THE NORMAL INDEX OF MAXIMAL SUBGROUPS
IN FINITE GROUPS

BY
J. C. BeipLEMAN' AND A. E. SPENCER

In [4] Deskins defined the normal index of a maximal subgroup M in a
finite group @ as the order of a chief factor H/K of G where H is minimal
in the set of normal supplements to M in G. We let n(G:M) denote this
number. The following two results relating to normal index were announced
by Deskins [4].

(A) The finite group @ is solvable if and only if for each maximal sub-
group M of G, #(G:M) is a power of a prime.

(B) The finite group @ is solvable if and only if »(G:M) = [G:M] for
each maximal subgroup M of G.

In this note we obtain (B) as a corollary to a theorem on p-solvability.
We also show that if G has at least one solvable maximal subgroup M such
that »(G: M) = [G:M], then @ is solvable. The authors would like to thank
Professor Deskins for some comments helpful in the preparation of this
paper. All groups are assumed to be finite.

We begin with a lemma stated by Deskins [4, 2.1] and proved here for the
sake of completeness.

LemmA 1. 9(G:M) s uniquely determined by M.

Proof. We wish to show that if H; and H, are minimal in the set of normal
supplements to M in G and K, and K, are maximal G-subgroups of H, and
H, respectively, then | Hi/K,| = | Hy/K,|. The proof is by induction on
| G|. By the minimality of H;, K; < M, ¢ = 1, 2, s0 if K; n K, # (1), the
result follows by induction. Thus we may suppose that Ky n K, = (1).
We note that

H]_ﬂK2< G and HanstlnM

SO H1 n Kg S K1 . Thus H1 n Kg S K]_ n K2 = <1> Sinularly, Hz n K1 =
{1). In G/Ki K., H, K,/K, K, is minimal in the set of normal supplements
to M/K; K,. Certainly H, K,/K; K, is a supplement, so suppose X/K; K,
is a normal supplement to M/K; K, with H; K,/K; K, > X/K,K,. Then
(X n Hl)M = (X n Hl)Kz M = (XKg n H1 KQ)M

= (XnH,K;))M = XM = G.
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However by the minimality of Hy, X > Hi, so X = H;K,. Similarly
H;K,/K; K, is a minimal normal supplement to M/K; K, in G/K, K, .
If K; K, # (1), the lemma follows by induction, hence we may assume
KiK, = (1). So H, and H, are minimal normal subgroups of G. Let L
denote the core of M in G. If I. = (1), then by Corollary 2 of [1, p. 120],
|Hy| = |Hy|. If L # (1), consider n(G/L:M/L). We claim that
2(G/L:M/L) = |H,L/L|. To show this it suffices to show that H; L/L
is a minimal normal supplement to M /L in G/L. Suppose X/L < H,L/L
with X <{ Gand M/L X/L = G/L. Then

(X n H)M = (X n H)LM = (XL n HiL)M = XM = G.

However, by the minimality of H; , X n H; = Hy, so that X = H, L. Simi-
larly H, L/L is a minimal normal supplement to M /L in G/L. By induction
|HiL/L| = |H;L/L|. However, since H; and H, are minimal normal
subgroups, Hin L = HynL = (1). So

|Hi| = |Hy/(HinL) | = |HiL/L|=|H:L/L| = |Hy/(Hen L) | = | Ha |,
and the lemma is proved.
Lemva 2. If N < Gand N < M, then w(G/N:M/N) = 9(G:M).

Proof. Let (X/N)/(Y/N) be a chief factor of G/N, where X is minimal
with respect to X/N M/N = G/N. Then by Lemma 1, y(G/N:M/N) =
| X/Y |. Let H £ X be a minimal normal supplement to M in G. HN < X,
HN <« @, and (HN)M = G, so by the minimality of X, HN = X. Since
Y > N,HY = X. Let H/K be a chief factorof G with Hn Y < K. Then
Y <KY < X,and KY << GsoKY = Yand K = Hn Y. Thisimplies
that |H/K| = |X/Y|. By Lemma 1, 9(G:M) = |H/K]|, and
7(G/N:M/N) = | X/Y |.

For notational purposes, let n, denote the p-part of n. More precisely
if p is a prime and n = p“m with (p, m) = 1, then n, = p°. The motiva-
tion for Theorem 1 is the result (B) mentioned in the introduction.

TurorEM 1. The fintte group G is p-solvable if and only if
(n(G:M))p = [G:M],
for each maximal subgroup M of G.

Proof. Deny and let G be a counterexample of minimal order. Then
@G must satisfy the following,.

(1) @ is neither a p-group nor a p’-group, where p’ denotes the comple-
ment of p in the set of all primes.

(2) @ is not simple.

If G is simple then for each maximal subgroup M of G 9(G:M) = |G |.
However if M contains a Sylow p-subgroup of G, [G:M], = 1.
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(8) G has a unique minimal normal subgroup H, and G/H is p-solvable.

Note that p-solvability is preserved by direct products and is inherited by
subgroups. By the minimality of G and Lemma 2, every proper homomor-
phic image of G is p-solvable. Thus if H and K are two minimal normal
subgroups of G, G/H and G/K are p-solvable and so G/(H n K) is p-solvable.

(4) p|lH|

Ifp { |H |, then H is p-solvable, but by (3) G/H is p-solvable, sot hat G is
p-solvable.

(5) The Frattini subgroup, ¢(G), is trivial. This follows by (3) and the
fact that ¢(@) is nilpotent.

(6) H < ¢,(@), where ¢,(@) is the intersection of all maximal subgroups
of G with index relatively prime to p.

If L does not contain H then 9(G:L) = | H |, so that (n(G:L)), = | H |,,
however by hypothesis 9(G:L), = [G:L], .

By Theorem 2 of [5], ¢,(G) is solvable. Since G/H is p-solvable G is p-
solvable, this contradiction shows that G does not exist.

The converse follows easily. Suppose G is p-solvable and M is a maximal
subgroup of G. Let L = core (M). G/L is p-solvable so if L # (1), by
induction,

(n(G/L:M/L)), = [G/L:M/L], .

By Lemma 2, (9(G/L:M/L))p = 9(G:M),. If L = (1), then 9(G:M), =
| H |, where H is a minimal normal subgroup of G. (Note that @ is not sim-
ple.) Since H is a minimal normal subgroup of a p-solvable group H is a
p-group or a p’-group. If H is a p’ group, then [G:M], = |H|, = 1. If
H is a p-group then H is abelian and H n M <1 (. However, M is corefree
soHnM = 1land [:M] = |H|.

CorOLLARY. The finite group G s solvable if and only if n(G:M) = [G:M]
for each mazimal subgroup M of G.

Proof. If n(G:M) = [G:M] for each M, then in particular (y(G:M)), =
[G: M, for each p. Thus G is p-solvable for each prime p, hence G is solvable.
The converse is obvious.

Since 5(G:M) is the order of a chief factor of G, if G is simple
then n(G:M) = | G| for each maximal subgroup M of G. Thus if we force
subgroups of equal normal index to be related in some way the structure of G
is restricted somewhat as is indicated by Theorem 2.

TueoreMm 2. If all nonnormal maximal subgroups of equal normal index
are conjugate in G, then G is solvable.

Proof. Suppose that the theorem is false and let G' be a counter-example
of minimal order. Then G must satisfy the following.
(1) @ is not simple.
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If G is simple then all maximal subgroups in G are conjugate. By Lemma 2
of [3] G is eyclic. This contradiction implies that G is not simple.

(2) @ has a unique minimal normal subgroup H, and furthermore G/H
is solvable.

By (1), G is not simple so let H be a minimal normal subgroup of G. Then
G/H inherits the conjugacy property, so that by the minimality of G, G/H
is solvable. If there were two distinct minimal normal subgroups, then G
would be solvable.

(3) Any two maximal subgroups which do not contain H are conjugate.

Let M, and M, be two maximal subgroups not containing H. Then by
(2) M; and M, are selfnormalizing. Moreover, since H is the unique minimal
normal subgroup of @, n(G:M,) = 9n(G:M,) = |H|. By hypothesis M,
and M, are conjugate.

(4) ¢(G) = 1.

If not, then H < ¢(@) so that G/¢(@) is solvable. But then @ is solvable.

(5) Let M be a maximal subgroup which does not contain H, and let ¢
be a prime divisor of [G:M]. Then H < ¢,(G).

Let L be a maximal subgroup of G with ([G:L], ¢) = 1. Then L is not
conjugate to M, so by (3), L 2 H.

By Theorem 2 of [5] H is solvable. Then G/H and H are solvable, which
is a contradiction showing that G does not exist.

‘We now localize our conditions on index and normal index to one maximal
subgroup of G. We obtain some results under the assumption that G possesses
a solvable maximal subgroup.

TaeorEM 3. If G has a solvable maximal subgroup M with prime power
normal index, then G s solvable.

Proof. Assume that the theorem is false, and let G be a minimal counter-
example. Let M be a solvable maximal subgroup of G with n(G:M) = p°,
where p is a prime. Since n(G:M) = p* @ is not a simple group. Let N
be a minimal normal subgroup of G. We consider two cases.

Case 1. N € M. Then 9(G/N:M/N) = 9(G:M) = p* by Lemma 2.
Since M is solvable, M/N and N are solvable. By the minimality of G,
G/N is solvable. Thus G is solvable. This is a contradiction.

Case 2. N € M. Then G = MN and G/N = M/N n M so that G/N
is solvable. Since n(G:M) = | N | it follows that N is a p-group. Thus G
is solvable. This contradiction shows that G' does not exist, hence the theorem
follows.

We now present the theorem mentioned in the introduction of the present
paper.

TueorEM 4. If G has a solvable maximal subgroup M such that n(G:M) =
[G: M, then G s solvable.
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Proof. Deny and let G be a counterexample of minimal order. Then G
must satisfy the following.

(1) M is corefree.

If not, let L = core(M). By Lemma 2, y(G:M) = 3(G/L:M/L). By
the minimality of @, G/L is solvable. However L is solvable, and so G is
solvable which is a contradiction.

(2) @G is not simple.

If G is simple, n(G:M) = | G| which implies that M = (1). But then G
is eyclic contrary to the fact G is not solvable.

(8) Let K be a minimal normal subgroup of G. Then G = MK,
MnK = (1).

By (1), K £ Mson(G:M) = |K|. Then[G:M]=|K |sothatG = MK
and M n K = (1).

Now let L be a minimal normal subgroup of M. Let

Ki=Cx(L) = {k e K|U%l =k for all l ¢ L}.

Obviously K; is a subgroup of K.

(4) K= ).

First note that K; is M-invariant. Forlet g e M, k € K; and [ e L. Then
lgkg™ I" = gly kl"g™", forsome [ e L. This follows by the normality of L in M.
So ghg ™1™ = ghkli'g™ = gkg™'. That is, gkg™" € K, so that K, is M-
invariant. However, since M is maximal in G, the only M-invariant sub-
group of K are K and (1). If K; = K, we have L < G contrary to (1),
thus K; = (1).

) (L], |K]) = L

If not, let | L | = p® and let P be a Sylow p-subgroup of LK containing L.
Then P n K is a nontrivial normal subgroup of P so that Z(P) n K 5 (1).
But, by (4), Z(P) n K C Cxg(L) = (1). Therefore P n K = 1 and (5)
follows.

(6) For each prime ¢ dividing | K |, L leaves precisely one Sylow g-sub-
group of K invariant.

This follows by Theorem 2.2 of [6, p. 224] and the fact that Cx(L) = (1).

(7) M leaves a Sylow subgroup of K invariant.

Let Q be an L-invariant Sylow subgroup of K. Let g e M,l e L. Asin
(4), I'g7'Qgl = ¢ 'Qlg = ¢7'Qg. So g~'Qg is an L-invariant Sylow sub-
group of K. By (6) ¢7'Qg = Q. Thus Q is an M-invariant Sylow subgroup
of K.

Now K has no proper M-invariant subgroups, so @ = K and so K is a
solvable. Thus G/K and K are solvable so that G is solvable which is a
contradiction, showing that G' does not exist.

Considering S, , the symmetric group on 4 symbols, we see that Theorem
4 cannot be substantially improved by replacing the solvability of M by
nilpotence.
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An attempt to localize Theorem 1 fails, as can be seen in the following
example: Let G = Ay X Zs, where A; is the simple group of order 60 and Z;
is of order 5. Let M = A, X Zs. Then M is 5-solvable, indeed, M is 5-
closed and 5-nilpotent. [y(G:M))]s = [G:M]; = 5, but G is not 5-solvable.
We do obtain a result in this direction.

Recall that the group is p-closed if it has a normal Sylow p-subgroup.

TueorEM 5. Suppose that G has a corefree maximal subgroup M such
that M is p-closed, p a prime which divided | M |. Further, suppose that

(0(G:M))p = [G:M], .
Then G s p-solvable and the p-length of G is 1.

Proof. Assume that the theorem is false and let G be a counter-example
of minimal order. As in the proof of Theorem 1, G is not simple. Let P
be a p-Sylow subgroup of M. Then P is a normal subgroup of M, and since
M is corefree it follows that P is a p-Sylow subgroup of G. Let K be a mini-
mal normal subgroup of G¢. Then G = MK and 9(G:M) = |K|. Since
[G:M], = 1, it follows that K is a p’-group. We also note that
G/K = M/K n M so that G/K is p-closed. This shows that G is p-solvable
and [,(@) = 1. Since G can not exist, the theorem follows.

The finite group @ is supersolvable if and only if n(G:M) = [G:M] = p,
p a prime, for each maximal subgroup M of G. This fact follows from re-
sults (A) and (B) of Deskins {4] mentioned earlier in the present note and
by Theorems 7.2.8 and 9.3.8 of [7]. Hence, we can use the concept of normal
index to characterize supersolvable groups.

Recall that a proper normal subgroup H of G is called a generalized Frattini
subgroup of G if G = Ng(P) for each normal subgroup L of G and each
Sylow p-subgroup P of L such that @ = HN¢(P) (see [2]). Now let G be a
supersolvable group. Then the Fitting subgroup F (&) of G is not a general-
ized Frattini subgroup of G (see [2]) because of Corollary 3.6.1 of [2], hence
¢(@) is properly contained in F(G) by Corollary 3.1.1 of [2]. Therefore,
there exists a maximal subgroup M of G such that F(G) < M. We note that
M is supersolvable and n(G:M) = [G:M] = p, p is a prime. We now show
that the converse to the above facts about supersolvable groups is also true.

TueoreMm 6. If G contains a supersolvable mazimal subgroup M such that
9(G:M) is a prime and the Fitting subgroup, F(Q), is not contained in M,
then G s supersolvable.

Proof. Because of Theorem 3, G is solvable. Assume that ¢(G) = 1.
Then M /¢(@) is a supersolvable maximal subgroup of G/¢(@) and

1(G/6(G):M/$(G)) = n(G:M)
by Lemma 2. By Theorem 7.4.8 of [7] it follows that
F(G/¢(@)) = F(A)/$(G) < M/o(G).
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By induction, G/¢ (@) is supersolvable, hence @ is supersolvable by Theorem
9.3.8 of [7]. Thus, we can assume that ¢(G) = 1. By Theorem 7.4.15 of
[7], F(@) is a direct product of all minimal normal subgroups of G. Since
F(@) < M, there exists a minimal normal subgroup K of G not contained in
M. Therefore, G = MK and M n K = 1. From this it follows that
7(G:M) = | K|, and the order of K is a prime. Since G/K is supersolvable,
G is supersolvable.
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