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A group, G, of mtrices with entries from the field of complex numbers is
sid to be "of the second kind" if ech mtrix hs rel character, but G is not
similar to group of mtrices with rel entries. The single fithful irreducible
representation of the quternion group provides n example of such group of
mtrices.
Two classical results re strengthened by Theorem 1 below: The first of

these sserts that every non-trivial irreducible representation of a (finite)
group of odd order involves complex characters. (We del exclusively here
with finite groups, nd representations over the field of complex numbers.)
Theorem 1 extends to the more general case of group whose elements of odd
order form a subgroup. The second classical result asserts that every matrix
group of the second kind hs even degree. Theorem 1 puts constraint on
this degree, leding to the esy corollary that group whose order is not
divisible by four cannot hve n irreducible representation of the second kind.
Theorem 2 complements Theorem 1 by providing a set of circumstances

under which we may assert that a group, G, does have a representation of the
second kind.

I would like to acknowledge my indebtedness to Dr. G. de B. Robinson who,
as my supervisor, brought these problems to my attention, and to the referee,
whose suggestions made Theorem 1 possible, by supplying an easy proof of the
corollary.

THEOREM 1. Let G be a group whose elements oi odd order form a subgroup,
and suppose that p (G) is an irreducible representation, of the second kind, of G.
Then the order of G is divisible by twice the degree of p (G).

Proof. We may, without loss, assume that p (G) is .a faithful representation
of G.

Let N be the subgroup of G which consists of ll the elements of odd order in
G. N <:1 G, and we my invoke Clifford’s Theorem in considering p (G) N,
which has irreducible components ,(N), with common multiplicity n. All
of the , (N) re in the same family of irreducible representations of N.

Let f be the degree of p (G), and suppose that the theorem is false, so that
2f does not divide Gi of course, does). Let P be a Sylow 2-group of G.
It is trivial to show that G is a semi-direct productNP. Suppose that P 2.
Then f 2s, with s odd. Suppose also that each ,(N) has degree (they
re 11 in the sme fmily of representations of N) and that z different irreduc-
ible representations of N appear in p (G) $ N. Then tzn f 2s. Further,
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N has odd order, and hence the irreducibility of the i(N) implies that is
odd. It follows that 2k, the order of P, divides zn.
Take the matrices for p (G) in such a form that the matrices for p (G) $ N

appear in reduced form, with repeated i(N) appearing consecutively. Ac-
cording to Clifford’s Theorem, each matrix in p (G) permutes the (N) amongst
themselves by conjugation. Let N1 be the subgroup of G which "fixes"
1 (N) in this sense. That is, g is in N if, and only if, x1 (ghg-) x (h) for
each h in N.
The elements of G permute the (N) transitively amongst themselves, by

conjugation. Considering G as a permutation group, it follows immediately
that the index ofN in G is z. Also, N contains N, and so takes the form of a
semi-direct product NQ, where Q is a 2-group.

It is our present purpose to show that, in p (G), every element of P (and
hence every 2-element) has character 0, except, of course, the identity. To
that end, we consider a certain representation of N1.

According to Clifford’s Theorem, the matrices for the elements of N1 have
possibly non-zero elements in the first tn by tn block, and 0 entries in the row
and column extensions of this block. Thus this block gives rise to a representa-
tion,/ (N), of N. But also, if g is an element of G not in N, then the
matrix for g in p (G) has O’s in the first tn by tn block. Now it is a theorem in
group representations that p (G) is irreducible if, and only if, the functions
f. from G to the complexes given by f. (g) ai (the i, j entry in the matrix
for g in p (G)) are linearly independent. Since p (G) is irreducible, the set of
functions arising from the first tn by tn block are linearly independent. But
only the elements of N1 make any contribution towards this independence.
From this observation we may deduce that (N) is irreducible.
Now (N) $ N is simply 1 (N) repeated n times. By Frobenius’ Reci-

procity Theorem, (N) appears n times in (N) " N, which has degree

We already have that[G] N, z QN and solOl 1PI/z
which gives

[PI > > IPI
since PI divides zn.
But this implies that n 1, and [PI z, so that the (N) are permuted

by a group of order z, the number of (N). It follows that only the identity
of P fixes a (N), and thence that in p(G), all the non-identity elements of P
have character 0.
From this last remark we obtain immediately that the identity representa-

tion, I (P) of P occurs f/I P times in the induced representation p (G) $ P.
But then ’p(G) appears f/I P times in the real representation I (P) ]’ G.
Since f/IP is odd, p (G) could not possibly be of the second kind [1], and the
theorem follows.

COO.LARv. Let G be a group of order n, n odd.
representations of the second kind.

Then G has no irreducible
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Proof. Observe first that the elements of odd order in G form a normal sub-
group, and so we may apply Theorem I to assert that any irreducible represen-
tation of G of the second kind has odd degree. But [Feit] any matrix group of
the second kind has even degree, proving the corollary.

TEoaM 2. Let G be a finite group containing exactly one involution. Then
G possesses a representation of the second kind if, and only if, G does not have a
non-trivial direct factor which is a cyclic group of order a power of two.

Proof. Suppose first that G has a non-trivial direct factor of order 2", s > 0.
Then G can be written as G C X N, where C has order 2’, and N has odd
order. (Since G has only one involution.) Every irreducible representation
of G is the tensor product of irreducible representations of C and N. But this
leads, in all cases, to representations of odd degree (since C is abelian, and N
has odd order) precluding the possibility of a representation of the second kind
[Feit].

Suppose, then, that G does not possess such a direct factor. Let p (G) be an
irreducible representation of G, and let xp be the associated character. It is
proved in [Felt] that

(1) 7’a x (g) c (p)l G
where c (p) 1, 0, or 1 according as p (G) is of the first kind (real matrices),
third kind (complex character), or second kind (real character, complex
matrices), respectively. If is the number of involutions in G then

-t- 1 ZpC(P)X(1)
where the sum is over the inequivalent irreducible representations of G.
Here, 1, and so we have

(2) 2 ,c(p)X"(1).
If Theorem 2 fails for G, then every term on the right-hand side of (2) is

non-negative. We proceed by induction, assuming Theorem 2 for groups
having the stated properties of G, but smaller order.

Let z be the single involution of G, and consider the factor group G/(z).
If ( is odd, then G 2n, n odd, and G decomposes as a semi-direct product
NC, with N n, and lC 2. But since z is in the centre of G, C (z),
and this semi-direct product is a direct product, with a factor a cyclic group of
order a power of two, contrary to assumption. Thus ( is even. The re-
mainder of the proof will be divided into two cases.

Case I. Suppose that G has exactly one involution. We would conclude
by induction that G (and hence G) has a representation of the desired kind
unless ( has a direct factor which is cyclic, of order a power of 2. Assume,
then, that ( can be decomposed as ( fi- X/, where has order a power of 2.
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Choose fi to be as small as possible consistent with this decomposition taking
place with Yi non-trivial.

If, now,/ , then ( is cyclic and so G is generated by a single element
together with the element z, which lies in its centre. Thus G is abelian, which
is impossible, for then it surely contains a cyclic direct factor of order a power
of 2. Hence we may assume that/ .

Let 7 be a generator of Yi, and let/i 2", so that " i. Let g be an
inverse image of in G. Since G has only one involution, we must have
g Z.

Let B be the inverse image of/ in G. Since ( has only one involution,/
is odd, and B 2m, m odd. But since z is in the centre of B, B decomposes
as a direct product B0 X (z), where Bo has odd order. Case I will be disposed
of when we have demonstrated the contradition that G is the direct product
of the subgroups (g) and B0. Indeed, since

G (g,B) (g, B0} and (g) nB0 1,

it will suffice to show that g and B0 commute. Let h be any element of Bo.
If h h then, because the elements of Yi and/ commute, h hz. But
hlis odd, and h, which is conjugate to h, has order 21 h ], a contradiction.
Thus G is a direct product with a cyclic factor of order a power of 2, contrary
to assumption. This disposes of Case I.

Case II. Suppose now that ( contains at least 2 involutions.
Let fl (() be an irreducible representation of ( (and, consequently, of G).

Using the expression preceding (2), and noting that is now greater than 1,
it follows that

3 <
However, by assumption, the G-sum

c (p)x (1)

which is composed of non-negative terms, and contains the sum

c (i)
is equal to 2.

This is impossible, and Theorem 2 is proved.
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