
CHERN CHARACTERS REVISITED

BY

J’. F. ADAMS

1. Introduction

The title of this paper refers to an earlier one [1]. Although I still feel that
the questions studied in the earlier paper were indeed worth study, I have long
felt that when I wrote the earlier paper I did not have a satisfactory way of
stating the results. Recently I had occasion to reformulate the results of [1],
for some lectures I gave at the University of Chicago. This reformulation is
given as Theorem 1 below. I then found that results of a more general na-
ture were contained in some work by Larry Smith [3]. I am grateful to
Larry Smith and A. Liulevicius for letting me read a copy of [3] before pub-
lication. The object of this note, then, is to answer the question raised in
the last sentence of [3], by recording a proof of Larry Smith’s theorem which
seems more elementary and direct than the one in [3].

2. Statement of results
Let bu be the connective BU-spectrum. Then (bt) is isomorphic to Z;

let u e (bu) be a generator. The homotopy ring v,(bu) is the polynomial
ring Z[u]. We may identify u e v(bu) with its image in H(bu; Z) or H (bu;
Q). The homology ring H, (bu; Q) is the polynomial ring Q[u]. As in [1],
let m (r) be the numerical function given by

ra(r) II p[r/(p--i)l.

THEOaEM 1. The image of H. (bu; Z) in H. (bu; Q) is the Z-submodule
generated by the elements

ur/m (r), r O, 1,2,3, ....
Let H (Q, n) be the Eilenberg-MacLane spectrum for the group Q of ra-

tional numbers in dimension n. The rth component of the Chern character
defines an element

chr Hr (bu; Q)
or a map of spectra

bu -- H (Q, 2r).

This map of spectra induces a homomorphism of homology theories, say

chr bus (X) --, H,,_r(X; Q).

This homomorphism is defined whether X is a space or a spectrum.
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THEOREM 2 (L. Smith). The image o]

m (r)ch bu (X) --, H_(X Q)

is integral, that is, it is contained in the image of
H,_,(X; Z) H,_(X; Q).

This theorem differs only in minor details from Theorem 3.1 of [3]. That is,
I have written re(r) where Smith writes the dimensional indexing is
slightly different; n may be odd as well as even; and X may be a spectrum as
well as a space. Theorem 2.1 of [3] follows, as is remarked at the end of [3].

3. Proof of Theorem 1
The proof proceeds by separating the primes p. Let Q be the localisation

of Z at p, that is, the subrlng of fractions a/b with b prime to p. We wish to
prove that the image of H, (bu; Q) in H, (bu; Q) is the Q-subalgebra gen-
erated by u and u-l/p. We give the proof for the case p 2; the case of an
odd prime is similar.
The spectrum bu has a (stable) cell decomposition of the form

bu 0ueu
where y is the generator for the stable 1-stem, and the cells omitted have
(stable) dimension >_ 4. It follows that the Hurewicz homomorphism

Z =r. (bu) ----> H (bu) =’ Z
is multiplication by 2; that is, H(bu) is generated by u/2. It follows im-
mediately that the image of

H, (bu) --, H, (bu; Q )

contains (u/2). We wish to prove a result in the opposite direction.
Recall from [1] that we have

H* (bu; Z) A/ (ASq -b ASq),

where A is the mod 2 Steenrod algebra. Equivalently, let HZ, HZ. be the
Eilenberg-MacLane spectra for the groups Z, Z in dimension 0; then the
generator in H (bu; Z) gives a map of spectra bu --, HZ, which induces a
monomorphism

H, (bu; Z) --, H, (HZ Z).

Here H, (HZu Zu) is A,, the dual of the mod 2 Steenrod algebra [2]. We use
this monomorphism to identify H,(bu; Z) with a subalgebra of A,; we
write for the Milnor generators in A, [2]. Then the image of u/2 H (bu; Z)
in H (bu; Zu) is . The E.-term of the Bockstein spectral sequence, namely

Ker Sq/Im Sq Ker 3/Im .,
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is the polynomial algebra Z.[]; this fact is essentially in [1], and is easily
proved using A.. The remainder of the argument is obvious from the-
Bockstein spectral sequence, but I give it in full.
The image of

H. (bu) - H(bu; Q)

is a finitely-generated abelian group, and since it is non-zero, it is isomorphic
to Z. Let h e Hr (bu) map to a generator. Let v u/2, and let us write
][, for the images of these elements in H. (ha; Z). Then we have

therefore
f,.][ 0;

where k e Z and k e H.r_l (bu; Z). That is,

where . H_I (bu; Z) --* H,. (bu; Z) is the integral Bockstein. This gives

h kv’-i-&k+2/,

where e H. (bu). For the images in H(bu; Q) we have

where Z, that is,

where h/(1 2#) e Q..

By definition, we have

h h (u/2)’ -[- 2h

h
)’

1 2
This proves Theorem 1.

4. Proof of Theorem 2

bu. (X) n (bu f X).

We have therefore to consider the map of homotopy induced by

bu/kX
ch,. f 1 H (Q, 2r) iX.

This map evidently factors through

HZ A bu A X
1 A ch,. A 1 A 1;HZAH(Q, 2r) AX

H(Q, 2r) A X,

where is the obvious pairing of Eilenberg-MacLane spectra. Now

(HZ A bu A X)

may be interpreted as Hn (bu A X) and calculated by the ordinary Ktinneth
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formula. The terms Tor (H(bu), H(X)) evidently map to zero in

,(H (Q, 2r)/ X) H,_.r(X; Q),

since H,_,.(X; Q) is torsion-free. If we consider the term H(bu) (R) H.(X),
we see that H(bu) maps into ’(H(Q, 2r)), which is zero unless i 2r.
There remains the term H2,(bu) (R) H,_,.(X). Here H_2,.(X) maps to
H._.r (X; Q by the canonical map, and u e H.r (bu) maps to 1 e H., (Q; 2r) Q
under ch,. Using Theorem 1, we see that the image of H., (bu) (R) H,_, (X)
in H._.r (X; Q) is 1/m (r) times the image of H,_,. (X; Z). This proves
Theorem 2.
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