X) =
T(X,X™). ForY ¢ Hom (W, U), define S(Y) on V by S(Y)u = u and
SY)w=Yw -+ wforallueU,weW. Then S(Y) ¢ Sp(B) if and only if
Y = Y'. Clearly T(X) e O (V) for every X ¢ GL,(F;), and S(Y) ¢ O (V) if
and only if Y is alternate. Thus we see that Oy is generated by the elements
T(X) and S(Y) for X ¢ GL,(F;) and Y alternate, n X n.

Let ® = {us, +++, Un, W, *++, Ws}, and define 25 as above. Let

Sii=S(Eij+Eﬁ)) i?éj>7:;j=1,“')n’

where E,, is the n X n matrix having a 1 in the intersection of the r-th row and
the s-th column, and all other entries zero. Then we see that S;; 26 = 2g, S0
Si;e0F, 435,45 =1,---,n Since S(Y)S(Y’") = S(Y + Y’), and since
the Eij + Eji, i1 # j,%,7 = 1, -+, n generate the alternate n X n matrices
additively, S(Y) ¢ OT for every alternate n X n Y.

Let X be a transvection in GL(U) with center {(z), and choose (y) so that
U= (@ @ Ker (X — 1). Complete a basis &y = x, &2, -+, &n for
Ker (X — 1) with 2, = y to a basis for U, and choose a basis y1, -+, ya for
W so that B(x;, y;) = 8:5,% 7 =1, -+ ,n. Thenif

® = {xl’ *tty Ty Yy "',yn},

T(X)es = 2a, and T(X) e O". Since GL(U) = SL(U) is generated by
transveciions, T(X) e O" for all X ¢ GL,(F,). Hence Oy < O". Similarly
Ow < O7.

To show that (Oy, Ow) = O*, we will draw on the Lie Theory. We refer
the reader to [15] and [5] or [3] for a discussion of the relevant material. O"
is the Chevalley group coming from the Lie algebra of type D, . With respect,
to the original basis ®, the 2n X 2n diagonal elements

ho= 2t N Bis — Dot=i Ni Bniingis NeFo,o=1,---m,

of D, yield the positive roots » = N\, — N\, 1 < p < ¢ < n, corresponding to
the root vectors
E, O

0 Ey

T I

andr = N\, + N\, 1 < p < ¢ < n, corresponding to the root vectors

Xr - 0 EP? - E’QP .
0 0
Forr = — (\p, + \,), the root vector is
0 0
X, = .
qu - Eqp 0
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We have a fundamental set F = {a1, - -, @,} of roots with
g =MN—IMp,t=1 - n—1 and @, = M1+ M.
z,(r) = 1+ 7X, for r a root and 7 ¢ Fy, and
0" = (#.(r) : 7eF, and r a root).

O" has B — N structure for

B = (z.(r) : 7 ¢ F2 and r a positive root)

and
N=<“’ai:i= L, n),

Wg = ¢a((; é)

Since ¢, maps SL; (F2) onto (x, (), x_, (7)), with

Fa <(1) ;) = 2,(r) and ¢ (: 2) = z_4(7),

we see that w, = 2, (1)x_o (1), (1).
For 8§ € F, we have the parabolic subgroups Gy = BNB, with Ny =
(ws : @ €8). For S a maximal subset of F, G is maximal in 07, We will

show that Oy is a maximal parabolic subgroup. We see immediately that
B < Oy. Since

where

(1 + qu) @ +Eqp) (1 + Em) = qu =1+ Epp + By + Epg + Egp
w,.=[R8" R(:”, forr =X — 2,1 <p<qg<n.

Forr = X, + Ay,
1 + EPI’ + E‘IQ E’PQ + EGP

Wy = B
qu + EQP 1 + EPP + qu
Now it is easily seen that ws; € Oy fori =1, -+ ;n — 1. 8o Gs < Oy for
S=1{a, *,0n1}. HenceOy = Gs,0pismaximalin 0", and 0" = (O, 0y).

However, we can say more. Let

Ui= (u, -+ ,u) fori<n—2
and let
U = (U1, ***, Un-2, Wn).

Then we see that B < Oy, . Furthermore, forj # 3, Wa; € 0%, ,fori =1, ...,
n—1. SoGs, = Of, forS; = {a; : j # ¢}. In particular, 0¢.,) is & maximal
subgroup, so we see again that 0", and hence O, is primitive on the singular
lines of V.
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2. H(G, V) for G = SL(V), GL(V), Sp(V)

Now we consider some of the groups H' (G, V) with V a finite-dimensional
K-space and G < GL(V). Note that H' (@, V) and H' (G, V*) (V* being the
dual space of V') are isomorphic as K-spaces, so throughout this paper, deriva-
tions will be from G to V or to V*, whichever is more convenient. Note also
the elementary fact that for § a derivation from a group G to a unitary module
for @, 6(1¢) = 0.

D. G. Higman implicitly computed the dimension of H' (G, V) when G =
SL(V). His results include:

TueorEM 2.1. Let V be of dimension n over an arbitrary field K. Ifn > 4,
the K-dimension of H (SL(V), V) iszero. Ifn = 2and K = F,, the dimension
is again zero. Ifn = 3 and K = F,, the dimension is at most one [12, Lemma, 4,
p. 441].

As a corollary of this we have:

TaEOREM 2.2. If the dimension n of the K-space V (K arbitrary) is at least
4, then the K-dimension of H' (GL(V), V) iszero. Ifn = 2and K = F,, the
dimension of H (GL(V), V') is again zero.

Proof. In the cases under consideration, the derivations from SL(V) to V
are all inner, so for 6 ¢ Der (GL(V), V), 8 | SL (V) is an inner derivation. If
necessary, change § by subtracting off an inner derivation and assume
8| SL(V) =o0.

Let T ¢ GL(V) and S ¢ SL(V). Since SL(V) < GL(V), there exists
U eSL(V) with 8T = TU. Hence S(8T) = 87, and this equality holds for
all S e SL(V). However, SL(V') has no non-zero fixed points, so §7 = 0 and
8 = 0. Thus the original § was inner.

We also have:

TuaroreM 2.3. If the characteristic of K s not two, then the K-dimension of
H' (Sp(V), V) is zero.

Proof. Let 6 e Der (Sp(V), V) and let T ¢ Sp(V). Then T(—1y) =
(—=14)T implies
Ts(—1) + 8T = (=1)(@T) + 8(-1),

08T = (T — 1)(—1/2)8(—1), and § is an inner derivation.
For other similar results, see [11, Section 14].

3. H'(G, V) for G = Sp(K) or O(K), K a perfect field of
characteristic two, # F,

Throughout this section, K will be a perfect field of characteristic two having
more than two elements, unless specified otherwise.
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TueoreM 3.1. Let V be of dimension 2n over K. Then the K-dimension of
H (O (V), V) is zero.

Proof. The proof will be by induction on the dimension 2n of V.

LemMma 3.2. For V of dimension 2 over K (possibly equal to F»), the dimension
of H'(O(V), V) is zero.

Proof. Choose a hyperbolic pair 2, y ¢ V with Q(z) = 1 and Q(y) = o.
If K # F,, we can assume o % 0. Then

Qax + By) = o’ + aB + B0 fora, B e K.

Let A be the quotient of the ring of polynomials in the indeterminate 6 by the
ideal generated by 6° + 6 + ¢. Then 1 and 6 form a K-basis for A. The map
sending 6 to 8 4+ 1 induces an automorphism of A ; write { for the image of ¢ ¢ A
under this automorphism. If¢{ = a 4 86, o, 8 ¢ K, then

i = o + af + Fo.

Hence we have a model for V and Q with V = A and Q(¢) = # for t ¢ A.
Working within this model, let O = 0(Q). Suppose Toe Oy, To # 1. Then
To(1) = land To(1 +60) =14+ To8. QA +06) =Q(0) = 0,50

c=Q(To(1+06)) =1+ To8+ Ty6 + Q(To9).

Hence 1 + To0 4+ To0 = 0. If To0 = o -+ 89, we see B = land o =
a = 1. Therefore O, = (Ty) and Tt = {forevery te A.

Denote by S; the left multiplication by ¢t ¢ A, s0 S; v = tv forve A. Let
U={S::ted,tf =1}. Then U < 0, and U is isomorphic to a subgroup of
the group of units in A. Identify S;e U withte A. Then for u e U and Ty as
above, To uTo = 4, and T, normalizes U. If S €O, S(1) = u-1 for some
ue U, and u™8 fixes 1. Therefore, S ¢ U(To); that is, 0 = U(Ty).

Now let 8 ¢ Der (0, A). Then, since U is commutative, (v + 1)dv =
(v + 1)ou for all u, v e U. If U is trivial, 8 | U = 0. Otherwise, choose
uo # 1in U. Then foreveryve U, = (v + 1)duo(uo + 1), and & [ Uisan
inner derivation.

Suppose U # 1. If necessary, change & by subtracting off an inner deriva-
tion, and assume 8 | U = 0. Tou = aT,, so 8T, = w7, for all u ¢ U.
Since thereisau # 1in U, 8T, must be zero. Therefore 8 = 0, and the original
s wasinner. If U = 1,0 = (T,). Because T is an involution, Ty (6Ty) =
8Ty. But To(8T,) = 8T, so 8Ty ¢ K. Suppose 8Ty = a. With respect to
the basis 1, 8 of V, the matrix of Ty 4 1 is

(© o)

We thus see that 6 is the inner derivation based on af.
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Return now to the proof of 3.1. Let 6 ¢ Der (O(V), V). Suppose the
dimension 2n of V is greater than two, and assume the theorem is true for
spaces of dimension less than 2n. Since 2n > 4, we may choose a hyperbolic
pair z, y of singular vectors.

First we will show that & is homologous to zero on O, 4y . Let U = (z, y)*,
soV =(x,y) ® U. 8 €0, has the form Sw = Aw, Su = Tu forwe (z, y),
ueUwithAd eOx,y)) and T ¢ O(U). Write S = S(4, T'). Suppose

8S(4,1) = a(d) + f(A) with a(4) e (z, y) and f(4) ¢ U.
Then S (4, 1)S(C, 1) = S(AC, 1) implies that
a(AC) = Aa(C) + a(4) and F(AC) = f(4) + F(C).

That is, a is a derivation on O ({z, ¥)), and so, by 3.2, ¢ is inner. If necessary,
change 8§ by an inner derivation based on a vector in (z, y) and assume ¢ = 0.
Similarly, suppose

8S(1, T) = b(T) + g(T) with b(T) e {, y) and ¢(T) ¢ U.

Arguing as above, change §, if necessary, by an inner derivation based on a
vector in U, and assume ¢ = 0. Now

S, )81, T)=8(1,T)S4,1)

implies that (4 + 1)b(T) = 0and (T + 1)f(4) = 0 forevery 4 €0 ((z, y))
and every T ¢ O(U). Since K # F,, by 1.10, A and T can be chosen in
Oz, y)) and O(U), respectively, with A -+ 1 and T -+ 1 non-singular.
Therefore, b and f are both identically zero, and § I Oy = 0.

Now we will show that 8 | Oy = 0. Write V = (x) ® U @ (y). Anele-
ment A ¢ Sp (V) has the form Az = ax, Au = aB(w, Tu)x 4+ Tu for all
weU,and Ay = Bz +w + (1/a)y, witha e K*, 8¢ K, we U, and T ¢ Sp (U).
If A is a Q-isomorphism, then 7 ¢ O(U) and 8 = a@ (w). So A e O¢,) deter-
mines and is determined by T ¢ O(U), w ¢ U, and « ¢ K*. Write
A = A(T,w,a). Sinced|Owyy = 0,84(T,0,a) = 0. Consider the sub-
group of O, consisting of all A (1, w, 1) = S(w). Suppose

38 w) = pw) + h(w) + qw),

with p (w) € (x), h(w) e U, and q(w) € {y). Since Sw)S @) = S(w + v), it
follows that

1) pw—+v) =pw)+pk)+ Bw h@))
2) h(w+v) = h(w) + k@) + wg@)
3) gw +v) = qw) + q@)

for all w, v ¢ U.
Since S(0) = 1and (1) = 0,p(0) = 0,2(0) = 0, and ¢(0) = 0. Thus
relation (2) implies »q() = 0 forallve U, and so g = 0.
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A routine computation gives A (T, 0, a)S(w) = S(aTw)A (T, 0, a).
Hence

4) ap(w) = p(aTw)
) Th(w) = h(aTw).

By relations (2) and (5), for a % 1in K*, h((a + 1)w) = 0. Therefore,
again by (6), h = 0. Relation (1) now becomes p(w + v) = p(w) + p @).
Relation (4) implies then, that p ((T + 1)w) = 0 for every T ¢ O(U) and
everywe U. By 1.10,p = 0. Thus S (w) = 0 for every we U.

Let A (T, w, @) be an arbitrary element of O, . Clearly

A (T7 w, 0‘) = A (1) 0, a)S (’U))A (T) 0, 1)7

80 A (T, w, @) = 0 and & | Oy = 0.

Define Soby Sox = y, Soy = zand Sy { U = 1,80 8o € O,yy and 88y = 0.
Oy = 800 So, 50 we also have § | Oy = 0. By 1.9,0 = (O , Ony), and
therefore 6 = 0, and the original § was inner. Hence the K-dimension of
H' (O(V), V) is zero.

Tueorem 3.3. Let V be a K-space of dimension 2n > 2. Then the dimension
of H'(Sp(V), V) over K 1is one.

Proof. Let @ and B be associated forms on V, with »(Q) = 1, and let
0 = 0(Q). Choose = € V, singular, and let Ty be the transvection taking
veVtov+ B(,z)z. Byl.5,0ismaximalinSp(V),soSp (V) = (0, ToOTy),

Suppose & ¢ Der (Sp(V), V). O and TOT, are orthogonal groups in
Sp (V), ToOT, being the group of the form QT,. By 3.1, the restrictions
of & to O and T(OT, respectively are inner derivations. We may assume
) | O = 0. Suppose vy e V is such that for all A ¢ To 0T,, 84 = (4 + 1)v,.
By 14,0 N (Ty0T,) = 0,. ForAe0,,84 = (A + 1)v; that is Avy = v,
for every A ¢ 0,. However, the fixed points of O, are all on (z), s0 v = oz
for some a ¢ K.

Hence the action of § on O and Ty OT) is determined up to a scalar multiple.
If T ¢ Sp (V'), 87T is determined by the action of § on O and on Ty OTs. There-
fore, 8 is a scalar multiple of the derivation §, which is zero on O and is an inner
derivation based on z on Ty OTy. So we see that the dimension of H* (Sp (V'),
V) is at most one.

Recall the derivation % of 1.6. By the corollary to 1.10, « is not an inner
derivation, so the dimension of H* (Sp (V), V) is exactly one. Moreover, by
1.6, u(To) = z and u | O = 0, so for S € 0, u(To STo) = (To STo + 1)z.
Thus we see that in fact u = &.

4. H(G, V) for G = Sp(F,), O(F.)

The proofs of 4.1 and 4.2 below require only that the underlying field K be
perfect. By 3.1 and 3.3, only the case where K = F, is actually needed, but
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since it does not significantly alter the arguments, the more general results are

stated and proved. The proofs in Section 3 were also given, however, since
they are much simpler.

TraeorEM 4.1. Let K be a perfect field, and let V be a K-space of dimension
2n z 8. Then the K-dimension of H' (Sp(V'), V') is one.

Proof. LetdeDer (Sp(V), V). V canbe written as the sum of two totally
isotropic subspaces, V = U @ W, and bases uz, - -+ ,u, and vy, « -+, v, for U
and W respectively can be chosen such that B(u:, v;) = 8; [5, Theorem
1.3.2,p. 13]. Then Sp (V)yis generated by the elements T (X) and S(Y) (no-
tation as in the proof of 1.12) with X ¢ GL,(K) and ¥ n X n symmetric
over K. Write X~ = X* and suppose

T (X) = k(X) + 1(X*), with%(X)eU and I(X*) e W.
Then T(X)T(Z) = T(XZ) implies Xk(Z) + k(X) = k(XZ), and
X*UZ*) + 1(X*) = 1(X*Z™).
So we see that k e Der (GL(U), U) and l e Der (GL(W), W). By 2.2,kand!
are inner. If necessary, change 4 by an inner derivation based on a vector in

U and again by an inner derivation based on a vector in W, and assume k& and
[ are zero.

Now let 8S(Y) = r(Y) + s(Y), with 7(Y) ¢ U and s(Y) ¢ W. Then
SY)S(Y') = S(Y + Y’) implies

(¢D) r(Y)+rX")=Ys')+rY +Y)
2) s(Y) 4+ s(Y') = s(Y + Y').

Since r (0) = 0, relation (1) implies Ys(Y) = 0 for all symmetric Y. Hence,
if Y is non-singular, s(Y') = 0. Relation (1) is symmetric in ¥ and Y’, so
Ys(Y') = Y's(Y) for all symmetric ¥, Y’. Taking Y’ = 1, we obtain
s(Y) = 0 for all symmetric Y.

Now relation (1) becomes7(Y + Y’') = r(Y) + r(Y’). From

TX)8(Y) = SXYX)T(X)

it follows that Xr (Y) = r (XY X") for all non-singular X and all symmetric V.
If XYX' = Y, then (X 4+ 1)r(Y) = 0. Let

Y=Y;j=otEij+OtEji, WithaeK*andi¢j,i,j=1,---,n.
If we choose ¢ = 1 and j = 2, then for
11
X=|10 )
Xl

with X’ a non-singular (n — 2)X (n — 2) matrix, we see that XY, X' = Yy,
If n — 2is even, we may apply 1.10 and assume that X’ may be chosen with
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X' + 1 non-singular. Ifn — 2is odd, we have two cases. Ifn — 2 = 3, let

1 01
X'={1 0 0f.
010
Ifn — 2> 5,let
X 101
X=' X,,,,with X'=/100
010

and X” chosen such that X" + 1 is non-singular. Thus, in all cases, we may
choose X’ so that X’ + 1, and so X + 1, is non-singular. Hence we have
r(Ye) = 0. Similarly r(Y;) = 0 for all ¢ ¢ j. The Y,; generate the al-
ternate matrices additively, so by (1), 7(Y) = O for all alternate Y.
Nowlet Yis = aEi, 4 = 1, -+, n, with a ¢ K*. Consider Yy, and write

r(Yn) = arus + -+ + anUn.
If

with X’ a non-singular (n — 2) X (# — 2) matrix such that X’ 4+ 1 is non-
singular, then XYy X' = Yy, and we see from (X + 1)r(Yu) = O that
o= - =a, =0 So T(Yn) = o U, with a; € K. Similarly, T(Yu) =
a;ui, witha; e K, 2 =2, -+ n.

Return now to the relation Xr(Y) = r(XYX*). If Y = E;; and X, with
entries xum , is chosen such that x;; is the only non-zero entry in the ¢-th column
of X, a direct calculation shows XY X' = xi;E:, and hence xi r(Ey) =
r (Xii 2Ei1;). That iS,

r(@Bu) = \Var(By) fori=1,---,nand ae K*

(and trivially for « = 0). If X is chosen with entries xi» such that xx; = 1
for some k # ¢ and x;; = O for all j = k, then

XEi: X' = (i)’Ew = Ew,

and
XT(Eu) = Xki O Up = O Uk .
Therefore a; ux = o ur, and a; = o foralls, bk =1, -+ n.
Leta = ay = -+ = a,. Then, since r is additive, if ¥ = () is 2 sym-

metric 7 X 7 matrix, 7 (¥) = a D 1= V/ni %i. S0, up to a scalar multiple, r
is completely determined; that is, for ¥ = (gm), r(Y) = are(Y), where
ro(Y) = 2 0= Vs ws .

An arbitrary element A of Sp (V) v has the form Au = Xu, Aw = Yw + X *w
forue U, we W, with X e GL,(K) and Y n X n symmetric over K such that



408 HARRIET POLLATSEK

YX' = XY'. Thus A = S(YX")T(X), and 64 = aro(YX"). Let A, be
defined by Au; = w; and Aw; = u;,2 =1, ---,n. If 840 = up + wp with
uge U, wo e W, then, since 4o T (X)A4o = T (X™), Xuo = wo for all X ¢ GL, (K).
Therefore uy = wy = 0, and 64, = 0. Since 4o Sp(V)y 4o = Sp(V)w, d is
determined up to the same scalar multiple @ on Sp (V)w. By 1.2,

Sp(V) = (Sp(V)v, Sp(V)w),

so the dimension of H' (Sp (V'), V) is at most one. However, by the corollary
to 1.10, the derivation w : Sp(V) — V of 1.6 is non-inner, so the dimension
of H' (Sp(V), V) is exactly one.

THEOREM 4.2. Under the hypothesis of 4.1, the dimension of H' (0 (41, V),V)
over K 1s zero.

Proof. Let O = O(+41, V) and let 8 e Der (O, V). Proceeding as in the
proof of 4.1, we write V = U @ W, where U and W are totally singular sub-
spaces of V, and choose bases {u;} and {w;} of U and W respectively such that
B(u;, w;) = 8;;. As before, we first consider 8 on Oy. Since U and W are
totally singular, T (X ) e Oy for every X ¢ GL, (K ), and S (Y') ¢ Oy if and only if
Yisalternate. Arguingasin4.l, we may assume T'(X) = Oforall X e GL,(K).

As before,let S (Y) = r(Y) + s(Y). Then using relation (1) in the proof
of 4.1, Ys(Y) = O for all alternate Y. If n is even, there exists non-singular,
alternate Y, and we again obtain s = 0. If » is odd, choose

0 Y

Y1 = Y, and Y2 =

1 0

with the Yi(n — 1) X (n — 1) non-singular alternate matrices. Then
s(Y1) = orwrand s(Y2) = o3 Wn,01,02¢ K, by (1). For any alternate Y, we
have Ys(Y;) = Y, s(Y), and we see that again s = 0. Now, exactly as in the
preceding argument, we have 7 (Y') = 0 for all alternate Y, and 6 | Oy = 0.

The element Aois alsoin O, and 640 = 0, 80 Ao Oy 4o = Owimplies & | Oy = 0.
By 1.12,0" = (Oy, Ow), hence 8| 0¥ = 0. For T ¢0 and S ¢ 0", ST = TS’
for some 8’ ¢ OF. Then ST = 8T, and 87T is a fixed point for O*. But 0T is
irreducible [4, Theorem 1.6.7, p. 33], s0 87 = 0 and 6 = 0. Therefore the
dimension of H' (0, V) is zero.

CoroLLARY 4.3. Under the hypotheses of 4.1, the K-dimension of
H' (0F (41, V)V) 1s zero.

Proof. Arguing as for S(Y'), we can show directly that (4o S(Y)4,) = 0
for every alternate Y, and 80 8 | Oy = 0.

Taeorem 4.4. If V 18 an Fy-space of dimension 4, then the Fy-dimension of
H (Sp(V), V) is one.
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Proof. Since by 2.2, the derivations from GL. (F:) to its standard module
are all inner, we can use without change the proof of 4.1.

TurEOREM 4.5. If V is a 4-dimensional Fe-space, the Fo-dimension of

H' O+, V), V)

18 zero.

Proof. First we construct a model for O(+1, V). Let V be the 2 X 2
matrices over F, , and for X ¢ V define @ (X) = det X. Then Q is a quadratic
form whose associated bilinear form is non-degenerate. The subspace of all
matrices of the form

. 0 «
0 8
is totally singular, so »(Q) = 2. For A, C ¢ SLy(F;), define a transformation
SA,C)on VbySMA, C)X =AXC(C,XeV. Clearly S(4, C) e 0(Q).
Let T be the transformation on V given by TX = X*; then 7T is also in O (Q).
The group generated by the S (4, C) is isomorphic to SL. (F2) X SL. (F;) and
80 has order 36. T is not in this group, so the order of (SL, (F.) X SL.(F;), T)
is at least 72. The order of O (Q) is 72, so

0(Q) ~ (SLy(F2) X SL:(Fy), T).
Let 8 ¢ Der (0(Q), V). Since S(4, 1)S(1, C) = 8, C)S(4, 1), we have
(%) (A+1)8S1,C)=884,1)(C +1).
Choose Cp € SL; (F2) with Cy 4 1 non-singular. Then
88(4,1) = (S(4,1) + 1)(3S(1, Co)/(Co + 1)),

and & is inner on the S(A4, 1). Assume 8S(4, 1) = 0 for all A e SL:(F,).
Then (*) implies 6S (1, C) is a fixed point for SL, (F:), and so 6S(1, C) = 0
for all C e SL, (F3).

Now TS(A4,1)X = S(1, A)TX forall X ¢ V, 50 6T = S(1, A*)8T. Thus
OT)(A* + 1) = O for all A ¢ SLy(F;), 5087 = 0 and § = 0.

TueorEM 4.6. If K is a perfect field and V is a K-space of dimension at least
10, then the K-dimension of H' (0 (=1, V), V) is zero.

Proof. Choosez,y eV withQ () = 1,Q@) = ¢ # 0,and B(z,y) = 1,
such that {r, y) contains no singular vectors, and let U = (z, )*. Let
O0=0(—1,V),andlet d e Der (O, V). Since the dimension of U is at least 8
and Q | U is a form of maximal index, by 4.2 we may use the arguments of 3.1
and assume that & | O,y = 0.

Now we will show that § | Oy = 0. By 1.7, the elements of O¢,) are the
A(T, &) for T ¢ Sp(U) and a ¢ K a solution of X*> + X = Q(u(T)). Since

AT, a)A(1,1) = A(Tya+1) and 84(1,1) =0,
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84 (T, o) is independent of . Let 64 (T, a) = p(T) + h(T) + ¢(T) with
p(T) ex), h(T) e U,and q(T) e (). A(T, a)A(S, B) = A(TS, *) implies

(1) p(T8) = p(T) + p(S) + Bu(T), Th(S))
2) R(TS) = Th(S) + h(T) + u(T)q(S)
3) q(T8) = q(T) + q(S).

Since the dimension of U is at least 8, Sp (U) is simple, and so (3) implies
g =0.

Now relation (2) implies that % is a derivation on Sp (U), and 4.1 tells us
that & is homologous to a scalar multiple of the non-inner derivation . Since
T ¢ O(U) implies A (T, @) € Oy, b l O(U) = 0. Hence, by 1.10, we may
suppose h(T) = M (T) for all T ¢ Sp(U), X ¢ K.

Relation (1) thus becomes p(TS) = p(T) + p(S) + AB(T), Tu(S)).
Recall the extension a of the Dickson invariant d givenin 1.11: A (T, a) ¢ 0%,
if and only if @« = a(T'), for all T ¢ Sp (U). The invariant a satisfies

a(T8) = a(T) + a(8) + Bu(T), Tu (S)),

soif A # 0, k = p + Aa is a homomorphism on Sp(U). Since Sp(U) is
simple and k | 0" (U) = 0,k = 0 and p = Aa. However, p | O(U) = 0 and
al O(U) # 0. Hence A =0, and so p and & are zero. Therefore & | Ow = 0.
If R is the transformation taking z to (1/4/¢)y, y to /o  and fixing U
point-wise, R € O(;,yy and ROy B = Oy, 80 8 | Oy = 0. BylsS,

0 = (O, Ow),
s08 = 0. Therefore the dimension of H' (0, V) is zero.

TaeorEM 4.7. If V is an Fe-space of dimension 6, then the Fs-dimension of
H'(0(—1,V), V) 1s zero.

Proof. Let O = O(—1, V), and let § ¢ Der (0, V). Choose a hyperbolic
pair of non-singular vectors , y e V and let U = (z, y)*. By 4.5 we may use
the arguments in the proof of 3.1 in order to assume & | Oy = 0.

Again, for A (T, @) € Oy, let A (T, &) = p(T) + k(T) + q(T'). Rela-
tions (1), (2), (3) of 4.6 hold, so ¢ is a homomorphism from Sp (U) to (y).
IfTeOWU), A(T, @) € Oy, 50 O(U) < Ker ¢q. Since, by 1.3, O(U) is
maximal in Sp (U), and since O (U') is not normal in Sp(U), ¢ = 0. From
this point the argument of 4.6 may be used without change.

TrEoREM 4.8. Let V be an Fo-space of dimension 6. Then the Fo-dimension
of H (Sp(V), V) is one.

For the moment assume 4.8 is true. Its proof appears after the proof of
49.

TreorEMm 4.9. If V is an Fa-space of dimension 8, then the Fy-dimension of
H (0(—-1,V), V) 15 zero.
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Proof. Let O = O(—1, V) and let 6 ¢ Der (O, V). Choose a hyperbolic
pair of non-singular vectors z,y ¢ V and let U = (z, y)*. Arguing asin 3.1, for
S(A, T) € Oy , we may assume 88 (4, T) = g(T'), g e Der (O(U), U).

As usual, for A (T, @) €Oy, let A (T, a) = p(T) + h(T) + q(T). Then
the relations (1), (2), (3) of 4.6 hold. In particular,q = 0. Now (2) implies
h is a derivation on Sp (U). By 4.8, h is homologous to a scalar multiple of
the non-inner derivation u; assume A(T) = M (T) for T ¢ Sp(U). Hence
relation (1) becomes

p(T8) = p(T) + p(8) + MBu(T), Tu(S)).

Since 8S(4, T) ¢ U, p | 0 = 0. Now complete the proof as in 4.6.

Now we prove 4.8:

Let 6 € Der (Sp(V), V). Choose a hyperbolic pair z, y ¢ V, and let
U = (x,y)*. Sp(V)y consists of the elements S (4, T') with 4 ¢ Sp ((z, y))
and T e Sp (U). By 2.1 and 4.4 we may again use the arguments of 3.1 to as-
sume 68 (A, T) = M (T), N eF,.

With respect to the decomposition V = (z) ® U @ (y), the elementsof
Sp(V), are the A (T, v, a) with T ¢ Sp (U), v e U, and « ¢ F;, where

A(T,v,a)u = Bv, Tu)x + Tu forue U,
and

AT, v,a)y = ar +v + y.
Since

A(T,v,a)A(1,0,8) = A(T,v,a + ) and 84(1,0,8) =0,
8A (T, v, o) is independent of a. Let
34 (1,0, ) =p@) +h@) + q@),
with p (@) e (&), h(v) € U, and ¢(v) e (y). Since
AQ, w,a)AQ,v,B8) = AA, w + v, ),

we have the relations (1), (2), (8) of 3.1, and we may conclude that ¢ = 0.
Now (2) implies that A : U — U is a homomorphism. Say &(u) = Mu,
for M a 4 X 4 matrix over F,. Since

A(T,0,0)A (1, u,a) = A(1, Tu, 2)A(T,0,0) and 6A(T,0,0) = Mu(T),
we have the (new) relations

4) p(w) = p(Tu) + \B(Tu, u(T))

) TMu = MTu,

forall TeSp(U),allue U. Relation (5)implies MT = TM forall T ¢ Sp (U),
soM =0o0rM = 1y.

Case 1. Assume M = 0. Then relations (1) and (4) imply
p(T + 1)) = 0 for all T ¢ O(U), and by 1.10, p = 0. Therefore,



412 HARRIET POLLATSEK

AMBu(T), Tu) =0forallTeSp(U)andallueU,so\ =0, and&[ Sp(V), =0.
Let R be the element of Sp (V') interchanging « and y and fixing U point-wise.
Then RSp (V). R = Sp(V), and 6R = 0 imply & | Sp(V), = 0. By 1.1,
Sp(V) = S8p(V)s, Sp(V),), s0 & = 0 and the original & was inner.

Case2. Assume M = 1y. Then relation (1) implies p + @ = L is linear
on U, and (4) implies L(T + 1)(u) = Oforall TeO(U) and allu e U. By
110, L = 0and p = Q.

A1, w, a)A (T: 0, 0) = A(T, u, a)
implies
3A(T, u, @) = DB (T), u) + @)z + ) (T) + w.
If N = 0, then 84 (T, u, «) = Q(w)z + u, so
A(T, u, «)8A (S, v, 8) + 8A (T, u, a) = A (TS, Tv + u, *)

implies B (u, v) = B(u, Tv) for all T ¢ Sp (U) and all u, v ¢ U, which is impos-
sible. HenceN = 1. ForRasincase 1,6R = 0and RSp (V). R = Sp(V),,
50 & is also completely determined on Sp(V'),. Therefore, 8 is completely de-
termined on Sp (V) = (Sp (V),, Sp (V)y).

So we see that the dimension of H* (Sp (V), V) over F; is at most one. The
derivation % : Sp(V) — V is non-inner, so the dimension of H* (Sp (V), V) is
exactly one.

5. 8. as a subgroup of Sp.(F;)

Let V be a K-space of dimension n over K, and let #;, - - , 2, be a basis for
V. 8., the symmetric group on the letters {1, ---, n} can be viewed as a
subgroup of GL(V) by identifying = ¢ S, with T(x) ¢ GL(V), where
T () @)= Zy. Definene V* by

"7(2:';1 ;&) = Z?‘l a;,

and let H = Kern. Letaxo = ) i~ ;. Thenifnisodd, V = H @ (xo),
and if » is even, {(ry) < H. Define a bilinear form B on V by

B ai @iy O Bi i) = Dimj i Bs-

Then B is alternate, its matrix being 1 + E, where FE is the matrix each of whose
entries is one. If nis even, E* = 0 and B is non-degenerate. If n is odd, E
has rank 1, so Bhasrank n — 1. With respect to B, (zo)* is V or H, according
as n is odd or even. Hence B is nondegenerate on H or on H/(x,) according
as n is odd or even.

S, is contained in the group of B on V. Furthermore, (xo) and H are stable
under S, , so S, may be viewed as a subgroup of Sp (H) or Sp (H/(xo)), ac-
cording as n is odd or even. The transposition (i), ¢ # 7, in S, corresponds
to the transvection with center (x; + z;) in SL(V), so S, is a subgroup of
Spn (K) generated by transvections, where m isn — 1 or n — 2, according as
n is odd or even.
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If Q is defined on V by Q (X s z:) = ZK; a; aj, then @ is quadratic form
on V, Q is associated with B, and S, £ 0(Q). Ifnisodd, S, < O (¢, H), the
group of ( H, where ¢ is +1 or —1 according as @ | H is of maximal index or
not.

To determine ¢, suppose n = 2k -+ 1 and choose a basis w1, v1, *** , Un, Um
for H With Ui = 23;1 Zj, V; = X4 -|" Loit1 - Let P,’ = (u; y ?)1'). Then the P,'
are mutually perpendicular with respect to B. Q®:;) = 1, Q(u;) = (2 —1)
and B (u;, v;) = 1. Therefore

Q(aus + Pvi) = o + af + B

Thus @ | P;is of index 1if 7 is even and of index 0 or 1, according as X* + X + 1
is irreducible over K or not, if ¢ is odd. Thatis, ¢ = 1if X* + X 4 1 s re-
ducible over K. Suppose X* + X + 1 is irreducible over K. Let

Q=Q| P.® - @P).
Then »(@1) = 0, v(Q:) = 1,v(@:) = 3,»(Qs) = 4. The pattern persists, so

that if k¥ = O or 3 modulo 4, ¢ = 1,andif k = 1 or 2modulo 4, ¢ = — 1.
Equivalently, if » = 1 or 7 modulo 8, ¢ = 1, and if » = 3 or 5 modulo 8,
¢ = —1. In particular, since the order of O,(—1, F;) is 120 = 5 |, we have

Ss o~ 04(—1, Fg)

Now suppose nigeven. Since the order of Sps (F2) is 720 = 6 1, Ss = Sp. (F2).
Suppose n = 0 modulo 4. Then Q (xy) = n(n — 1)/2 = 0 and ()" = H, so
we can define @ on H/{x,) by Q@) = Q) for v ¢ H and % the coset of v in
H/{xs). Thus for n = 0 modulo 4, S, < O(¢, H/(xo)), where ¢ is +1 or —1
according as the index of | (H /{xo)) is maximal or not. Again we find that if
X® + X + 1is irreducible over K, ¢ = 1if (o — 1) = 1 or 7 modulo 8, and
e = —1if m — 1) = 3 or 5 modulo 8. In particular, since the order of
05(+1, F2) is 8 !, Sg 03(+1, Fz)

The preceding discussion is taken from [7].

Suf)pose now that n is odd and K = F,. Then S, < 0,1 (F:), the group
of Q| H.

TueoreM 5.1. If n > 5 s odd, then the dimension of H' (S, , H) over Fs is
zero. In particular, if V s the 4-dimensional Fs-space, the dimension of
H (04(—1, Fy), V) over F, is zero.

Proof. LetdeDer (S.,H). Write zy = x; + z;, and if ¢ is the transposi-
tion (47) € S, , write z;; = x,. Let o, 7 be distinet commuting transpositions
inS,. Then (¢ + 1)o7 = (r 4+ 1)ds. But

Im @+ 1)NIm (+ 1) = &) n{x,) = 0.
Therefore
e+ 1)or =0 = (v + 1)do,

anddreKer (0 + 1) = (z,)*, doelz)*. Thusifr = (5)anddér = D ox s,
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we have
B(Zakxk,xr'i'xa) =oa+a=0
for all r, s # 1, j, and
B(Zakxk,w,- +:t,) = a.~+ a; = 0.

Since &7 ¢ H, we have 87 = a(r)z,, with a(r) ¢ Fa, for every transposition
T € Sn .

Nowlety = 21,2 = tpand U = (y, 2)*. Then H = (y,2) ® U. The
elements of (S.)..) have the form S(4, T'), with A e 0({y, 2)), T ¢ O(U).
By our first remarks,

8A,1) =a(A)e{y,2) and &S, T) =9g(T)eU.

S (A4, 1) €8, for each A ¢ 83, the symmetric group on {1, 2, 3}, s0 a is a deriva-
tion on S; ~ SL,(F;). By 2.1, a is inner, so changing §, if necessary, by an in-
ner derivation based on a vector in (y, 2), we may assume ¢ = 0.

If 7 € Sp—2 , the symmetric group on {3, - - - , n}, then 7 has the form

w(y) =y, w(w) = v(r)wy + T(r) ()

foruelU,=(2) = al®)y + u(r) + zwitho(r) e U*, T (r) e GL(U) defined as
above, a(r) e F; and u(r) ¢ U. Suppose

8(r) = p(w) + h(x) + q(x) withp(r)e(y), h(®) e U, ¢(7) e (2.

Then q is easily seen to be a homomorphism on S,—2. If 7 € Su_s, the sym-
metric group on {4, -- -, n}, then = fixes (y, 2), so u(r) = 0 and v(x) = 0.
Thus, since @ = 0, ¢ | Sn—s = 0. Sincen > 5, Sp-3 € Anz,80¢ =0. Thus
for w € Spz, dr e (y)* = (y) @ U.

U is not stable for S,—2. For 7 ¢ S,z and u € U, write

W) = fr(u)y + v*u, withr*ueU.
It is easily verified that =* ¢ GL(U) and fr ¢ U*. If p, 7 € Snos,

(om) (u) = fr @)y + f,(@*u)y + p*r*u.
Hence (or)* = p*r* and f,r = f, #* + fr. We have

() =p() + h(r) withp(r) e {y) and h(w) e U,

80 by computing 8 (o) = p(ow) + h(pmw) we obtain
1) h(ow) = p*h(x) + h(p)
) per) = fo(h(m))y + p(x) + p(p).

We know that U is a module for (S.—)* and so is a module for S,—z. If
V’is an (n — 2)-dimensional Fy-space and H' = Ker (y | V’), then H' is also
a module for S,—. In order to use an induction argument to complete the
proof of 5.1, we must show that U ~ H’ as S,—s-modules. That is, we must
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show that there is an isomorphism & between the (» — 3)-dimensional F,-
spaces U and H' such that #*u = v if and only if = (®u) = & for = € Sn_z and
u,velU.

Set zsa = y + X34, 2441 = Tepafork > 3. The zpppa, k=3, ,n — 1,
form a basis for U. We can view ®s, ®s, *** , Ln_1,» a8 a basis for H’. De-

fine ® by ®2;141 = Zrkt1.- INow we see for each of the generating transposi-
tions (4,7 + 1) of S,—s,

Gy 3+ 1) *2pn = 2oj=s ik 2t

if and only if

Gy 3+ D)rprs = D=5 @ik Tijats

where the a;: ¢ Fa.

Now, by (1), h € Der (Sq,—2, U). Since S; >~ SL,(F;), the derivations on
S; are allinner. Therefore, using an appropriate induction hypothesis, assume
his inner. If necessary, change & by an inner derivation based on a vector in
U, and assume A = 0. Then, by (2), p is a homomorphism. Like ¢, p
vanishes on S,_3, 80 p = 0. Since §(12) = 0, § is zero on

Bn)y = (Sn)12 = Sn— 2((12)).

If - = (13), then 67 = 0 and 7(S,), 7 = (S.).. Therefore, § | S»). = 0.
Clearly S, = ((Sx)y, (S.).), 808 = 0, and the original § was inner.

Now suppose n is even. Again let V be an Fp-space with basis z1, - -, z,,
let H = Ker g, where n(>_ as i) = 2, ai,let z = D zi, and view S, as a
subgroup of Sp (H /{(x)).

THEOREM 5.2. Ifn > 6 is even, the dimension of H' (S. , H/{xo)) over F, is
one. In particular, the dimension of H' (0s(+1, Fs), V) is one, for V the 6-
dimensional Fe-space.

Proof. Ss = Sp:(F:). By 4.4, the Fy-dimension of H'(Ss, V) is one, for
V the 4-dimensional Fy-space. Assume n > 8 and let 6 € Der (S., H/{(zo)).
As in the proof of 5.1, if ¢ and 7 are two distinet commuting transpositions,
b0 e (x,)* and ér € (x,)*. So for every transposition r € S, , 87 = a(r)2, modulo
(x()), with « (7') eF,.

H has a basis

L1z, Xogy *** ) Tn—gm-1, Lo,
so H /(x,) has a basis

12, Tozy * 5 Tn2n.

Let§ = %, 2 = i, and U = (g, 2)*, so H/{xo) = (7,2 ® U. The elements
of (Sa)(s,5 have the form S(A4, T') with 4 ¢ Sp((7, 2)) and T ¢ Sp(U). By
the remarks above,

68(4,1) =a(A)e(@, 2 and 881, T)=g(T)eU.
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S(4, 1) ¢ 8, for each 4 ¢ S;, so a is a derivation on S; >~ SL,(F;). By 2.1,
we may assume a = 0.

If 7 € Sy, the symmetric group on {3, -- -, n}, then on H/{(xp), = has the
form#g = g, 7i = v(r)@)§+ T(x)aforaeU,and 72 = a(r)g + @ (x) +
where v(r) e U*, T(x) ¢ Sp(U), a(r) e F; and @ (x) ¢ U. Suppose 8(r) =
p(r) + h(r) + q(r), with p () € (@), h(r) e U, g(w) ¢ (§). Then, as in the
proof of 5.1, we see that ¢ = 0. Thus for 7 € Sps, o e (H)" = H @ U.

As in the argument for 5.1, write

r@) = fo(@)§ 4+ 7 formeSnsand deU.

Then 7* ¢ GL(U), fr € U*, (on)* = p*r* and for = fo o™ + f-. We also have
the relations (1) and (2) of 5.1. In order to use induction, we must verify
that U =~ H’/(xs) as Sn—s-modules, where H’ = Ker n | V’. Choosing bases

Zu =+ Bau, Zprr = Jrpy, k=3 --,n—2
for U and
Taay Tasy ** 5 Tan—2,nm1
for H' /{zy), and defining ® : U — H’/{xo) by ®Zk 411 = & k1, We obtain the
module-isomorphism as for 5.1.

Hence, using a suitable induction hypothesis, we may suppose that the Fy-
dimension of H*(S,_2, U) is one. Define a derivation

8ot Sps — (g)"'

by 8o(w) = (r + 1)&;, and then set do(7) = po(r) + ho(mw) with po(w) € (v)
and hy(r) e U. Then we have

3) ho(pm) = p*ho(m) + ho(p)
4) polem) = fo(ho(®))F + po(w) + Do(p).

Thus ho may be viewed as an element of Der (S,—2, U). Since 8 | Sns =0,
we have ho | Sq,—s = 0 and po | Su—s = 0. Suppose hy is inner; that is, suppose
there exists %, ¢ U such that

(r + D& = (r + Duo + po(1r) for all 7 € Sp—z.

Then (’ll' + 1)(:1-73 + ﬁo) = po(ﬂ'), and T(ﬁa + 110) = is + o fOI‘ all = éSn_a.
Let uo be a preimage for v, with 4o = D o @k, 3 + U = > ar 2. Then
since & + o is a fixed point for S,—s, B(Q ar Tu,xi + x;) = 0ford,j > 4;
and since % ¢ U,

BQ oxmi, 21+ %) = oo + s = 0.

Thus we see that @ = 0. But & 5 0, s0 hy must be non-inner.
By (1), h e Der (Sp—2, U). We may assume h = My, N e Fo. Then (2)
becomes

pler) = M, (ho(m))g + p(m) + p (o).



FIRST COHOMOLOGY GROUPS OF SOME LINEAR GROUPS 417

Since Ao, f and p vanish on S,_3,
plpr) = p(r) and p(omp ") = p(x) for peSns.

Clearly S,_» = Sn_s + D=y (37)Sn_s, and for s > 4, (3¢) = (43)(34) (41).
Thus we see that p is constant on the elements of S, not in S,—3. Let
7= (34),p = (345),s0 7 = (35). We check easily that f (h (o)) = 0 and
p(xp) = 0,s0p = 0.

Thus & is determined up to a scalar multiple A on (S.);. If 7 = (13), then
7(Sn)s 7 = (S»):. Therefore, § is determined up to the same scalar N on
(Sn):. Since S» = ((Sn)y, (Sn)s), the dimension of H'(S,, H/{xs)) is at
most one.

Define 6 : S, — H/{xo) by ém = (m + 1)&. Then §is a derivation vanish-
ing on S,_1, the symmetric group on {2, -+, n}. Arguing as for ko, we see
that & must be non-inner. Hence the dimension of H' (S, , H/(xs)) is exactly
one, for n > §, even.
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