HOMOMORPHISMS OF PRINCIPAL FIBRATIONS: APPLICATIONS TO
CLASSIFICATION, INDUCED FIBRATIONS, AND THE EXTENSION
PROBLEM

Dedicated to the memory of Tudor Ganea
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A fibration
F——*.E-P.B
is called principal if there exists an associative multiplication
p:FXF—>F
and an associative action
o:FXE—E

such that the following diagram commutes.

1X7
—_—

FXF FXE_*XP B
® v |+ ll
F J E P B

A fibre preserving map
g: we,F >E—B)— (W,¢,F' >E' — B')

between principal fibrations is called 2 homomorphism if

(I1) l«: jso'
E g E

commutes.

Principal fibrations and their homomorphisms are easily seen to form a cate-
gory. The Dold-Lashof construction [2] is a functor from this category to the
category of universal principal quasifibrations and their homomorphisms.

Homotopy commutativity of diagram (II) is not sufficient to ensure the
existence of a map between the associated universal quasifibrations. How-
ever one is able to give higher homotopy conditions which, if satisfied, permit
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42 GERALD J. PORTER

the construction of such a map. Maps satisfying these higher homotopy con-
ditions are called strong homotopy homomorphisms.

Two principal fibrations are called multiplicatively equivalent if there is a
strong homotopy homomorphism from one to the other which is also a fibre
homotopy equivalence. We prove that every principal fibration is multi-
plicatively equivalent to a fibration induced from a path fibration. Further-
more principal fibrations over X with fibre multiplicatively equivalent to F
are classified by [[X, Br]] where [[X, Br]] is a quotient of the set of homotopy
classes of maps, X — By, and By is a classifying space for F.

Using the concept of strong homotopy homomorphism we give solutions to
the following two classical problems of algebraic topology.

I. Given fibrations

4

X ’

3 N Y

F yE—L . B and F
when does there exist f : B — B’ such that

p

E———B

is fibre homotopy equivalent to the fibration induced by f from
’
B2, B

In particular is £ — B induced from a path fibration over B’? This is equiva-
lent to Problem 10 of [10] which asks when an inclusion 4 € X is (up to
homotopy equivalence) the inclusion of a fibre into the total space of a fibra-
tion.

II. Givenf: A — Y and X D A when can f be extended to X?

It seems possible that the solutions given here are related to the work of
Husseini [9]; however we do not see a direct translation.

It is a pleasure to acknowledge many informative discussions with J. D.
Stasheff. In particular his valuable comments on an earlier draft of this paper
are greatly appreciated.

1. Preliminaries

We work in the intersection of the CW-category and the compactly gen-
erated category. In particular we assume the following.

(i) All spaces have the compactly generated topology.

(ii) Products are taken in the sense of this topology.
(iii) All spaces have the homotopy type of CW-complexes.
(iv) All spaces have a base point, *, which is an NDR in X.

For details of the compactly generated topology see [14].
Fibration will mean Serre fibration with connected base space.
A principle fibration is a triple

(w, &, F :

E—P B



HOMOMORPHISMS OF PRINCIPAL FIBRATIONS 43
such that:

() F -5 E -2, Bisa fibration.

(ii) Diagram (I) commutes.

(iii) m: F X F — F satisfies
(a) uis associative,
®) pwlxz) =pu, *) =zforallzeX,
(¢) wp(, ):F — F is a homotopy equivalence for all z ¢ F.

(This follows from (b) if F is connected.)

(iv) ¢ : F X E — F satisfies
(@) ¢ X1) =46 X ¢),
(b) ¢(*,y) =yforallye?.

We say that (F, u) is an associative H-space if it satisfies the conditions of
(iii).
2. Strong homotopy homomorphisms

Quasifibrations were defined in [3], principal quasifibrations and the Dold-
Lashof construction were defined in [2]. We use a variant of the original con-
struction We sketch the basic construction.

Let

(w0, F —— E L, B)

be a principal fibration. Set Eq = E, By = B, % = ¢, p0 = p, and ¢ = ¢.
Assume inductively that E, , B, , s , p» a0d ¢, have been constructed such that

(4 ¢n, F —2 B, P, B,)
is a principal quasifibration. Let CX be the cone on X. Define
Euwpn = Ea U%F X CEn, Bnu = B, Up, CE,,

D1 | En = pnand Pap ] (F X CE,) is projection onto the second factor, 7,1
is the obvious inclusion, and

$0n+1l (F XEn) = On, ¢n+l| (FXFX CEn) = u X 1.
Dold and Lashof prove that

n
4y n41, F —"22s By —Pril , Boii)

is a prineipal quasifibration and that a homomorphism of principal fibrations
g9: o, F>E—B)— (W,¢,F' > E — B)
induces a homomorphism of principal quasifibrations
gnra (b @niy F = Enyi = Bap1) = (W, @nir, F' — Enys — Buya).

Let DL(E) = U, En and DL(E) = U, B, be given the weak topology.
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Let DL(p), DL (<), DL(p), and DG (g) be the obvious induced maps. By a
proof similar to the one given in [13] one shows the following.

Lemma 1. Let (s, ¢, F — E — B) be a principal fibration.
(@) (s, DL(¢), F — DL(E ) — DL(E)) 1s a principal quastfibration.
(b) DL (E) s contractible.

Lemma 2. Letg: (w0, F - E — B)— (W, ¢, F' — E' — B’) be a homo-
morphism of principal fibrations. Then

DL(g) : (u, DL(¢), F — DL(E) — DL(E))
— W, DL(¢'), F' — DL(E') — DL(E"))
18 @ homomorphism of principal quasifibrations which extends g.

In his work on homotopy commutativity, Sugawara [15] introduced the idea
of a strongly homotopy multiplicative map. We generalize this to the case of
a principal fibration (or principal quasifibration).

DEFINITION 3.
7
g: o, F »E—L By W, ¢, FF > E L B)

is said to be a strong homotopy homomorphism if:
(a) g¢is a map of fibrations;
(b) there exist maps
M,:F"XEXI"—FE, n=2012 -,
such that

P EXIT M, g

l*XpX* lp'

*XBX*—g———aB'

commutes and
0) Mo(y) = gs(y)
(}) M1($, Y, O) = 0r ﬂo(x’ y)) Ml(x; Y, 1) = ‘P,(gi'(w)) gE(y))

(1) Ma@i, ) Ty Yo tay - s ta)
= Mn_1($1, ,N(xi,xi+1), e Ty Yy by by ,tn),
ti=0,7<m,
= Mu1(@1,  *  Tu1,0@n, Y), b1,y ** 5 tam1), tn =0,
= ¢ (Mja(@s, -+, 1%, 0, -+, b1),

M”-—i(xi+1’ %y Y, t.i+1: R tﬂ))r t = 1.
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Lemva 4. Ifg: (u,o, F - E — B)— (W, ¢, F' — E' — B’) is a homo-
morphism of principal quasifibrations, then g is a strong homotopy homomorphism.

Proof. Set Mn(xy, +«yZu,t b, -+ yta) = go(@1 -+ T, y) Where juxta-
position indicates multiplication in F.

LEvMMA 5. Letg: (u,0, F >E — B)— (W, ¢, F' — E' — B') be a strong
homotopy homomorphism of principal quasifibrations; then g extends to a strong
homotopy homomorphism

g1: (w01, F = Er— B) = (W, 01, F' = E1 — BY).
Proof. Set (g1)s, | E = gzand for (2,t,y) e F X CE set
(91)s, (z, 8, y) = ga(ix), 2, 9x(y), 0 <t < 4,
= Mi(z, y, t), 1<t L
Set (91)z, ] B = gp and for (¢, y) ¢ CE set
(91)5, (¢, y) = 24, 92(y), 0<¢< 3,
=gs(p(¥)), $<t< 1
M| F*XEXI=M,and My | (F* X (F X CE) X I") is defined by
My, o, @n, @t y), b, o, ta)
2, ¢ (Ma(@y, ~,@n, @ b, oo, 6), 95(y)), 0S¢ 3
= Mupa1 (@1, -+, T, &, 9 b, 80,2 —2t), 3F=St=1

]

A straightforward computation shows that g; and M, have the desired prop-
erties.
By iterating the result of Lemma 5, one proves:

CoroLLARY 6. Letg : (u,¢,F >E —>B)— (W,¢',F' >E — B')bea
strong homotopy homomorphism. Then g can be extended to a strong homotopy
homomorphism

DL(g) : (s, DL(¢), F — DL(E) — DL(E)
— (', DL(¢'), ' — DL(E') — DL(E")).

Strictly speaking DL(g) is incorrect notation since DL(g) is dependent
upon the choice of the maps My, -+, M,, - - which give g the structure of a
strong homotopy homomorphism. Thus DL(g) is not uniquely defined.
For most of our applications the only property required of DL (g) is that it
extends g. Thus we shall continue to use the symbol DL (g) to denote some
extension of g.

3. Principal fibrations

In [11], J. P. Meyer used “principal fibration” to mean a fibration induced
from the path fibration. This definition is equivalent to the one given in this
paper under a suitable equivalence relation.
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We first define what we mean by “multiplicatively equivalent” and prove
that within the category in which we work every principal fibration is multi-
plicatively equivalent to a principal fibration in the sense of Meyer. We then
give two classification theorems for principal fibrations over a fixed space X
with fibre multiplicatively equivalent to a given H-space F.

The most important example of a principal fibration is that of the path fibra-
tion. Let

PY = {f: [0,/ > Y |r20,f0) = #.

w: PY —>Yisgivenby«w(g) = 9(r) (n:[0,7r] > Y). QY C PYis
{nePY | w(n) = *}.
Define ¢ : QY X PY — PY by ¢(¢, 1) = £ » n where
(Exn) () = E@), 0<t<r
=q¢t—r), r<tlr+s,

for£ : [0,7]— Y, :[0,s] > Y. Letu: QY X QY — QY be the restriction of
¢. Thus QY is an associative monoid and

(4, ¢, QY — PY — 1 7)

is a principal fibration.
Let (u, ¢, F — E — B) be a principal fibration and let f : B’ — B. Set

E;={(b,e)eB XE|f') = ple)}.

Define¢’ : F X E;— E;by ¢’ (z, (b,e)) = (b,¢(x,e)). One easily sees that
(4, ¢', F — E; — B’) is a principal fibration and

F—>E —»B
| | b
F—-FE —>B
is a homomorphism of principal fibrations.
DeriNiTioN 7. Two principal fibrations
(u, ¢, F - E—B) and @/, ¢, F —E — B)
are multiplicatively related if there is a strong homotopy homomorphism
et (uo¢,F>E—B)— (W, ¢,) "> E — B)

such that e = 15 and &z is a homotopy equivalence. Two principal fibra-
tions over B are called multiplicatively equivalent if they lie in the same equiva-
lence class under the equivalence relation generated by the above relation.

Two associative H-spaces (F, u) and (F’, u’) are multiplicatively related if
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the principal fibrations
(uy 0, F—>F — %) and W, u,F —F — %)
are multiplicatively related.

Drachman [4] and Fuchs [5] have shown that if F' and F’ have the homotopy
type of CW-complexes then multiplicatively related is an equivalence relation
among H-spaces. In this case we call (F, p) and (F’, p’) multiplicatively
equivalent.

It follows from the results of [1] that within the category in which we work
multiplicatively equivalent fibrations are fibre homotopy equivalent. We do
not know under what hypothesis multiplicatively related is an equivalence
relation.

ProrosITION 8.

(a) If 4

F —E —B
e e s
F/ SN E/ SN B/
commutes and fr is a homotopy equivalence then F — E — B 4s fibre homotopy
equivalent to the fibration induced from F' — E' — B’ by fs.
(b) If in addition
(w, ¢, F >E —B) and ', ¢',F'—>E — B')

are principal fibrations and f is a strong homotopy homomorphism then the
equivalence of (a) is a multiplicative equivalence.

Proof. E; = {(b,e)e B X E'|fs(b) = p’(e)}. ForzekF set
9(@) = (@), fz(@)).
Since fz p () = p'fe(z), 9 : E — E; and
F —-E—>B

v o |
F'—>E,—B

commutes. The results of [1] then imply that ¢ is a fibre homotopy equiva-
lence.

Part (b) follows by observing that ¢ is a strong homotopy homomorphism
since f is.

TaeoreM 9. Let (u, ¢, F — E — B) be a principal fibration.

(a) Letiz : B— DL(E) be inclusion. (u, ¢, F — E — B) is multiplica-
tively equivalent to the principal fibration induced by ©s from the path fibration over
DL(E).
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(b) Let F = QY and let u be the standard multiplication on QY (see above).
There exists a homotopy equivalence ¢ : DL(E) — Y such that QY — E — B is
multiplicatively equivalent to the fibration induced by eip from the path fibration
over Y.

Proof. Define mo : E — PB, by setting
mo(x)(s) = (s,z) e B, = Bu, CE, zekE,sel.
IfzeF, (1, 2) ~p(x) = *in B;. Thusmoi F:F—QB;. Let
My : E— PDL(E)

be the composite of my with the map induced by the inclusion By < DL (E).
To prove that M, is a strong homotopy homomorphism we must define
{M, : F" X E X I" — PDL(E)} satisfying Definition 3. To do this we re-
gard

Bn = Bn—-luﬁ,,Fn X E X In

where 8, : F* X E X I" — B,_; is given by

Sn(@r, @, Yty vt ta)
=[x, "~ , @1 * %, , Y b, ...’fh v b, t =1,
= [#1, -, @i, ta, **, til, t; =0

with the convention that z, * x; means omit z; and square brackets indicate
equivalence class in B, .
Define m,, : F* X E X I" — PB,u1 by

Ma (@1, 0y Tay Yy br, - 1tﬂ)(s)

=[x17°”’xn)y:8)1—'t17"'71—tn]7 0<s<1

= [mj,".7x”7y78_ Ziﬂ'ltk,]'_tj+l,.",l—tn],
1+ 20t <s< 14 Diut

" XX

[y, s — i tal, 1+ 205 6 < s < 14 ity
Set M, : F* X E X I" — PDL(E) equal to the composite

"X EXI"-™, PB,., € PB, = PDL(E).

For the fibration, # — F — , set DL(F) = Bg. The maps defined above
are denoted by M¢, -+-, ML, --- in this case and appear in [4] where it is
shown that M§ : F — QBjy is a homotopy equivalence. (See also Fuchs [5]
and Sugawara [15].) Let

i (uyu, F>F — %) > (b0, F > E— B)

be inclusion. Since ¢ is & homomorphism it induces DL (z) : By — DL(E)
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which is a homotopy equivalence. M, | F :F—QDL(E)is equal to the com-
posite

F R
Mo op, LG  oprim

and hence is & homotopy equivalence. Thus we have a commutative diagram
F —— QDL(E)
! !

2 M, ppLiE)
! !

B-“, DL(E)

with M, a strong homotopy homomorphism and M, | F a homotopy equiva-
lence. Part (a) then follows from Proposition 8.
To prove (b) consider the inclusion,

QY — QY — =

Lol

QY - PY Y

As above this induces a homotopy equivalence DL (Z) : Boy — DL(PY).
We prove in the appendix that DL (PY ') has Y as a strong deformation retract.
Thus there is a homotopy equivalence Bgy — Y. Also the inclusion

QY - QY —

| Lk

QY —- E —- B

induces a homotopy equivalence DL (¢') : Boy — DL(E). Combining these
results, there exists a homotopy equivalence ¢ : DL(E) — Y. The map in-
duced by ¢ on the path fibrations is a homomorphism and part (b) follows
from (a) and Proposition 8.

Thus we have shown that in the category in which we work every principal
fibration is multiplicatively equivalent to a fibration induced from a path
fibration.

A stronger result is proven by Fuchs [6] who shows that every principal
fibration with fibre QY is fibre homotopy equivalent to a fibration induced from
Y and the equivalence is given by a (strict) homomorphism.

Let ®F (X) be the set of equivalence classes of principal fibrations over X
with fibre multiplicatively equivalent to (F, p). Letf,g: X —Y. Wesayf
is homotopy equivalent to g (f~ ~yg) if there exists a homotopy equivalence,
¢ : Y — Y such that f is homotopic to eg. In particular f ~ g implies f~ ~g.
Let [[X, Y]] denote the set of these equivalence classes.
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TaeoreEMm 10. The functors ®F( ) and [[ , Brll are naturally equivalent.
In particular principal fibrations over X with fibre multiplicatively equivalent to
F are classified up to multiplicative equivalence by [[X, Br]].

Proof. LetT : ®F( )—][[ , Br]] be defined as follows. Given a princi-
pal fibration
(I‘l, ¢/’ F' — E' -—>X)

with fibre multiplicatively equivalent to (¥, u) let 7, : X — DL(E’) be in-
clusion and 2’ : (F, u) — (F’, u’) a strong homotopy homomorphism which is
a homotopy equivalence (i.e. a multiplicative equivalence). As usual
DL () : By — DL(E’) is a homotopy equivalence. Let ¢ (A’) be a homotopy
inverse to DL(A"). Set

TX)W, ¢, F' > E — X) = [[e(?)]l
where [[ ]] indicates equivalence class. We must show that if
W', ¢, F" — B" — X)
is multiplicatively equivalent to
W', ¢, F' = E' — X)
and 2" : (F, u) — (F”, n”) then
TX)W, ¢, F' >E - X) =TX)W,¢", F" > E" — X)
and moreover neither side depends upon the choice of a multiplicative equiva-
lence (A’ or 2”).
It clearly suffices to assume that there is a multiplicative equivalence
0: W, e, ' >E > X) > W', I > E > X)
Since ¢ is a multiplicative equivalence it induces a homotopy equivalence
DL(g) : DL(E') — DL(E”).

Let s, : X — DL(E”). Since DL(h)e (') ~ lppan and DL(g)i, = 4, , one
has
e(W” )DL (g)DL ') (e (W' )iz) ~ &(h” )ia

with e (2” )DL (g)DL (k) a homotopy equivalence. Thus

[e (®&)izll = [le @ )il

The above argument applied to the identity homomorphism shows 7' (X)) is
independent of the choice of 4’.

Let S : [[ , Brll = ®F(X) be given by S(X)(f) = [@Br — E; — X].
(QBy is multiplicatively equivalent to F via {M]} constructed in the proof of
Theorem 9.)
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To show that S is independent of the choice of representative of [[f]] let
€ : Bp — By be a homotopy equivalence and let g ~ f. Leth : X — B} be
such that A(x) (0) = eg(x) and A(x) (1) = f(x).

E; = {(x,7) e X X PB | f(z) = mn}
and

E, = {(x,7) e X X PBr|g(x) = m}.

Defines: E,— E;by&(z,n) = (x,P(e)n*h(z)). Sincew(P(e)y) = enr(y) =
eg(x) = h(x)(0) and wP (e)pxh(x) = h(x) (1) = f(x) this is well defined.
£ is clearly a homomorphism and & | QB = Q¢ which is a homotopy equiva-
lence. Thus S : [[ ,Bs]] = PF( ).

It remains to show that ST and T'S are the respective identity functors. We
first consider ST'.

ST, ¢', F' — E' — X| = [QBr — E.ayi, — X]

where % is a multiplicative equivalence (F, p) — (F’, u’). By Theorem 9(a)
W, ¢, F' — E' — X)) is multiplicatively equivalent to (2Br — E;, — X).
Since £ (k) is a homotopy equivalence F/ — E’ — X is multiplicatively equiva-
lent to @By — E.#i, — X and 8T = 1.

To show TS = 1 consider

F
F Mo QBy QB,
! ! !
F > B > PBy
l l i

* > X f ‘Bp'-

Both maps are strong homotopy homomorphisms and induce a commutative
diagram:

s X ————f——--—> By
LT n
B, DLAL) | 1oy _PLUY) | bripB,).

It is proven in the appendix that 75, is a homotopy equivalence. Let » be a
homotopy inverse. As usual DL (f) is a homotopy equivalence

TS(f) = [le DL (M7 ))il.

Since rDL (f)DL (Mg )e (DL (M35 ) )iy ~ rDL(f)i, ~ f and rDL(f)DL(M3)
is a homotopy equivalence it follows that

e DLMS))ia]]l = [[fll and TS = 1.
This completes the proof of Theorem 10.
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In general [[ , Y]] is not representable. This is seen by considering
[[8', 8"l = non-negative integers. If [[ , S']] were representable, [[S’, 8]
would be a group. Thusin some sense|[ , By] ([X, Y] = the set of homotopy
classes of maps X — Y) is a ‘nicer’ functor than [[ , Br]]. To see what
[ , By] classifies we must introduce a stronger equivalence relation on principal
fibrations.

Until this point we have defined strong homotopy homomorphism to mean a
map M, : E — E' such that there exist M1, - -+ , M4, - - - satisfying Definition
3. For the remainder of this section a strong homotopy homomorphism is a
collection of maps {M;} satisfying Definition 3. Given {M,} the induced map
DL({M;}) : DL(E) — DL(E'’) is functorial.

Composition and homotopies of strong homomorphisms may be defined as
the obvious generalizations of the H-space situation ([4] and [5]). One then
easily shows that if {}M;} ~ {M}} then

DL({M3) ~ DL({M;}).
By a principal fibration over X with fibre multiplicatively equivalent to (F, u)
we mean a principal fibration ', ¢', F’ - E' — X) and a strong homotopy
homomorphlsm {M }: (F, u) — (F', u') with M, a homotopy equivalence.

{M }, W, o, F' — E' — X) is said to be multiplicatively related to
(M7}, v, ¢, F" — E" — X) if there is a strong homotopy equivalence

{NJ} : (M ,&P , F' — E ___)X) — (”//’¢/t’ F” — E” '—')X)
such that

(i) Noisa I,ibre hom}/)topy equivalence, and
i) {NHM;} ~ {M;}

Let ®F (X') be the set of equivalence classes under the equivalence relation
generated by the above relation. The proof of Theorem 10 is then easily
modified to show:

Tueorem 11.  There is a natural equivalence of functors between ®F( ) and
[ ’ B F]'

Remark. Under a different equivalence relation Fuchs [6] shows that prin-

cipal fibrations over X with fibre QY are classified by [X, Y].
4. Induced fibrations
Let
. ! /
F—2sE-P,B and P B L,p

be given fibrations. When does there exist f : B— B’ such that p : E — B
is equivalent to the fibration induced from p’ : E/ — B’ by f? In this section

we relate the obstructions to the existence of f to the existence of a strong
homotopy homomorphism of principal fibrations.
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Let @B — E, — E and @B’ — E,» — E’ be the principal fibrations induced
by p and p’ from the path fibrations over B and B’ respectively.

TueorREM 12. There exists f : B — B’ such that F — E — B is equivalent to
the fibration induced by f from F' — E' — B’ if and only if there exists a strong
homotopy homomorphism of principal fibrations

9B — E, — E
|l P
QB! —— E,) —— E'
with g a homotopy equivalence.

Proof. If there exists such an f then we have that

E-%,E - ",F

bl
B=—=B-1,5

commutes, where « is a homotopy equivalence and # : E; — E is the canonical
projection. wa : E — E’ and Pf: PB — PB’ define a map £, — E, which is
easily seen to be a homomorphism of principal fibrations. Since 7« ’ Fisa
homotopy equivalence so is the map E, — E, .

Now assume the existence of a strong homotopy homomorphism as given
above. Let DL(PB) and DL (PB’) be the spaces associated with the (prinei-
pal) path fibrations over B and B’ respectively. Let

r: DL(PB) - B and ' :DL(PB')— B
be the retractions given in the appendix. As usual
DL(p) : DL(E,) — DL(PB)

is a homotopy equivalence. Let « : DL(PB) — DL(E,) be a homotopy in-
verse. Since (g, k) is a strong homotopy homomorphism there exists

DL() : DL(E,) — DL(E,).
Define f : B — B’ to be the composite

B—DL(PB) —* DL(E,) ~2L® _,

pL(E,) —PL®) | presy T B

It follows from the definition of f that the following diagram homotopy com-
mutes.
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pL(E,) —PL®) | s,
lDL(p) lDL(p’)
DL(PB) DL(PB’)
| |
B ) B

Let Eu CF — Eu C(E,) — DL(E,) be the obvious inclusions. Since

r-2.,g,—PB
is constant, one sees that

EuCF —EuCE,)— DLE,) 2L presy_* 5

is p on E and constant on CF. Call this map p. A similar statement holds
with respect to 5’ : E' u CF' — B,
We note that

j,

/
Frt!.E, "~ PB
is a fibration since
P p
is. Since #'gj : F — PB’ is constant, (g | F) : F — F’. Call this map A".
The composite
F— g, —E

is the inclusion map. Thus A | F = A". Since j, /, and g are homotopy
equivalences so is A”. Let

h:EuCF—E uCF
be the map induced by 4. By the above remarks,

EuCF - g ucr

bk

B —f—-) B
homotopy commutes
Let H : (Eu CF) X I — B’ be a homotopy with

H| (BEuCF)X0=ph H|(EuCF)X1=/fp
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Let Hy = H| E X I. By the homotopy lifting property there exists
H:EXI—E

such that pH = Hzyand H |E X0 =h. Letf=H|E X 1. Thusp’8 = fp
and 8 ~ h. To complete the proof it suffices by Proposition 8 to show that
(] | F) : F — F’is ahomotopy equivalence. To do this we show (8 | F)~n".

Let H | (CF X I):F X I XI— B (where the last factor corresponds to the
cone). By the homotopy lifting property there exists

A:FXIXI—E
such that p = H| (CF X I)and B |F X I X 0 = H.
pH| (FX0XI)=H| (CF X0)=ph|CF = »,
pH| (FX1XI)=H| (CFX1)=fp|CF = »
pA|FXIX1=H|x*»=nx

Thus H restricted to these edges maps F — F’ and yields the desired homotopy
of 8| F and A". This completes the proof of the theorem.

We note that although we assumed the existence of a strong homotopy homo-
morphism it follows from the proof of the theorem that this hypothesis implies
the existence of a (strict) homomorphism of principal fibrations.

Remark. The Dold-Lashof construction applied to the principal fibration
QB — E, — E yields the iterated fibre spaces, E, , studied by Ganea in [7]
and [8]. Theorem 12 extends the work of the first half of [8].

A particular case of interest is that in which F” — E’ — B’ is the path fibra-
tion over B’. The inclusion map

QB — QB —

! ) l
OB’ - E, — PB

is a homomorphism of principal fibrations. Thus we have:

CoroLLARY 13. F — E — B 1s equivalent to a fibration induced from
7 : PB' — B’ if there exists a homotopy equivalence 6 : E, — QB’ such that

J

OB —— E, —— E

oo b
QB — 9B’ —— «

s a strong homotopy homomorphism.
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Let N : E, — F be the composite of the “lift”’ map and evaluation at 0.
Consider

9B X E, ¥ E,

llX)\ l)\
QBXF——‘!/—-»F

where ¢ (¢, (z, 1)) = (z, &%) and ¥ (§, ) = N(z, £). We may assume this
diagram commutes. (If not we can replace F — E — B by an equivalent
fibration with this property.)

Let 8 : F — OB’ be a homotopy equivalence and set
6=6N:E,— QB

The commutativity of the above diagram implies that if

BXF Y, F

J'ﬂa X0 10

oB' X @B' £, oB’
commutes, so does

B X E, ¥ &,

x|
B’ X aB' —* B’
where 0 : QB — F is A | (* X 2B). Combining this with the above, one has:

CoROLLARY 14. (a) Letd : F — QB’ be a homotopy equivalence. p : E — B
18 equivalent to a fibration induced from the path fibration over B’ if

QBXFLF

108 X0 10

aB’' X @B’ £, B’
commules.
(b) In particular if F = QB’, then p : E — B s equivalent to a fibraiton in-

duced from the path fibration if ¢ = (@ X 1).
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5. The extension problem

The extension problem asks when a given map f : A — Y defined on a sub-
complex 4 of X can be extended to X.

As an indication of the pervasiveness of the notion of strong homotopy homo-
morphism we give a solution to the extension problem in these terms.

Letz: A — X and let
QX > E; -2 4

be the fibration induces from the path fibration over X by ¢. The first ob-
struction to extending f is the homotopy class [fp] e [E;, Y]. If this is zero,
there exists a fibre map

oX — B, P 4

Lo b
QY — PY -5 Y.

THEOREM 15. f: A — Y can be extended to X if and only if there is a null
homotopy, h, of fp which is a strong homotopy homorphism of principal fibrations,

Proof. If f can be extended to F : X — Y, we have

oX —— ox ¥, gy
! l !
B, — px F¥, py
L !
At x _F oy

is a homomorphism of principal fibrations.

On the other hand let % be a strong homotopy homomorphism. Thus there
exists DL (f) : DL (E;) — DL(PY) which extends f.

Consider

A —— DL(E;)
175 lDL(’i)
X —— DL(PX).

Since < is a cofibration and DL (¢) is a homotopy equivalence, by Theorem
7.6.22 of [12] there exists j : X — DL (E;) such that j I A ig inclusion. Set
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F : X — Y equal to the composite

x I oL@y LLD)  prpyy 'y
where r is the retraction given in the appendix. It isimmediate that F/| A = f.

Appendix
TurorEM. DL (PY) has Y as a strong deformation retract.

Proof. FornePY andtelletn, e PY be defined by :(s) = 9(ts). Define
0, : (QY)" X I"?" X PY — PY inductively by

ao(t, 77) = My

o”(‘El? e 7£n7t11 tee )tn+1,77)
= (tn#bpy (b1, -+ y En—1, b1,y o ,tn,'fl))t,,.ﬂ-

Identify (PY), as a quotient of (QY)" X I" X PY by identifying

(Ely SRR S "')tn)'ﬂ)
with
(tﬂ ) y; En) € C(PY)n—l X QY
where y is the point identified with
(El, Tty o1, b1, 00y tna, 77)'
Define a retraction r, : Y, — Y inductively by
ro = 1; rnl Yn—l = Ta—1,

rﬂ(sygly 3En—17t1’ sy ba, "7)
= Won—l(Ely ce ,E”—l’tlj tt ,tn—l.)s’ '”)'

Routine verification shows that 7, is well defined. Clearly
Yy v,y
is the identity. Thus it remains to show that
Y. v, 7,
is homotopic to the identity rel Y. Define a homotopy by
hu(s’ b, o, ‘gw-l’ by =00y b,y 77)
= (81’*: ) 17 "';1’
On—l(sly ey b, byt ey 2(8 - l)u + 1» ’7))
ifo<u<i,
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= (s+ (1 —3s)u — 1), *, AR A I B
O (Ery oy Enas ooy baet, 8, 0)

ifi<u<i;
h1(8,£1, ] n—l,tl, "’,tn-—l,"))

= (L% oo w1, e 10y, oy Bty bty a1, 8, )
=J(@na(t, - b1ty oty a1, 8 1))
= gra(8, &1, 0y bn1, by 0t b, )5
ho(sy §1y vy Enay by =00y tna, )
= (s, *, 000, % 1) e ’1’gn_1(£1, ce En, b, "'7tn-—1,1,ﬂ))
= (s, % ", 48,1, L, gty o Ena, by b1, )
= (8% % g, b, Lo L 0ns(Er, o Es, b, ey M),y )
By a homotopy similar to the one given above A is homotopie to the function
ho(s, 1, =« 5 b1y f1, o+, b1y 1)
(8% % s, bty b, ooy Lt , 0 3(E, -0 Ensy br, o0 B2, )
= (8% ", % bz, bno, bna, L, oy Litna, 0na (b, o s Enay by o s tas, M)e,y)-

Iterating this procedure one eventually has Ay ~ 1. Furthermore if s = 1,
h, does not depend on u. A similar statement holds with respect to the
iterated homotopiesif # = -+ = t,.1 = 1. Thus the combined homotopy is
rel Y.
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