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F i p;E

is called principal if there exists an associative multiplication

:FXF--,F
and an associative action

q F X E--,E

such that the following diagram commutes.

FXF 1Xi ,XpFXE ;B

F i p)E

A fibre preserving map

g (, ,, F -. E -- B) (’, ,’, F’ E’ B’)

between principal fibrations is called u homomorphism if

(II)

commutes.

FXE ( iF) Xe:;F, XE,

Principal fibrations and their homomorphisms are easily seen to form a cate-
gory. The Dold-Lashof construction [2] is a functor from this category to the
category of universal principal quasifibrations and their homomorphisms.
Homotopy commutativity of diagram (II) is not sufficient to ensure the

existence of a map between the associated universal quasifibrations. How-
ever one is able to give higher homotopy conditions which, if satisfied, permit
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42 GERALD J. PORTER

the construction of such a map. Maps satisfying these higher homotopy con-
ditions are called strong homotopy homomorphisms.
Two principal fibrations are called multiplicatively equivalent if there is a

strong homotopy homomorphism from one to the other which is also a fibre
homotopy equivalence. We prove that every principal fibration is multi-
plicatively equivalent to a fibration induced from a path fibration. Further-
more principal fibrations over X with fibre multiplicatively equivalent to F
are classified by [[X, BF]] where [[X, BF]] is a quotient of the set of homotopy
classes of maps, X B, and B is a classifying space for F.
Using the concept of strong homotopy homomorphism we give solutions to

the following two classical problems of algebraic topology.
I. Given fibrations

i p F’ i E P BF ;E B and

when does there exist f :B B’ such that

E-
is fibre homotopy equiwlent to the fibmtion induced by f from

E_ p B
in prticulr is E --* B induced from pth fibmtion over B? This is equiv.-
lent to Problem 10 of [10] which sks when n inclusion A X is (up to
homotopy equivalence) the inclusion of fibre into the total spce of fibre-
tion.

II. Given f A -- Y nd X A when cn f be extended to X?
It seems possible that the solutions given here re related to the work of

Husseini [9]; however we do not see direct translation.
It is pleasure to cknowledge mny informative discussions with J. D.

Stsheff. In prticulr his wluble comments on n erlier drft of this pper
re greatly pprecited.

1. Preliminaries
We work in the intersection of the CW-category and the compactly gen-

erated category. In particular we assume the following.

(i) All spaces have the compactly generated topology.
(ii) Products are taken in the sense of this topology.
(iii) All spaces have the homotopy type of CW-complexes.
(iv) All spaces have a base point, ,, which is an NDR in X.

For details of the compactly generated topology see [14].
Fibration will mean Serre fibration with connected base space.
A principle fibration is a triple

(, , F i p;Er B)
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such that:

(i) FE: 2; Bisafibration.
(ii) Diagram (I) commutes.
(iii) :F F-+ F satisfies

(a) is associative,
(b) (., x) (x, .) x for all x X,
(c) g(x, :F --+ F is a homotopy equivalence for all x e F.

(This follows from (b) if F is connected.
(iv) F X E-+ F satisfies

(a) @(,u X 1) @(1 X @),
(b) (., y) y for all y e Y.

We say that (F, ) is an associative H-space if it satisfies the conditions of
(iii).

2. Strong homotopy homomorphisms
Quasifibrations were defined in [3], principal quasifibrations and the Dold-

Lashof construction were defined in [2]. We use a variant of the original con-
struction We sketch the basic construction.
Let

(, , F i pE - B)

be a principal fibration. Set Eo E, B0 B, io i, p0 p, and 0
Assume inductively that E,, B., i, p, and e, have been constructed such that

(#,,F i E,. p" B,)

is a principal quasifibration. Let CX be the cone on X. Define

E,+ E,, u,,, F X CE, B,+ B, u,, CE,

P-+i E p, and P+I (F X CE,,) is projection onto the second factor,
is the obvious inclusion, and

,,+1 (F X E,) ,, q,,+[ (F X F X CE,) X 1.

Dold and Lashof prove that

(, q,+ F i,,+ p,+E.+ B,+)

is a principal quasifibration and that a homomorphism of principal fibrations

g (, , F E B) (’, ’, F’ --. E’ B’)

induces a homomorphism of principal quasifibrations

Eg.+l (/z, #.+l, F --+ E.+i --+ B.+l) -- (/i’, #.+i’, F’ --+ .+i --+ B.+l).

Let DL (E) U.>0 E. und DL (E) U>0 B. be given the weak topology.
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Let DL(p), DL(i), DL (o), and DG(g) be the obvious induced maps.
proof similar to the one given in [13] one shows the following.

LEMMA 1. Let (, q, F E B) be a principal fibration.
(a (, DL( ), F ---+ DL (E DL (E is a principal quasifibration.
(b) DL (E is contractible.

By a

LEMMA 2. Let g (, o, F ---. E B) -- (’, q’, F’ E’ B’) be a homo-
morphism of principal fibrations. Then

DL(g) (t, DL(q), F DL(E) DL(E))

--* (t’, DL (o’ ), F’ --+ DL (E’ DL (E’ )

is a homomorphism of principal quasifibrations which extends g.

In his work on homotopy commutativity, Sugawara [15] introduced the idea
of a strongly homotopy multiplicative map. We generalize this to the case of
a principal fibration (or principal quasifibration).

DEFINITION 3.

g (tz, q, F E.L p B) ---> (t’, q’, F’ -- E’

is said to be a strong homotopy homomorphism if:
(a) g is a map of fibrations;
(b) there exist maps

M, F E X I’-+
such that

commutes and
(o)

F’EX i M,,>

*XpX* p

*XBX *
g

Mo(y) g(y)
M1 (x, y, O) g (x, y ), MI (x, y, 1 q’ (g (x ), g (y

n 0, 1, 2, ..-,

ti= 1.

M,_ (x, ..., x,,_, o (x,, y), tl, ..., t,_),

o’ (M_ (x, ixj, tl, t-l),

M,_ (X+l, ,.x, y, ts+l t,.) ),

t 0, i < n,
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LEMMA 4. If g (, q, F E B) (’, ’, F’ -- E’ ----> B’) is a homo-
morphism oprincipal quasifibrations, then g is a strong homotopy homomorphism.

Proof. Set M. (xl, x., t, tl, t.) gq (xx x, y) where juxta-
position indicates multiplication in F.
LEMMA 5. Let g (, q, F ----> E ----> B) ----> (’, ’, F’ E’ --+ B’) be a strong

homotopy homomorphism of principal quasifibrations; then g extends to a strong
homotopy homomorphism

f’---+E;g (, q F ----> E .---> BI) ---+ (’,

Proof. Set (g), E g and for (x, t, y) e F X CE set

(g), (x, t, y) g(ix), 2t, g(y), 0

_ _
1/2,

M (x, y, t),
Set (gl)1 B g and for (t, y) e CE set

(g), (t, y) 2t, g(y),

g(p(y)),
o<_t<_1/2,
1/2_t_l.

M F" X E I M,, andM F" X (FX CE) I) is defined by

M(x, x,, (x, t, y), h, "", t)

2t, q’(i.(x, ...,x,x,h,-..,t.),g(y)), 0_ t_ 1/2

M+(x, ..., x., x, y, t, ..., t., 2 2t), 1/2 _-< -< 1

A straightforward computation shows that g andM have the desired prop-
erties.
By iterating the result of Lemma 5, one proves"

COROLLARY 6. Let g (, , F E B) (#’, 4/, F’ E’ B’) be a
strong homotopy homomorphism. Then g can be extended to a strong homotopy
homomorphism

DL(g) (t, DL(O), F DL(E) ---+ DL(E)

(t’,DL(’),F’ --->DL(E’) ---->DL(E’)).

Strictly speaking DL(g) is incorrect notation since DL(g) is dependent
upon the choice of the maps M1, ..., M,, which give g the structure of a
strong homotopy homomorphism. Thus DL(g) is not uniquely defined.
For most of our applications the only property required of DL (g) is that it
extends g. Thus we shall continue to use the symbol DL (g) to denote some
extension of g.

3. Principal fibrations
In [11], J. P. Meyer used "principal fibration" to mean a fibration induced

from the path fibration. This definition is equivalent to the one given in this
paper under a suitable equivalence relation.
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We first define what we mean by "multiplicatively equivalent" and prove
that within the category in which we work every principal fibration is multi-
plicatively equivalent to a principal fibration in the sense of Meyer. We then
give two classification theorems for principal fibrations over a fixed space X
with fibre multiplicatively equivalent to a given H-space F.
The most important example of a principal fibration is that of the path fibra-

tion. Let
PY {f’[0, r]--. Fir >_ 0, f(0) *1.

r PY -- Y is given by r (v) v (r) ( [0, r] --* Y). flY PY is

{,le PYi r(/) ,}.

Define q frY X PY -- PY by (, n) * n where

(,v)(t) (t), 0_< t_< r,

(t- r), r<_t<_r+s,

for [0, r] --+ Y, v [0, s] --+ Y. Let u tY X Y tY be the restriction of
o. Thus Y is an associative monoid and

(u, ,, tY -- PY r Y)
is principal fibration.

Let (u, o, F --. E -- B) be a principal fibration and let f B’ -- B. Set

E] (b, e) e B’ X E lf(b’) p(e)}.

Define o’ F X E] --. E] by ’ (x, (b, e) (b, q (x, e) ). One easily sees that
(t,, q’, F -- E] --. B is a principal fibration and

F-.- E-- B

F--+ E --+ B

is a homomorphism of principal fibrations.

DEFINITION 7. Two principal fibrations

(tt, , F - E -- B) and (t*’, ’, F’ --> E’ ---> B)

are multiplicatively related if there is a strong homotopy homomorphism

e (t, , F -. E --> B) (t’, , E’ -- E’ B)

such that e, 1, and e is a homotopy equivalence. Two principal fibra-
tions over B are called multiplicatively equivalent if they lie in the same equiva-
lence class under the equivalence relation generated by the above relation.

Two associative H-spaces (F, t) and (F’, #) are multiplicatively related if
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the principal fibrations

(,,F--F-+,) and (’,’,F’-+F’,)

are multiplicatively related.

Drachman [4] and Fuchs [5] have shown that if F and F’ have the homotopy
type of CW-complexes then multiplicatively related is an equivalence relation
among H-spaces. In this case we call (F, ) and (F’, ’) multiplicatively
equivalent.

It follows from the results of [1] that within the category in which we work
multiplicatively equivalent fibrations are fibre homotopy equivalent. We do
not know under what hypothesis multiplicatively related is an equivalence
relation.

PROPOSITION 8.
(a) If F- ::E P )B

F E B

commutes and fF is a homotopy equivalence then F -- E -+ B is fibre homotopy
equivalent to the fibration induced from F’ ----> E’ ---+ B’ by f,.

(b) /f in addition

(, , F E B) and (’, ’, F’ E’ ----> B’)

are principal fibrations and f is a strong homotopy homomorphism then the
equivalence of (a is a multiplicative equivalence.

Proof. Es {(b,e) eBXE’lf,(b) p’(e) }. ForxeEset

g(x)

Since f, p (x) pf. (x), g E ----> Es and

F ----> E ----> B

F’--+ E+--+ B
commutes. The results of [1] then imply that g is a fibre homotopy equiva-
lence.

Part (b) follows by observing that g is a strong homotopy homomorphism
since f is.

TEOREM 9. Let (#, , F ---+ E ---> B) be a principal fibration.
(a) Let i, B DL (E ) be inclusion. (, , F E -- B) is multiplica-

tively equivalent to the principalfibration induced by i,from the path fibration over
DL(E).
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(b) Let F flY and let t be the standard multiplication on Y (see above).
There exists a homotopy equivalence DL (E) -- Y such that flY E --+ B is
multiplicatively equivalent to the fibration induced by ei, from the path fibration
over Y.

Proof. Define mo E -- PB1 by setting

mo(x (s (s, x e B B u CE, x E, s e I.
IfxeF, (1, x)p(x) ,inB. Thusm0F" FB. Let

Mo E PDL(E)
be the composite of m0 with the map induced by the inclusion B DL (E).
To prove that M0 is a strong homotopy homomorphism we must define
{M, F" E X I" PDL (E)} satisfying Definition 3. To do this we re-
gard

F" IB B_ X E X
where F X E X B_ is given by

(x, x,, y, t, t)

[x,...,x_.x,...,y,t,...,t.,...,t,], t= 1,

[x, ix, t, ..., t_], t 0

with the convention that x0 x means omit x and square brackets indicate
equivalence class in B_.

Define m F X E X I PB+ by

n. (x, ..., x, y, t, ..., t,)(s)

[x, "", x, y, s, 1 t, ..., 1 t,], 0 s 1

[, ..., x, y, s g_ t, 1 t+, ..., t.],

[u, s- Z t], 1 + Z:: t,, g 1+ , t.

Set M F X E I PDL (E) equal to the composite

F X E X I m. PB+I c PB. PDL (E ).

For the fibration, F - F --., set DL (F) B. The maps defined above
are denoted by M, M, in this case and appear in [4] where it is
shown that M F -- 2B is a homotopy equivalence. (See also Fuchs [5]
and Sugawara [15].) Let

i (, , F -- F -+ - (t, q, F -- E -+ B)

be inclusion. Since i is a homomorphism it induces DL(i) B --> DL(E)
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which is a homotopy equivalence. Mo[F F----> DL (E) is equal to the com-
posite

F M DL(i)
:B DL(E)

and hence is a homotopy equivalence. Thus we have a commutative diagram

F DL(E)

MoE PDL(E)

B i. DL(E)

with M+ a strong homotopy homomorphism and Mo F a homotopy equiva-
lence. Part (a) then follows from Proposition 8.
To prove (b) consider the inclusion,

tY -+ tY

y -- Py -+ Y

As above this induces a homotopy equivalence DL(i) Bar -"* DL(PY).
We prove in the appendix that DL (PY) has Y as a strong deformation retract.
Thus there is a homotopy equivalence Br - Y. Also the inclusion

12Y -, 2Y --,

fY --- E -- Binduces a homotopy equivalence DL (i’) B, --+ DL (E). Combining these
results, there exists a homotopy equivalence e DL (E) .-> Y. The map in-
duced by e on the pth fibrations is a homomorphism and part (b) follows
from (u) und Proposition 8.
Thus we have shown that in the category in which we work every principal

fibration is multiplicatively equivalent to a fibration induced from a path
fibration.
A stronger result is proven by Fuchs [6! who shows that every principal

fibration with fibre 2Y is fibre homotopy equivalent to a fibration induced from
Y and the equivalence is given by a (strict) homomorphism.
Let F(X) be the set of equivalence classes of principal fibrations over X

with fibre multiplicatively equivalent to (F, ). Let f, g X -+ Y. We say f
is homotopy equivalent to g (f- --g) if there exists a homotopy equivalence,

Y -+ Y such that f is homotopic to eg. In particularf g impliesf- --g.
Let [IX, Y]] denote the set of these equivalence classes.
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THEOREM 10. The functors 5)F and [[ Bll are naturally equivalent.
In particular principal fibrations over X with fibre multiplicatively equivalent to
F are classified up to multiplicative equivalence by [[X, B]].

Proof. Let T (PF --+ [[ B]] be defined as follows. Given a princi-
pal fibration

(’, ’, F’ E’ ---+ X)

with fibre multiplicatively equivalent to (F, t) let ix X DL (E’) be in-
clusion and h’ (F, t) --+ (F’, t’) a strong homotopy homomorphism which is
a homotopy equivalence (i.e. a multiplicative equivalence). As usual
DL (h’) B -+DL (E’) is a homotopy equivalence. Let e (h’) be a homotopy
inverse to DL (h’). Set

T (X) (t’, ,’, F’ -- E’ -- X) [[. (h’)i,]l

where [[ ]] indicates equivalence class. We must show that if

(", ", F" E" X)

is multiplicatively equivalent to

(’, ’, F’ -+ E’ --+ X)

and h" (F,/) --+ (F", t") then

T (Z ) (t’, ,p’, F’ E’ --+ X) T (Z (t", ,", F’ --+ E’ -- X)and moreover neither side depends upon the choice of a multiplicative equiva-
lence (h’ or h" ).

It clearly suffices to assume that there is a multiplicative equivalence

g (t’, q’, F’ -- E’ -- X) --+ (t", q", F" --+ E" -- X)Since g is a multiplicative equivalence it induces homotopy equivalence

DL(g) DL(E’) -- DL(E’).Let X -- DL ). Since DL(h)e(h) 1,(,) and DL(g)i x, one
has

e (h")DL (g)DL (h) (e (h’)i) s (h")i

with s (h )DL (g)DL (h) a homotopy equivalence. Thus

[[ (h’)i]] [[ (h")i:l].

The above argument applied to the identity homomorphism shows T (X) is
independent of the choice of h’.

Let S [[ BI] @F (X) be given by S (X)(f) [tB -- Ei -- X].
(B is multiplicatively equivalent to F via {M} constructed in the proof of
Theorem 9.)
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To show that S is independent of the choice of representative of [[f]] let
BF -- BF be a homotopy equivalence and let eg f. Let h X --+ B be

such that h (x) (0) eg (z) nd h (x) (1) f (x).

E {(x, ) Z PB f(x) }
and

E {(x,,)e X X PB ]g(x)
Define g E, E] by g (x, v) (x, P (e),h (x)). Since (P (e)) e ()
eg (x) h (x) (0) and rP (e)n,h (x) h (x) (1) f (x) this is well defined.
g is clearly a homomorphism and g] B e which is a homotopy equiva-
lence. ThusS [[ ,B]]PF( ).

It remains to show that ST and TS are the respective identity functors. We
first consider ST.

ST[’, ’, F’ E’ XI [B E() X]

where h is a multiplicative equivalence (F, ) (F’, ’). By Theorem 9 (a)
(u’, ’, F E X) is multiplicatively equivalent to (Br E X).
Since e (h) is a homotopy equivalence F E X is multiplicatively equiva-
lent to B E(a) X and ST 1.
To show TS 1 consider

F Br B

F E PB

X f B.
Both maps are strong homotopy homomorphisms and induce commutative
diagram:

B, DL(M) DL(Ef) DL(f) DL(PB,)

It is proven in the appendix that iB is a homotopy equivalence. Let r be a
homotopy inverse. As usual DL (f) is a homotopy equivalence

TS (f) lie (DL (ig) )ix]].

Since rDL (f)DL (M()e (DL (i) )i, rDL (f)i f and rDL (f)DL (M)
is a homotopy equivalence it follows that

lie (DL(i )i,]] [[]]] and TS 1.

This completes the proof of Theorem 10.
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In general [[ Y]] is not representable. This is seen by considering
[IS1, $1]] non-negative integers. If I[ $1]] were representable, [IS1, S]]
would be a group. Thus in some sense Br] ([X, Y] the set of homotopy
classes of maps X --+ Y) is a ’nicer’ functor than [[ B]]. To see what

B] classifies we must introduce a stronger equivalence relation on principal
fibrations.

Until this point we have defined strong homotopy homomorphism to mean a
map M0 E E such that there exist M1, , M., satisfying Definition
3. For the remainder of this section a strong homotopy homomorphism is a
collection of maps {M} satisfying Definition 3. Given {M.} the induced map
DL({Mj} DL(E) ---+ DL(E’) is functorial.

Composition and homotopies of strong homomorphisms may be defined as
the obvious generalizations of the H-space situation ([4] and [5]). One then
easily shows that if {M.} {M} then

DL({M} DL({Mj} ).

By a principal fibration over X with fibre multiplicatively equivalent to (F, t,)
F Ewe mean a principal fibration (tr, , --* --* X) and a strong homotopy

homomorphism {Mj} (F, t) --+ (F’, ’) with M0 a homotopy equivalence.
F’({Mj}, t, , --+ --* X) is said to be multiplicatively related to

({M.}, , -- --* X) if there is a strong homotopy equivalence

{Nil (#, ’, F’ --. E’ -- X) --* (", ’, F" -- E" -- X)such that

(i) No is a fibre homotopy equivalence, and
(ii) {N}{Mj} {M:}
Let 6 (X) be the set of equivalence classes under the equivalence relation

generated by the above relation. The proof of Theorem 10 is then easily
modified to show:

THEORm 11. There is a natural equivalence offunctors between 6x’5 ( and
B].

Re mark. Under a different equivalence relation Fuchs [6] shows that prin-
cipal fibrations over X with fibre tY are classified by [X, Y].

4. Induced fibrations

Le

EB and F’ i’ E’ P’ B’
be given fibrations. When does there exist f B B’ such that p E -- Bis equivalent to the fibration induced from p’ E’ B’ by f? In this section
we relate the obstructions to the existence of f to the existence of a strong
homotopy homomorphism of principal fibrations.
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Let fB -+ E --+ E and fB’ --+ E, -+ E’ be the principal fibrations induced
by p and p’ from the path fibrations over B and B’ respectively.

THEOREM 12. There exists f" B ---+ B’ such that F E B is eivalent to
the fibration induced by ffrom F’ E’ B’ if and only if there exists a strong
homotopy homomorphism of principal fibrations

B E E

B’ E’ E’

with g a homotopy equivalence.

Proof. If there exists such an f then we have that

E o

B Bf--B
commutes, where a is a homotopy equivalence and r EI "-+ E is the canonical
projection. ra E --+ E’ and Pf" PB --+ PB’ define a mapE -+ E, which is
easily seen to be a homomorphism of principal fibrations. Since ra F is a
homotopy equivalence so is the map E -+ E,.
Now assume the existence of a strong homotopy homomorphism as given

above. Let DL (PB) and DL (PBp) be the spaces associated with the (princi-
pal) path fibrations over B and B respectively. Let

r:DL(PB)--+B and r :DL(PB)-+B’

be the retractions given in the appendix. As usual

DL(p) DL(E) --+ DL(PB)

is a homotopy equivalence. Let a DL (PB) -+ DL(E) be a homotopy in-
verse. Since (g, h) is a strong homotopy homomorphism there exists

DL (h DL(E) -+ DL (E, ).

Define f B --+ B to be the composite

B --+ DL(PB) nL(h)
,,,> DL(Ev)

DL(E,)- DL(p’) r’ B’.DL(PB’) -----+

It follows from the definition of f that the following diagram homotopy com-
mutes.
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DL(E) --DL(h) .. DL(E,
DL(p) [DL(p’)

DL(PB) DL(PB’)

r r’
B f B’

Let E u CF -- E u C (E) -- DL (E,) be the obvious inclusions. Since

F J .E----o PB
is constant, one sees that

E t CF -- E t C (E) DL (E) __DL(p) DL (PB)

is p on E and constant on CF. Call this map i.
with respect to ’ E’ t CF B’.
We note that

F’ J’ r’

is a fibration since

E P’ B’

is. Since "j F -- PB’ is constant, (gl F) F F’.
The composite

is the inclusion map.
equivalences so is h.

r

A similar statement holds

Call this map h.
F J E,--E

Thus h F h. Since j, j, and g are homotopy
Let

f E t CF E t CF’

be the map induced by h. By the above remarks,

hE t CF t CF

B f B’
homotopy commutes

Let H (E u CF) X I ---. B’ be a homotopy with

HI (E u CF) X 0 O’f, H (E u CF) X 1 f$.
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Let H H E I. By the homotopy lifting property there exists

I E X I--- E’

such thatp/=Hand/lEX0=h. Letfl=/lEX 1. Thusp=fp
and h. To complete the proof it suffices by Proposition 8 to show that
( F)" F -- F’ is a homotopy equivalence. To do this we show (/ F) h.
LetH (CF X I) F X I X I B (where the last factor corresponds to the

cone). By the homotopy lifting property there exists

:FXIXI--E
such that pt U (CF X I)and/IF X I X 0 =/.

pI (F X 0 X I) H (CF X O) P’fl CF ,,
pI] (F X 1 X I) HI (CF X 1) f! CF ,,

Pi F X I X 1 H I, ,.
Thus/ restricted to these edges maps F ---, F’ and yields the desired homotopy
of 1 F and he. This completes the proof of the theorem.
We note that although we assumed the existence of a strong homotopy homo-

morphism it follows from the proof of the theorem that this hypothesis implies
the existence of a (strict) homomorphism of principal fibrations.

Remark. The Dold-Lashof construction applied to the principal fibration
fiB --, E -- E yields the iterated fibre spaces, E, studied by Ganea in [7]
and [8]. Theorem 12 extends the work of the first half of [8].
A particular case of interest is that in which F’ E’ -- B is the path fibra-

tion over B. The inclusion map

2B -_ 2B --,

l]B---- E PB

is a homomorphism of principal fibrations. Thus we have-

COIOLLARY 13. F E B is equivalent to a fibration induced from
v PB B’ if there exists a homotopy equivalence 0 E, --+ fiB’ such that

2B J- E,----E

fB __. fB

is a strong homotopy homomorphism.
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Let E -- F be the composite of the "lift" map and evaluation at 0.
Oonsider

BXF b F

where (, (x, ) (x, .) and (, x) k (x, ). We may assume this
Sagram commutes. (If not we can replace F E B by an equivalent
fibration with this property.

Let F fiB be a homotopy equivalence and set

O=OX:EB’.
The commutativity of the above diagram implies that if

BXF F

B’ XB’ u 9B’
commutes, so does

2B X E, b E

where 0 fiB -- F is X{ (. X fiB). Combining this with the bove, one hs"

Cououv 14. (a Let 0 F B’ be a homotopy equivalence, p E B
is equivalent to a fibration inducedfrom the path fibration over B’ if

flBXF F

B N B B’
mmutes.

(b) In partilar ifF fiB’, then p E B is equivalent to a fibrion in-
duced from the path fibration if (0 X 1 ).
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5. The extension problem
The extension problem asks when a given map f A --+ Y defined on a sub-

complex A of X can be extended to X.
As an indication of the pervasiveness of the notion of strong homotopy homo-

morphism we give a solution to the extension problem in these terms.

Let i A --* X and let

X---->E- p
=:. A

be the fibration induces from the path fibration over X by i.
struction to extending f is the homotopy class [fp] e [E, Y].
there exists a fibre map

y - py

The first ob-
If this is zero,

THEOREM 15. f A ---+ Y can be extended to X if and only if there is a null
homotopy, h, offp which is a strong homotopy homorphism of principal fibrations.

Proof. If f can be extended to F X --* Y, we have

FX 2X

PF

i FA X ------, Y

is a homomorphism of principal fibrations.
On the other hand let h be a strong homotopy homomorphism. Thus there

exists DL(f) DL(E) -- DL(PY) which extends f.
Consider

A DL(E)

Ii IDL(i)
X ---; DL(PX).

Since i is a cofibration and DL (i) is a homotopy equivalence, by Theorem
7.6.22 of [12] there exists j X DL (E) such that J A is inclusion. Set
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F X -- Y equal to the composite

rX- j DL(E) DL(f) DL(PY) Y

where r is the retraction given in the appendix. It is immediate that F A f.
Appendix

THEOREM. DL (PY) has Y as a strong deformation retract.

Proof. For 7 e PY and e I let 7t e PY be defined by 7t (s) 7 (ts). Define
0, (2Y)" X I"+1 PY -- PY inductively by

Oo(t, ) ,
o(, ..., ,,, t, ..., t,+, ,

(ti..O,,_t(, ..., ,)_, tx, "’, t., 7))t.+.

Identify (PY). as a quotient of (frY)" X I" X PY by identifying

(1, "’’, n, tl, "’’, t,, 7)
with

(t,, y, ,) C(PY),_I X Y

where y is the point identified with

(1, "’’, n--1, h, "", t,_, 7).

Define a retraction r. Y, -- Y inductively by

ro 1, r. Y.-I r._t,

rO._ (h, li.-, h, t._, s, 7).

Routine verification shows that r. is well defined. Clearly

y_ j ;y,. r,

is the identity. Thus it remains to show that

y, r, j>Y >Y.
.i homotopie to the identity rel Y. Define a homotopy by

h)t (8, 1, "’’, n-1, tl, ’’’, tn-1, 7

(sl,,, "",,,1, ...,1,

On--1 (1, n--1, tl, "", t,)--I, 2 (8 l)u + 1, 7))

if0_<u_< 1/2,
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(s+ (1 s)(2u-- 1),,,...,,,1,...,1,

0n--1 (1, "’’, n--1, tl, "’’, t.--1, S, #))

if1/2_<u_< 1;
hi (s, 1, n-1, tl tn--1, rl

(1,., ...,.,., 1, .,., 1, 0,_1(1, "", ,-, tl, ..-, t,_, s,

j (rO,_ (, ,_, t, t,_, s, *l))

jr,(s, x, "", ,-, tx, ..., t_, );

h0 (s, , "’’, n--1, tl, "’’, t,_x, V)

(s, ,, "-’, ,, 1, ..., 1, O._t(l, "-, -x, h, "", t_t, 1, y))

(s,., ...,., .-t, 1, ..., 1, 0._(t, "’, .-, tt, ..., t,_t, ))

(s,., ...,., ._, .-t, 1, ..., 1, 0._3(t, "’, .-,, h, "", t._, ),._,).
By a homotopy similar to the one given above h0 is homotopic to the function

h’0(s, t, "", .-t, h, "’, t._t, 7)

(s,., ...,., t&_, .-t, a, ..., 1, tn-t, On-. (t, n-., l_, tn-:, "q))

(s,., ,., l&_,, t&_, ti,-t, 1, , 1, t._t, 0._4 (tit, , l&_4, tt, , t,_,, q)t._,).

Iterating this procedure one eventually has h0 1. Furthermore if s 1,
h. does not depend on u. A similar statement holds with respect to the
iterated homotopies if tt t._t 1. Thus the combined homotopy is
rel Y.
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