MATRIX GROUPS OF THE SECOND KIND

BY
J. MALZAN

A group, G, of matrices with entries from the field of complex numbers is
said to be “of the second kind” if each matrix has real character, but G is not
similar to a group of matrices with real entries. The single faithful irreducible
representation of the quaternion group provides an example of such a group of
matrices.

Two classical results are strengthened by Theorem 1 below: The first of
these asserts that every non-trivial irreducible representation of a (finite)
group of odd order involves complex characters. (We deal exclusively here
with finite groups, and representations over the field of complex numbers.)
Theorem 1 extends to the more general case of a group whose elements of odd
order form a subgroup. The second classical result asserts that every matrix
group of the second kind has even degree. Theorem 1 puts a constraint on
this degree, leading to the easy corollary that a group whose order is not
divisible by four cannot have an irreducible representation of the second kind.

Theorem 2 complements Theorem 1 by providing a set of circumstances
under which we may assert that a group, G, does have a representation of the
second kind.

I would like to acknowledge my indebtedness to Dr. G. de B. Robinson who,
as my supervisor, brought these problems to my attention, and to the referee,
whose suggestions made Theorem 1 possible, by supplying an easy proof of the
corollary.

Tuaeorem 1. Let G be a group whose elements of odd order form a subgroup,
and suppose that p (@) is an irreducible representation, of the second kind, of G.
Then the order of G s divisible by twice the degree of p(G).

Proof. We may, without loss, assume that p (@) is a faithful representation
of G.

Let N be the subgroup of G which consists of all the elements of odd order in
G. N < G, and we may invoke Clifford’s Theorem in considering p(G) | N,
which has irreducible components ¢; (), with common multiplicity n. All
of the ¢; (V') are in the same family of irreducible representations of N.

Let f be the degree of p(G), and suppose that the theorem is false, so that
2f does not divide | GI (f, of course, does). Let P be a Sylow 2-group of G.
Itis trivial to show that G'is a semi-direct product NP. Suppose that| P | = 2.
Then f = 2*s, with s odd. Suppose also that each ; (V) has degree ¢ (they
are all in the same family of representations of N') and that z different irreduc-
ible representations of N appearin p(G) | N. Thenten = f = 2*s. Further,
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N has odd order, and hence the irreducibility of the ¢; (V) implies that ¢ is
odd. It follows that 2%, the order of P, divides zn.

Take the matrices for p (@) in such a form that the matrices for p(G) | N
appear in reduced form, with repeated o;(N) appearing consecutively. Ac-
cording to Clifford’s Theorem, each matrix in p (G) permutes the ¢; (N ) amongst
themselves by conjugation. Let N; be the subgroup of G which ‘fixes”
o1 (N) in this sense. That is, g is in Ny if, and only if, x** (ghg™) = x"* (k) for
each A in N.

The elements of G permute the ¢;(N) transitively amongst themselves, by
conjugation. Considering G as a permutation group, it follows immediately
that the index of N1in Gisz. Also, N;contains N, and so takes the form of a
semi-direct product NQ, where @ is a 2-group.

It is our present purpose to show that, in p(G), every element of P (and
hence every 2-element) has character 0, except, of course, the identity. To
that end, we consider a certain representation of N .

According to Clifford’s Theorem, the matrices for the elements of N; have
possibly non-zero elements in the first in by in block, and 0 entries in the row
and column extensions of thisblock. Thus thisblock gives rise to a representa-
tion, 8(N1), of Ni. But also, if g is an element of G not in Ny, then the
matrix for g in p (@) has 0’s in the first tn by ¢n block. Now it is a theorem in
group representations that p(@) is irreducible if, and only if, the functions
fi; from G to the complexes given by f;;(g) = ai; (the 7, j entry in the matrix
for g in p(G)) are linearly independent. Since p(G) 7s irreducible, the set of
functions arising from the first n by in block are linearly independent. But
only the elements of N1 make any contribution towards this independence.
From this observation we may deduce that 8 () is irreducible.

Now 8(N:1) | N is simply o1 (V) repeated n times. By Frobenius’ Reci-
procity Theorem, 8 (N;) appears n times in o3 (N) T Ni, which has degree
|Q| t. Thus we must have | Q| t> (tn)n = tn®, or | Ql >

We already havethat | G| = ¢| N1| = 2|QN| = | PN | andso | Q| = | P|/z
which gives

|P| > en’ > 2n > |P]
since | P| divides 2n.

But this implies that » = 1, and | P [ = 2, so that the ¢; (V) are permuted
by a group of order 2, the number of ; (V). It follows that only the identity
of P fixes a o;(IV ), and thence that in p (@), all the non-identity elements of P
have character 0.

From this last remark we obtain immediately that the identity representa-
tion, I (P), of P occurs f/| Pi times in the induced representation p(G) | P.
But then p(G) appears f/ I PI times in the real representation I (P) T G.
Since f/| P | is odd, p(G) could not possibly be of the second kind [1], and the
theorem follows.

CoroLLARY. Let G be a group of order 2n, n odd. Then G has no trreductble
representations of the second kind.
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Proof. Observe first that the elements of odd order in G form a normal sub-
group, and so we may apply Theorem 1 to assert that any irreducible represen-
tation of G of the second kind has odd degree. But [Feit] any matrix group of
the second kind has even degree, proving the corollary.

THEOREM 2. Let G be a finite group containing exactly one involution. Then
G possesses a representation of the second kind if, and only if, G does not have a
non-trivial direct factor which is a cyclic group of order a power of two.

Proof. Suppose first that G has a non-trivial direct factor of order 2°, s > 0.
Then @ can be written as @ = C X N, where C has order 2°, and N has odd
order. (Since G has only one involution.) Every irreducible representation
of G is the tensor product of irreducible representations of C and N. But this
leads, in all cases, to representations of odd degree (since C is abelian, and N
has odd order) precluding the possibility of a representation of the second kind
[Feit].

Suppose, then, that G does not possess such a direct factor. Let p(G) be an
irreducible representation of G, and let x° be the associated character. It is
proved in [Feit] that

1) 2exX’ (@) = ¢(p)| G|

where c(p) = 1, 0, or —1 according as p (G) is of the first kind (real matrices),
third kind (complex character), or second kind (real character, complex
matrices ), respectively. If ¢ is the number of involutions in G then

t+1=2,c)x"(1)

where the sum is over the inequivalent irreducible representations of G.
Here, t = 1, and so we have

) 2 =2 ,c() Q).

If Theorem 2 fails for G, then every term on the right-hand side of (2) is
non-negative. We proceed by induction, assuming Theorem 2 for groups
having the stated properties of G, but smaller order.

Let z be the single involution of G, and consider the factor group G = G/{(z).
If G is odd, then | G | = 2n, n odd, and G decomposes as a semi-direct product
NC, with |N| = n,and |C| = 2. But since 2 is in the centre of G, C = (2),
and this semi-direet product is a direct product, with a factor a cyclic group of
order a power of two, contrary to assumption. Thus G is even. The re-
mainder of the proof will be divided into two cases.

Case I. Suppose that @ has exactly one involution. We would conclude
by induction that @ (and hence G') has a representation of the desired kind
unless G has a direct factor which is eyclic, of order a power of 2. Assume,
then, that G can be decomposed as G = A X B, where A has order a power of 2.
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Choose A to be as small as possible consistent with this decomposition taking
place with A non-trivial.

If, now, B = 1, then G is cyclic and so G is generated by a single element
together with the element z, which lies in its centre. Thus @ is abelian, which
is impossible, for then it surely contains a eyclic direct factor of order a power
of 2. Hence we may assume that B = 1.

Let § be a generator of A, and let A = 2°, so that §® = I. Let g be an
ir‘}‘verse image of § in G. Since G has only one involution, we must have
g =z

Let B be the inverse image of Bin G. Since G has only one involution, B
is odd, and B = 2m, m odd. But since z is in the centre of B, B decomposes
as a direct product By X (2), where By has odd order. Case I will be disposed
of when we have demonstrated the contradition that @ is the direct product
of the subgroups {(g) and By. Indeed, since

G = {9, B)=(,By) and {(g)nBy =1,

it will suffice to show that g and By commute. Let A& be any element of By .
If h° 5 h then, because the elements of A and B commute, h° = hz. But
| h| is odd, and A’, which is conjugate to h, has order 2| h |, a contradiction.
Thus @ is a direct product with a cyclic factor of order a power of 2, contrary
to assumption. This disposes of Case 1.

Case I1. Suppose now that G contains at least 2 involutions.
Let 8(G) be an irreducible representation of G (and, consequently, of G).
Using the expression preceding (2), and noting that ¢ is now greater than 1,

it follows that
3 < 2pcBRA).

However, by assumption, the G-sum

2ooc(p)x" (1)
which is composed of non-negative terms, and contains the sum
2cB0 (D)

is equal to 2.
This is impossible, and Theorem 2 is proved.
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