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1. Introduction
The group A(2) of all order-preserving permutations of a chain 2 becomes

a lattice-ordered group (/-group) when ordered pointwise, i.e., f _< g if and
only if f _< g for all e 2. The supremum f / g is obtained pointwise:
/(f /g) f /g forall f e2. If an infinite collection s i eI} ofelements
of A (2) has a sup s, the sup is said to be pointwise if s sup {/s i e I} for
all f e 2. Questions involving complete distributivity led to the conjecture
that sups in A(12) must always be pointwise. We shall find that this con-
jecture is correct under rather weak assumptions on 2. In particular, the
Holland representation [5] can be used to embed an arbitrary abstract/-group
H in an A() in which sups are pointwise. Moreover, sups are "almost"
pointwise in arbitrary A (2)’s, and this leads to several results about complete
distributivity. All of these results are based on a theorem by Lloyd [6],
which states that for e, the stabilizer subgroup {g e A()lg } is
closed under arbitrary sups.

2. G-static o-blocks
Let 2 be a chain. A permutation g of 2 is said to preserve order if a _< /

implies ag _< fig for all a, e2. The group A(2) of all order-preserving
permutations (o-permutations) of 12, ordered pointwise, is an/-group. A(12)
is not assumed to be transitive. For background information about/-groups,
see [1].

In order to discuss pointwise suprema, we must first consider some pre-
liminary concepts. We define to be static if A () {1}, i.e., if there is no
o-permutation of 2 other than the identity map. This concept was con-
sidered by Chang and Ehrenfeucht [3], who constructed a static chain Q’ by
enumerating the rationals Q by a function q and then replacing each rational
number (n) by a chain of n elements. We note in passing that this process
in fact allows one to embed any chain in a static chain by first embedding it
in a chain 2; which is dense in itself (e.g., in an a-set) and then replacing each
point in 2: by a different ordinal number.
Now let G be any subgroup of A(2). Under the order inherited from

A(2), G is a partially ordered group. We shall call the pair (G, 12) an o-
permutation group. A 2 is convex if 1 _< _< , with 1, e A, implies
0 e A. By an o-block of G, we mean a segment (non-empty convex subset)
A of 2 such that for any g e G, either AG A or AG n A [::]. ([5 will de-
note the empty set.) An o-block is trivial if it contains only one point. An
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o-block A is G-static if 4g 4 (g e G) implies that g
Thus a segment 4 of f is a G-static o-block if 4g n A [::] (g e G) implies
that g for each e 4. If G A (f), then a G-static o-block is static
under the earlier definition. Of course, if G is transitive, there are no non-
trivial G-static o-blocks.

LEMMA 1. Suppose that 4 is a G-static o-block and that g e G. Then 4g is
also a G-static o-block; and if Ah (h e G) meets Ag, then h

If 4 and J are chains, we shall write (A J) for the lexicographic product
ordered from the right, i.e., (1, jl)

_
(, j) if and only if j < j or j

and ti

_
tt. From now on, J will denote the integers. will denote the

completion of f by Dedekind cuts (without end points unless these end points
belong to f). We shall consider f to be a subchain of . Each g e G can be
extended to by defining g ( ) to be sup {fg e f,/

_
}.

THEOREM 2. Let G be any subgroup of A (), and let a . Then there are
two mutually exclusive possibilities"

(1) a is contained in a unique maximal G-static o-bloct
(2) a is contained in a segment of of the form F X J), where F is a

maximal G-static o-block; and G permutes these "copies" of F transitively.

Proof. By Zorn’s lemma, there is at least one maximal G-static o-block
containing a. Suppose there are at least two, r and A, with inf
(and thus sup I’ < sup A). Let inf I’ e . There must exist g e G such
that qg e \P, for otherwise r u 4 would be a G-static o-block, violating the
maximality of r. Now since 4 is G-static, qh qg for every h e G such that
qh e . Hence [, qg) __c f is a G-static o-block; so that by the maximality
of r, qg sup r. The rest of (2) follows. Finally, if (2) holds, then for
any v e I’, if we let , be the corresponding point (Lemma 1) in the copy of
lying immediately above r, then [% /) is also a maximal G-static o-block.
Hence (1) and (2) are mutually exclusive. Both cases occur with G A(f)"
case (1) with 2 ({0, 1} X Q)-, and case (2) with 12 (Q’ X J)-.

Let denote the collection of maximal G-static o-blocks of type (1), to-
gether with certain of those of type (2), selected as explained below in order
to effect a partition of 2. If F is of type (2), and if A (J {Fg g e G} is the
subset of 12 covered by translates of F, then if another maximal G-static
o-block II (necessarily also of type (2)) meets A, we have (J {IIg g e G} A.
From each such A, we select one F and its translates for inclusion in . For
any non-empty subsets 1 and 4 of 2, we define F 4 if and only if
for all , e 1,/i e/. This definition totally orders . Each g e G induces an
o-permutation of , defined by F Fg. The resulting o-permutation
group will be denoted by (G, ). Note that (, ) is independent of the
choices of o-blocks of type (2) used to form .
THEORE 3. Let G be any subgroup of A (). The map g --. is an o-

isomorphism from G onto ; and , f) has no non-trivial G-static o-blocks.
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Proof. The fact that each r e is G-static implies that the map g --.
is one-to-one, that g is positive if is positive, and that (, ) has no non-
trivial G-static o-blocks. The rest is clear.

Unfortunately, G A(f) does not imply that G A(). For example,
let f be Q with some one point replaced by a two element chain. However,
we can get around this obstacle by broadening the class of groups under con-
sideration in such a way that the theorems in the later sections remain true
for this larger class.
The convexificaion Cony (II) of II

___
f is defined to be

{fl fl r
_

fl

_
r. for some r, r. e II}.

For g e A(f) and , e 12 such that ,g % the interval of suppor of g which
contains , is Cony {,g n an integer}. An interval of support A of g is either
positive (ig > for all i e A) or negative (g < for all e A). The ensuing
theorems hold not only for A(f), but also for those/-subgroups G of A(f)
(i.e., subgroups which are also sublattices) which share with A (f) the follow-
ing property: If A is an interval of support of g e G, so that /g /, then
there exists h e G such that h fig if/ e A, but fh if A. Intuitively,
h is obtained by depressing g outside A. Groups having this property will be
called depressible. Depressibility was one part of a more elaborate definition
(of full subgroups) used for entirely different purposes in [4].

PROPOSO 4. Convex 1-subgroups of A() are depressible.

Proof. Let G be a convex/-subgroup of A (f) and let/ be a positive interval
of support of some g e G. (The proof for , negative is similar). Obtain h
by depressing g outside A. Then 1

_
h

_
g /1 e G, so by the convexity of

G, heG.

PROPOSTO 5. If G is a depressible 1-subgroup of A (f), then is a de-
pressible l-subgroup of A ().

Proof. Let

___
be an interval of support of e (7. Then each 1 e

is a segment of f, and A LI {FI r e }
___

f is an interval of support of
g e G. Obtain h by depressing g outside A. Then ) e G is what one obtains
by depressing outside z.

3. Pointwise suprema

If G is an/-subgroup of A(f), and if in G, s sup {s[i 1}, with I an
infinite index set, we shall say that the sup is pointwise at if
Bs sup {/s i e I}. We shall say that sups are pointwise in (G, ) if when-
ever s sup s]i I}, the sup is pointwise at each e f. If sups are point-
wise in A(f), then one can determine whether a collection {sii e I} has a
sup in A (2) simply by checking whether the map s* :fl --. , defined by

sup {s i
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is an o-permutation of 2. (s* always preserves order, but it need not map 2
into 2, nor need it be one-to-one or onto.) It has been conjectured informally
by Paul Conrad that for every chain 2, sups are pointwise in A(2). This is
very nearly correct. However, if ({0, 1} X Q) it is easy to express the
identity map on as sup {s i I}, while arranging that sup (1, 0) s i I}
(0, 0). Despite this example, we shall show that sups are "almost" point-
wise in A ().

Suppose that G is an/-subgroup of A(). Then for e , the stabilizer
subgroup G {g e G g } is an/-subgroup of G. Lloyd proved, in [6,
Theorem 2] that if G A(), the stabilizer subgroups G are closed, i.e., if
s sup {s[i I}, with s e G and each s e G, then s e G (i.e., the sup is
pointwise at ). Lloyd’s proof can be applied without change to show that
the stabilizer subgroups G are closed for every depressible/-subgroup G of
A().

LEMMh 6. Let G be an l-subgroup of A() and let such that Ga is closed.
Suppose that s sup {s i I}, and t sup {s i I}. Then there is
no g e G such that g g < s.

Proof. Suppose that there is such a g. We may assume with no loss of
generality that g < s. Let h (s g) g-. Then

sg sup{h[ie

But h e Ga for all i I, while sg- G, contradicting the assumption that
G is closed.
An/-subgroup H of an/-group L is complete if whenever h e H the sup in

H of a collection {h[i I} of elements of H, then h is also the sup in L of
{hiI}.
EOnEM 7. Suppose that G is a transitive l-subgroup of A(). Then the

following are equivalent"
(1) Sups in G are pointwise.
(2) One (and hence every) stabilizer subgroup G is closed. (This condi-

tion holds if G is depressible).
(3) G is complete in A ().

Proof. (2) implies (1) by the lemma. Now suppose (1) holds. If in
G, s sup {s[ i e I}, then since the sup is poiatwise, s for all i I im-
plies s even for e A (), so s sup {s i e I} in A (). Thus (1) implies
(3). Finally, if (3) holds, then since the stabilizer subgroups of A() are
closed, those of G are also closed.

MA THEOREM 8. Suppose that G is a depressible l-subgroup of A() and
that in G we have s sup {s i e I}, but that the sup is not pointwise at e .
Let

sup {s, ]ie I} e and r e isup {} }.
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Then F is a non-trivial maximal G-static o-block of type (1). Moreover, in ,
F < F for all i I, and F sup {F[i I}.

Proof. Bs < for all i e I, for fs t would contradict Lemma 6, since
Ga is closed by depressibility. Since F has Ts- as a lower bound, we may let
q inf F. Pick any , e r such that > q (unless F {q}, in which case
we pick , ). If r {}, then sup {s} < ,s since the sup is not point-
wise ate, . If, > , then again sup {,s} _< s < ,s. Let A
A [, ,s). By Lemma 6, there is no g e G such that ,g e A. Hence if
Af meets ZX, f e G, then zXf A, for otherwise either ,sf-1 e A or ,sf-
for some i e I. It follows that A is an o-block of G. Moreover, A is G-static.
For if Xh A, but h # for some e A, then we would obtain k e G (which
may be assumed positive) by depressing h outside X, and note that s _< sic-for all i e I (since whenever s- vs, then s < ,s, so vs <: t _< vs-).
This would contradict the assumption that s sup {s}.

As noted above, s _> . Suppose by way of contradiction that Ts > .
Pick v e 2 such that ts- _< < ft. Since < if, sup {s} < ; and since
s- _< y, t _< s. By the first part of the proof, II [sup {vs}, vs) is a
G-static o-block. Since sup {/s} and since as noted above, s < for
all i, can be moved by various s’s to more than one point in II, violating
Lemma 1. Therefore Ts . It follows that F is non-trivial, for if 1
{}, then as noted above,/ sup {Ts} < ffs.

Since for ff < e F, 5 [t, s) is a G-static o-block, A, s- [7, ’) is
also a G-static o-block. Hence F is the union of a tower of G-static o-blocks
and thus is itself such an o-block. Moreover, as noted in the previous para-
graph, no G-static o-block II can contain points both above and below t, so
no G-static o-block 2 containing F can extend below ff s-; nor can 2
extend above sup I’, for then by the definition of F, there would be an s such
that 2s meets 2s without equality obtaining, violating Lemma 1. There-
fore F is a maximal G-static o-block. Fs is of type (1), so F is of type (1).
SinceFandfs < foralliI, F < Fs. Sinces sup{/s},
1 sup I’}. This concludes the proof.

COROLLARY 9. If a depressible l-subgroup G of A() has no non-trivial
G-static o-blocks, then sups are pointwise in G.

If 9"G --. H is an/-isomorphism of an/-group G into an/-group H, then 9
is complete if whenever g sup {gli e I} in G, gq sup {g q]i e I} in H;
or, equivalently, if the image G9 is a complete subgroup of H.

COROARY 10. Suppose G is a depressible 1-subgroup o A(). Then G
is completely l-isomorphic to the (complete) depressible 1-subgroup of A();
and sups are pointwise in .

Proof. By Theorem 3, the map g --* provides an/-isomorphism from G
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onto G. By Proposition 5, G is a depressible /-subgroup of A(). By
Theorem 3 and Corollary 9, sups are pointwise in (, whence it follows that
G is a complete/-subgroup of A ().
COROLLARY 11. Suppose that G is a depressible l-subgroup of A(). Then

a collection {st i e I} of elements of G has a sup in G if and only if the function
* defined by8

fls* sup {fist i e I},
is obtained by modifying as indicated below some s e G on a (possibly empty)
collection of non-trivial maximal G-static o-blocks"

s* [infl if eF
[s otherwise.

Moreover, if this is the case, s sup {st i e I}.
G which is not s, s* cannot be one-to-one.

Thus if s i e I} has a sup in

Proof. If {sli I} has a sup s, then the theorem guarantees that s* is
related to s in the prescribed way. Conversely, if s* is related in this way to
some s e G, then certainly st _< s for all i e I; and since each F e i) is a G-
static o-block, Lemma 1 guarantees that s sup

PROPOSITION 12. Let G be an 1-subgroup of A ( ).
in G if and only if infs are pointwise in G.

Then sups are pointwise

Suppose that sups are pointwise in G and that

s inf {s iI}.

Suppose that s < inf {Bs} for some e , and pick e 2 such that
s < _< inf {s}. Then (s)s-1 < s-1 sup {s-} since
--1 --1 --1

st sups ares sup and pointwise. Hence t < s for some i, and then
/s <

_
inf {ts}, a contradiction. Therefore infs are also pointwise in G.

The proof of the converse is similar.

4. Complete distributivity
An/-group G is completely distributive if

for any collection {gk ]i e I,/ K} of elements of G for which the indicated
sups and infs exist. If sups were pointwise in A(2), then complete distribu-
tivity in A() could be checked pointwise; and since totally ordered sets are
completely distributive, so would A(2) be completely distributive. This
was one of the reasons for wondering whether in A (2) sups were indeed point-
wise. Although Lloyd [6, Theorem 1] has recently shown that A(2) is
completely distributive, and although his proof also works for depressible
/-subgroups of A(2), it is interesting to note that sups are close enough to
being pointwise in A (2) that the original plan works.
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THEOREM 13 (Lloyd). Depressible 1-subgroups of A() are completely
distributive.

Proof. If G is a depressible /-subgroup of A(2), then by Corollary 10, G
is/-isomorphic to G. Sups are pointwise in , so (7 and hence G are com-
pletely distributive.

Of course, this proof depends upon Lloyd’s proof that stabilizer subgroups
are closed, and that proof is no easier than (and in fact is very similar to) his
proof of complete distributivity. The following theorem is new.

THEOREM 14. An l-group H is completely distributive if and only if it is
completely 1-isomorphic to a (complete) 1-subgroup G of some A() such that
sups are pointwise in G.

Proof. Holland [5, Theorem 1] showed that every/-group H is/-isomorphic
to an/-subgroup G of some A(2) such that 2 is the union of segments on each
of which G (and hence A(2)) is transitive. Hence A(2) has no non-trivial
static o-blocks, and thus by Corollary 9, sups are pointwise in A(2). It
is shown in [2, Theorem 3.10] that if H is completely distributive, it can be
further arranged that the /-isomorphism is complete; and since then G is a
complete/-subgroup of A(2) and sups are pointwise in A(2), sups are also
pointwise in G. The converse is clear.

Finally, the characterization of complete distributivity in [2, Corollary 3.8],
which states that an/-group is completely distributive if and only if its closed
prime subgroups have trivial intersection, provides yet another proof that
A (2) (and certain of its subgroups) are completely distributive.

COROLLARY 15. Suppose that G is a (not necessarily depressible) l-subgroup
of A() and that the stabilizer subgroups of G are closed. Then G is completely
distributive.
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