CHERN CHARACTERS REVISITED

BY
J. F. Apams

1. Introduction

The title of this paper refers to an earlier one [1]. Although I still feel that
the questions studied in the earlier paper were indeed worth study, I have long
felt that when I wrote the earlier paper I did not have a satisfactory way of
stating the results. Recently I had occasion to reformulate the results of [1],
for some lectures I gave at the University of Chicago. This reformulation is
given as Theorem 1 below. I then found that results of a more general na-
ture were contained in some work by Larry Smith [3]. I am grateful to
Larry Smith and A. Liulevicius for letting me read a copy of [3] before pub-
lication. The object of this note, then, is to answer the question raised in
the last sentence of [3], by recording a proof of Larry Smith’s theorem which
seems more elementary and direct than the one in [3].

2. Statement of results

Let bu be the connective BU-spectrum. Then m (bu) is isomorphic to Z;
let u e w2 (bu) be a generator. The homotopy ring w«(bu) is the polynomial
ring Z[u]. We may identify u e m(bu) with its image in Hy(bu; Z) or H, (bu;
Q). The homology ring Hy(bu; Q) is the polynomial ring Q[u]. As in [1],
let m () be the numerical function given by

m(r) —- HP p[r/(z)—l)].
TaeoreM 1. The image of Hy(bu; Z) in H(bu; Q) s the Z-submodule
generated by the elements
ur/m(r), 7':07 1:2y31""

Let H(Q, n) be the Eilenberg-MacLane spectrum for the group @ of ra-
tional numbers in dimension n. The ™ component of the Chern character
defines an element

ch, e H (bu; Q)
or a map of spectra
bu — H(Q, 2r).

This map of spectra induces a homomorphism of homology theories, say
ch, : bun(X) d n-—2r(X; Q)

This homomorphism is defined whether X is a space or a spectrum.
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TrEOREM 2 (L. Smith). The image of
m(r)chy : bu, (X) — Hp0,(X; Q)
1s integral, that s, it is contained in the image of
Hyp2(X;Z) — Hp2r (X5 Q).

This theorem differs only in minor details from Theorem 3.1 of [3]. That is,
I have written m (r) where Smith writes u,; the dimensional indexing is
slightly different; » may be odd as well as even; and X may be a spectrum as
well as a space. Theorem 2.1 of [3] follows, as is remarked at the end of [3].

3. Proof of Theorem 1
The proof proceeds by separating the primes p. Let @, be the localisation
of Z at p, that is, the subring of fractions /b with b prime to p. We wish to
prove that the image of H«(bu; @,) in H.(bu; Q) is the Q,-subalgebra gen-
erated by u and 4™ /p. We give the proof for the case p = 2; the case of an
odd prime is similar.
The spectrum bu has a (stable) cell decomposition of the form

bu = Sy, fu -

where 7 is the generator for the stable 1-stem, and the cells omitted have
(stable) dimension > 4. It follows that the Hurewicz homomorphism

= Tz(bu) - Hz(bu) =7

is multiplication by 2; that is, H,(bu) is generated by u/2. It follows im-
mediately that the image of

Hy(bu) — Hy(bu; Q)

contains (u/2)". We wish to prove a result in the opposite direction.
Recall from [1] that we have

H*(bu; Z) = A/(ASq" + ASg™),

where A is the mod 2 Steenrod algebra. Equivalently, let HZ, HZ, be the
Eilenberg-MacLane spectra for the groups Z, Z, in dimension 0; then the
generator in H°(bu; Z,) gives a map of spectra bu — HZ,;, which induces a

monomorphism
Hy(bu; Zy) — Hy (HZ ; Z,).

Here H, (HZ, ; Z,) is A« , the dual of the mod 2 Steenrod algebra [2]. We use
this monomorphism to identify Hi(bu; Z;) with a subalgebra of A, ; we
write &, for the Milnor generatorsin A « [2]. Then theimage of u/2 ¢ H2(bu;Z)
in Ha(bu; Z,)is £&. The Ey-term of the Bockstein spectral sequence, namely

Ker S¢'/Im S¢* = Ker 8:/Im 6,
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is the polynomial algebra Zs[£1]; this fact is essentially in [1], and is easily
proved using Asx. The remainder of the argument is obvious from the
Bockstein spectral sequence, but I give it in full.
The image of
H2r(bu) - HZr(bu; Q)

is a finitely-generated abelian group, and since it is non-zero, it is isomorphic
to Z. Let heHy(bu) map to a generator. Let v = u/2, and let us write
h, © for the images of these elements in H,(bu; Z,). Then we have

Bk = 0;
therefore )
=\ + Bk

where N e Z and k e Hy,_1(bu; Z;). That is,

h =N+ (5k),
where 08; : Hy,y(bu; Zy) — Hs,(bu; Z) is the integral Bockstein. This gives

h =N + &k + 2,
where [ ¢ Hy, (bu). For the images in Hy, (bu; @) we have

h = Xw/2) + 2uh
where u ¢ Z, that is,

A r
h = =3 (u/2)

where A/ (1 — 2u) € Q.. This proves Theorem 1.
4. Proof of Theorem 2
By definition, we have
bu, (X) = m (bu A\ X).
We have therefore to consider the map of homotopy induced by

chy N\ 1

bu A\ X H@Q,2r) A\ X.

This map evidently factors through

1 NAch N1 g1

HZ Abu A X >HZ N H@Q, 2r) N X
H(@Q, 2r) \ X,

where u is the obvious pairing of Eilenberg-MacLane spectra. Now
m(HZ N\ bu A\ X)

may be interpreted as H, (bu /\ X) and calculated by the ordinary Kiinneth
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formula. The terms Tor{ (H;(bu), H;(X)) evidently map to zero in
T (H(@Q, 2r) N\ X) = Hpoe (X Q),

since H,_s,(X; Q) is torsion-free. If we consider the term H;(bu) ® H;(X),
we see that H;(bu) maps into x;(H (Q, 2r)), which is zero unless ¢ = 2r.
There remains the term H, (bu) ® H,5(X). Here H, 5 (X) maps to
H,_,.(X;Q) by the canonical map, and " € Hy. (bu) mapsto 1l e H, (Q;2r) = Q
under ch,. Using Theorem 1, we see that the image of Hz,.(bu) ® H,_. (X)
in H, 5 (X; Q) is 1/m(r) times the image of H, o (X; Z). This proves
Theorem 2.
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