BLOCK EXTENSIONS

BY
E. C. Dape

Authors often tell us that their fictitious characters have wills of their
own, and that they can grow and develop, during the writing of a long novel,
in ways altogether unforeseen when the work was begun. The present article
has some of the characteristics of these stubbornly independent literary crea-
tions. It started out as a simple observation—now quite buried in Theorem
10.20 below—that Brauer’s First Main Theorem about blocks led to an iso-
morphism between certain group extensions associated with those blocks, an
isomorphism which could be used as a reduction technique in the study of
outer automorphisms of finite groups. During the initial write-up of this
observation it developed that these group extensions behaved as if they were
Clifford extensions H[B]* for blocks B of normal subgroups K of finite groups
H, in the sense that the blocks of H lying over B could be computed from
those of the twisted group algebra of H[B]*. Furthermore, the original
isomorphism became only a step in a reduction process paralleling Brauer’s
well-known analysis of blocks [1], a process yielding a reasonably simple
formula for the Clifford extension H[B]* for the block B in terms of an ordi-
nary Clifford extension for any of the conjugacy class of irreducible charac-
ters corresponding to B in Brauer’s theory. Obviously one couldn’t discuss
either blocks or Brauer’s analysis without a thorough study of defect groups,
culminating in a method for computing the defect groups of a block of H
lying over B from the defect groups of a corresponding block of the Clifford
extension H[B]*. Finally, the whole theory had to be put in suitable ab-
stract settings (as in [3]) for the sake of possible generalizations as well as to
clarify the actual content of the various theorems. Thus, from minor revisions
to complete rewritings, from small improvements to whole new sections, the
paper grew and expanded into a fullblown theory of block extensions in which
the original observation is all but lost and any connection with outer auto-
morphisms has completely disappeared.

Some of the maladjustments inherent in the manner in which this article
grew are still visible in the final result, particularly in the choice of abstract
settings. The axioms (2.1) used in the definition of the Clifford extension
for a block and in the construction of the associated Clifford correspondence
are quite suitable for the purpose, based as they are on the developed theory
of [3] and [4]. However, when it came to defect groups and Brauer’s analysis,
no satisfactory fixed set of axioms was found. Indeed, throughout the part
of the paper (§§4-9) devoted to these subjects the hypotheses change from
section to section—sometimes even from theorem to theorem—in a most
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disconcerting manner, and the reader will have to pay attention in order to
known just which assumptions imply which conclusions.

Perhaps a more detailed discussion of the various settings will help explain
some of the problems here. The axioms (2.1) define what is, in the language
of [3] and [4], a graded Clifford system O, {, | ¢ ¢ G} over a valuation ring
N in an algebraically closed field, with the additional hypothesis that O (and
hence each ©,) be a finitely-generated free -module. Of course one obtains
the original situation by letting O be the group ring RH of H over R, by let-
ting @ be the factor group H/K, and by letting O, be Y . R, for every coset
ceG@ = H/K.

To study defect groups we start in §4 with one of Green’s theories [7] which
defines them in a very simple setting consisting only of a ring © with identity
and a finite group £ of automorphisms of ©. His idea that defect groups be-
long properly to an “outside’ operator group £, and not necessarily to any of
the groups G, H or K involved with the ring £, is very useful and we employ
it throughout the paper.

Having chosen to define defect groups in an operator group £, we must then
decide on which of our rings and groups ¥ is to act, and how its action is to be
connected with the other structures of the theory. One obvious idea would
be to make E act as R-automorphisms of O in such a way as to permute the
direct summands O, , ¢ ¢ G, among themselves. The permutations of the
9, , which modules correspond one-to-one to the elements o of @, would then
define an action of ¥ as automorphisms of the group G. Furthermore, all
the other objects used to define Clifford extensions for blocks in §2 would re-
ceive actions of appropriate subgroups of £ in the correct manner. The prob-
lem with this idea is that there is no way to apply it to the usual special case
G = E. 'The group G = H/K does not normally act as automorphisms of the
ring © = RH! However, we know from §2 of [3] that G does act naturally as
automorphisms of the centralizer€ = C(;in ) of O, in O, a subring which
plays an important role in this paper. Iurthermore, in view of (3.4) below,
all the important steps in the Clifford theory for blocks depend only on the
structure of € as a G-graded algebra over i and on this action of G (so that
one could dispense altogether with © and the £, if one wished to etherealize
the subject a bit more). So the “correct” ring for K to act upon is € and
not O.

The natural hypothesis tying the action of I on € to the rest of the strue-
tures would be to make F act as automorphisms of the group G in such a way
that the action of G on € as well as the G-grading of € remain E-invariant.
It turned out, however, that the latter condition alone was sufficient to imply
many useful results, including generalizations of the usual method for com-
puting defect groups by means of Sylow subgroups of centralizers of elements
(in Proposition 5.10) and, more importantly, of Brauer’s First Main Theorem
(Theorem 8.7 below). Iollowing the general principle that one shouldn’t
assume more than one needs to prove one’s theorems, we stick to the weaker
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hypothesis that the G-grading of € be E-invariant in the axioms (5.1) for
§5 and §8, without worrying about the relations between the actions of G and
Eon €.

In other parts of the theory, however, the E-invariance of the action of G
on @€ is definitely needed. We introduce it into the axioms (6.1) for §6 by
making the actions of £ on ¢ and of G on € come from an embedding of ¢
as a normal subgroup of . Then we can prove a general result (Theorem
6.5) which, when specialized to the case G = E in Corollary 6.6, tells us that
the G-defect groups of a block B of O lying over the block B of £, are simply
the G-conjugates of the defect groups in G (the stabilizer of B in G) of the
Gp-orbit of blocks of the Clifford extension G[B]* (called H[B]* above) corre-
sponding to B under the Clifford theory for blocks. The additional axioms
(6.1) are also used in §9 to carry out the rest of the Brauer analysis of blocks
in our abstract setting, although one almost unrecognizable form of his theory
(Theorem 9.5) can be proven under a weaker assumption (9.4).

Even these two sets of axioms are not enough for everything. If you think
a bit about the original situation in which © = RtH and ¢ = H/K, it becomes
clear that what is needed is not a defect group in G of the block B but a defect
group in H of that block. So, after having carefully removed H and K from
our axioms, leaving only the group ring © = RH and the factor group
G = H/K, we must go back and put them in again! This is donein (7.1) and
(7.2). Even these axioms, which describe a twisted group algebra © of H
over a local ring D , together with an embedding of H as a normal subgroup
of an operator group £ on D, are slightly more general than those of a group
ring. The resulting Theorem 7.3 then tells us how to compute defect groups
in this ¥ of E-orbits of blocks of O in terms of defect groups of B in £y and of
defect groups in Ey/K of the corresponding E-orbit of blocks of the Clifford
extension G[B]*, where B is any block of O lying under some block of the
original E-orbit.

Because of the importance of the last result, it is worthwhile explaining in
some detail what it becomes in the usual case in which £ = H and © = RH.
The Clifford extension G[B]* = H[B]* for a block B of O; = RK is then a cen-
tral extension of the multiplicative group F of the residue class field § of the
valuation ring R by a certain normal subgroup G[B] of Gz = H/K (see §2).
The stabilizer G of B acts naturally as automorphisms of the Clifford exten-
sion G[B]*, centralizing F and compatible with the projection of G[B]* onto
G[B] ] G5. The Clifford correspondence (Theorem 3.7) is then one-to-one
between the blocks B of © = RH lying over the block B of ©; = RK and
the Gz-conjugacy classes T of blocks of the twisted group algebra SIGIBT*] of
the Clifford extension G[B]".

In the above situation Green’s theory gives us defect groups C of the block
B in Hy coming from the conjugation action of Hz as automorphisms of the
group ring O; = RK. It also gives us defect groups D in G5 of the Gp-con-
jugacy class T coming from the action of G = H /K on the twisted group ring



BLOCK EXTENSIONS 201

S[GIB)*). 1In fact, a general result of his theory (Proposition 4.9 below) is
that D can be chosen to be a defect group in G, 5 = (G5)z of any block
BeT. We wish, of course, to compute a defect group D in H of the block B.
The result, given in Theorem 7.7 below, is the following:

(0.1a)  The factor group CK/K is a p-Sylow subgroup of Hg/K = G5.

(0.1b) If C 4s chosen so that the p-Sylow subgroup CK/K contains the p-
subgroup D of G, then the inverse image D in C of D < CK/K s a defect group
of Bin H.

(0.1¢) Finally, Dn K = C n K is a defect group of B in K.

Here, of course, p is the characteristic of the residue class field §, which is sup-
posed to be a prime.

As mentioned above, the Brauer analysis of blocks in terms of a conjugacy
class of characters of the centralizers of their defect groups can be generalized
into a method for computing the Clifford extension for a block in terms of some
ordinary Clifford extensions of the corresponding characters. This is dis-
cussed in the long Sections 10, 11 and 12 below in the context of the “twisted
group algebra over a local ring”” of the axioms (7.1). The resulting Theorem
12.3 is also important enough to warrant a detailed explanation here, at least
for the usual special case in which © = RH and G = H/K.

Fix a defect group D in K of the block B of © = RK. Brauer’s analysis
[1] gives us a unique Ng(D)-conjugacy class of blocks b of defect zero in
DCx(D) /D corresponding to B. Any such block b contains a unique modular
irreducible character ¢, which we can regard as an irreducible F-character of
Ck(D). Then ¢ has, as in [3], a Clifford extension Cx(D){p), which is a cen-
tral extension of F by the stabilizer Cx(D),/Cx(D) of ¢ in Cx(D)/Cx(D).
Furthermore, the stabilizer Nu(D), of ¢ in the normalizer Nx(D) acts by
conjugation on Cr(D){p) centralizing F and leaving invariant the projection
of Cx(D){p) onto Cx(D) ,/Cx(D).

At this point a curious complication arises due to the fact that the normal
subgroup Nx(D), of Nx(D), need not centralize the Clifford extension
Cu(D){p). Of course it must centralize both F and the factor group

Cu(D){p)/F ~ Cu(D) ,/Cx(D) = Cu(D),/(Nx(D),0 Cu(D),).
But it ean still act non-trivially on Ca(D){p), i.e., the bilinear form

@:Nx(D), X [Cu(D) /Cx(D)] — T
defined by

(0.2) (y»)° = w(o, T)Y., for all 0 e Ng(D),, 7¢Cu(D),/Cx(D), and
Y. € Ca(D){p) such that = is the projection of y. ,

can be non-trivial. It turns out that the important subgroup is the “right
kernel”

Cu(D)o/Cx(D) = {7 eCu(D),/Cx(D) |w(a, 7) =1, forall oeNg(D)}
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of this form. Its inverse image Cu(D), in Cx(D), is a normal subgroup of
Ny(D), , and the factor group Cu(D),/Ca(D), is abelian of order relatively
prime to the characteristic p of § (see (11.13) below). Its other inverse
image Cu(D){p)s in Cx(D){p) is canonically isomorphic to the Clifford ex-
tension Cu(D) o{¢) of ¢ in Cx(D), by §16 of [3]. TFurthermore, Cx(D) .{p) is
normalized by Nx(D), and centralized by Nx(D),. So it is acted upon
naturally by the factor group Nu(D),/Nx(D), .

Now we can state the final result. It is obvious from the description of the
Clifford correspondence for blocks preceding (0.1) above (or from §3 below)
that we need to compute the stabilizer G5 of B in G = H/K, its normal sub-
group G[B], and its action on the Clifford extension G[B]* as well as that Clif-
ford extension itself. All of these things are given in terms of the above ob-
jects by Corollary 12.6 below which states that:

(0.3a) G5 = Nu(D),K/K.

(0.3b) G[B] = Ca(D), K/K.

(0.3¢) GIBI* is naturally isomorphic to Cr(D).(p) as extensions of F,
compatibly with the natural tsomorphism of

GIB] = Ca(D). K/K onto Cg(D)./Cx(D) = Cxg(D)./[Ca(D),nK].
(0.3d) The isomorphism in (0.3¢) and the nalural tsomorphism of
Gy = Nu(D),K/K onto Nu(D),/Nx(D), = Ng(D),/[Na(D),nK]
carry the action of G5 on G[B]* onto the action of N g(D) /N k(D) , on Ca(D) o{e)-

Thus the Clifford extension for blocks and its associated structures are more or
less effectively computable.

The rings used in this paper are usually orders over the valuation ring R in
an algebraically closed field § (when they are not algebras over the residue
class field § of ®). We include in §1 a quick theory of such orders O, show-
ing that they enjoy all the good properties of p-adic orders (such as the ability
to lift idempotents and blocks from factor rings, the fact that 1 4+ J(D)
behaves like a p-group, the Krull-Schmidt Theorem for finitely-generated
indecomposable modules, ete, etc.) as well as those stemming from the al-
gebraic closure of both § and §.

TFinally, in §13 we collect various miscellaneous results about the connections
between the Clifford extension for a block and the Clifford extensions for the
ordinary and modular characters in that block, and about the relations be-
tween the Clifford extensions for corresponding blocks of the R-order O; and
its residue class §-algebra Oy .

We have already said that the present article was much rewritten during its
gestation. The rewriting, in fact, has continued even after the paper was ac-
cepted by the Illinois Journal. Thus the present introduction is newly written
in June, 1972, some two years after the rest of the work. At the same time
the numbering of statements and theorems has been almost completely changed
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as a result of a new division into 13 sections in place of the original 6. In a
further (probably vain) attempt to improve its readability,anindex of symbols
and definitions has been added to the end of the paper.

One notational convention must be mentioned immediately. The two arti-
cles [3] and [4], on which we depend heavily, are denoted in the text by their
initials [CCT] and [ICE], respectively. Thus a reference to [CCT, §2] is to
section 2 of [3], while [ICE, 1.11] sends the reader to numbered statement 1.11
(in this case a proposition) of [4].

It is obvious from the above descriptions that this whole work is but a minor
generalization of that of Professor Richard Brauer, in particular of [1]. It was
therefore appropriate that the results in it were first announced at a sympo-
sium honoring his 70t birthday (see [5], where the reader will find a further
description of the contents below). I wish to thank publicly Professor Brauer
for his help and inspiration over the many years of our acquaintance. He has
been an excellent teacher and colleague, as well, of course, as the discoverer
of practically all the basie results in the theory of blocks. My only regret
in our relationship is that I had no interest at all in group theory when I was
his student, and hence could only profit partially from his teaching! For these
reasons this paper is dedicated to him.

1. The orders

When dealing with projective representations of finite groups, it is very con-
venient to use only algebraically closed fields. Otherwise one is forever mak-
ing finite extensions of the ground field to simplify factor sets, obtain absolutely
indecomposable modules, or what have you. So we begin by choosing a valua-
tion ring R subject only to the condition that its field of fractions § be alge-
braically closed. We denote by p the unique maximal ideal of % and by §
the residue class field %/p. The fact that § is algebraically closed clearly
implies:

(1.1)  The residue class field § s algebraically closed.

Incidentally we do not exclude the useful case in which p = 0, and
R=F =8

Any finitely-generated torsion-free module over the valuation ring % is free
of finite rank. As usual, we call such modules RN-latiices. Evidently any
finitely-generated N-submodule of an R-lattice L is again an RN-lattice, as is
any torsion-free factor $t-module &/f. In the latter case, & is called a pure
R-submodule of . In fact, such an ® is an R-direct summand of € (since
/R is free), and hence is itself an R-lattice. The residue class module
{ = ¥/pRis a vector space over § whose finite dimension equals the R-rank
of &

An R-order (or simply an order) O is an associative R-algebra with identity
1 = 1p which is an R-lattice when considered an an R%-module. Then pO is
a two-sided ideal of O, and the residue class algebra O = O/pDO is a finite-
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dimensional associative algebra with identity over §. The Nakayama Lemma
for the finitely-generated R-module O implies that any maximal left ideal of
9O contains pO. It follows that the Jacobson radicals J(O) and J(D) of
O and O, respectively, are related by:

(1.2) J(D) s the inverse tmage in O of J (D).

In particular, O/J (D) ~ O/J (D) is a finite-dimensional semi-simple algebra
over §. So the family Max (D) of all maximal two-sided ideals of O (which
is the inverse image of the corresponding family Max (0/J(9)) for O/J (D))
is finite.

Since R is not noetherian (unless R = §), not every R-subalgebra with
identity of an R-order O is a suborder of O. However, most of the subalge-
bras which occur in the usual constructions are suborders. For example, if
S is a subset of O, then the centralizer of S in O, the set C(8S in O) of all
x € O such that xs = sz, for all s € S, is clearly an R-subalgebra of O containing
lo. Using the fact that O is a torsion-free R-module, one easily sees that
C(8Sin D) is a pure R-submodule of O, and hence is an R-lattice. Therefore.

(1.3) C(Sin D) s a suborder of O, for any subset S of O.
Taking 8 = O, we obtain:
(1.4) The center Z(D) of O is a suborder of 0.

If e is an idempotent of O, then eDe is an N-subalgebra with e as its identity-
The Peirce decomposition implies that eDe is an R-direct summand of O, and
hence that:

(1.5)  eQe s a suborder of O, for any idempotent e of O.

Another trick is to use the R-linear transformation T : y — xy of O defined
by an element z € . Since O is a free R-module of finite rank, we can define
the characteristic polynomial

f(X) =det (X1 —=T) =X"4+au X"+ - +a,
of T in the usual way. Its coeflicients a;, -, @, all lie in R. From the
Hamilton-Cayley equation f(T) = 0, we deduce:
(1.6) 2"+ a2"" + - +a = f(x) = f(2) 1o = [f(T)](19) = 0.

It follows that the %i-subalgebra R[x] of all R-polynomials in z is generated as
n—1

an R-module by 1, z, 2, - -+, 2"". Hence:
(1.7)  R[z] 7s a suborder of O, for any x € O.

Equation (1.6) can also be used to compute inverses of units. If z is a
unit of O, then T is an invertible R-linear transformation of the free R-module
O of finite rank. It follows that the determinant (—1)"a, of T is a unit of
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R. Writing (1.6) as

(@ @ ) = —aa,
we obtain
g = (—a) '@ T F e+ o @) e Rz).
Therefore:

(1.8)  If x is a unit of O, then x " lies in N[x].
The property (1.8) has the following useful consequence:

Proposition 1.9. If Q' us a suborder of O (with or without the same identity) ,
then J(O) nO' C J(D).

Proof. The identity e of £’ is an idempotent of O. By (1.5), eDe is a
suborder of O containing ©’. We know that J(eDe) = eJ(D)e = J(O) n
eDe. So it suffices to prove the proposition for eOe and ', i.e., we can
agsume that 1 = 1p e Q.

Evidently J(9D) n £’ is a two-sided ideal of ©’. So it suffices to show that
1 + yis a unit of O, for every y ¢ J(O) nO’. But 1 4+ y is a unit of O,
since y e J(O), and (1 + )" eR[L + y] € O, by (1.8). Therefore 1 + y
is a unit of ©’, and the proposition is proved.

The critical property of our orders is that idempotents of the residue
class algebra £ can be “lifted” to idempotents of ©. It is convenient to
prove this in a mildly stronger form.

Prorosition 1.10. If & is a two-sided ideal of O, then every idempotent e
of the factor ring O/ is the image of an idempotent of O.

Proof, Tirst we simplify . Let « be any element of O mapping onto
e. Form the polynomial f(X) = X" 4+ & X" + --- + a, of (1.6). Let
R[X] be the polynomial ring in the variable X over R, and y be the image
of X in the factor ring R[y] = RIX]1/F(X)N[X]. Evidently Ryl is an R-al-
gebra, with identity, and is a free %-module with 1, y, Y, -+, y" " asa basis.
So it is an order. By (1.6) there is an R-algebra epimorphism of $R[y] onto
R[x] sending y onto . Composing this with the natural map of N[x] into
/3, we obtain an R-algebra epimorphism of Rly] onto the subalgebra
N1 + Ne of O/, sending y onto e. If we can find an idempotent e’ e RN[y]
mapping onto e, then its image ¢” ¢ R[x] will be an idempotent of O mapping
onto e. Hence we can assume that O = RN[y] and O/F = R1 + Re.

Because § is algebraically closed and 9t is integrally closed in §, the poly-
nomial f(X) factorizes completely in R[X]:

f(X) =(X —a) - (X —c,) forsome cry--+, cueR.

Let &, -, & be the images of ¢, - -+, ¢, respectively, in &, and let di ,
---, dn be the distinct members of the set {¢&;, ---, &}. TFor each j = 1,
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-, m, define f;(X) to be the product of those X — ¢;,2 =1, --- | n, for
which C; = dj .

Ifj,k =1, ---,mandj # k, then the images in F[X] = R[X]/pR[X] of
f#(X) and fi(X) are powers of X — d; and X — di, respectively. Since
d; # dy , they are relatively prime and their resolvant is a non-zero element of
§. It follows that the resolvant of f;(X) and fi(X) is a unit of 9t and hence
that

RIX] = f{(X)RX] + fu(XORIX], forall jk=1,---,m with j#k.

Because f(X) = fi(X) -+ fu(X), this implies that R[y] has the ring decom-
position

Rly) = RIXVAX)RX]

(1.11) ~ RXVAXRX] © -+ @ RIX]/Fu(X)RX]
=1 @D - @ Qm,
where O is the image in R[y] of R[X]/f;(X)R[X], for each j = -, m.

Evidently any 9; is isomorphic to F[X1/F;(X)FX], where f,(X) is the
image in F[X] of f;(X). By construction f;(X) is a power of X — d;.
Hence _ _

Qi/J(Dj) ~ X/ (X — dj) §lX] ~ &.
In view of (1.2), this implies that 9,/J(D;) ~ § is a field, and hence that
; is a local ring.

The epimorphism of R[y] onto N1 + Re carries the decomposition (1.11)

onto the ring decomposition

R+ Re=1@ - ® On

where Q; is the image of O;,forj =1, --- , m. Since Q is a loca,l ring, its
image D; is either a local ring or zero. So the identity e] of D] is either a
primitive idempotent of %1 + Je or zero. Because ?Rl + e is commutative,
the above decomposition implies that the non-zero e; are its only primitive
1dempotents and that any idempotent of %1 4+ Re is a sum of certain of the
e;. In particular, eis such a sum. So it is the image of the sum of the identi-
ties e; of the corresponding £; , which sum is an idempotent of R[y] by (1.11).
This completes the proof of the proposition.

An arbitrary idempotent of O can be the image of many idempotents of .
However, this is not true for central idempotents.

ProrosiTioN 1.12. If e is a central idempotent of O, then there is a unique
idempolent € of O having e as its image. This idempotent e* is central in O.
The map e — €* sends the central idempotents of O one-to-one onto those of O,
and the primitive central idempotents of O one-to-one onto those of O.

Proof. By Proposition 1.10 there is an idempotent ¢* of O mapping onto e.
We first prove that any such ¢* is central in .
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The Peirce decomposition of O is
O =e0* @Ol — ") @ (1 — 0™ @ (1 — MHO(1 — &)
(as R-modules) .

Clearly each summand is an R-lattice. By the Nakayama Lemma, the sum-
mand ¢*O(1 — ) is zero if its image

e'O(1 — ) /pe"O(1 — €*) ~eD(1 — e)

is zero. But eD(1 — e) = e(1 — €)O = 0, since e is a central idempotent
of ©. Hence ¢*O(1 — €*) = 0. Similarly (1 — €*)Oe* = 0. This implies
that e* is a central idempotent of O.

Now let ef be another idempotent of © mapping onto e. Both ¢ and ef
are central idempotents of O. Hence so are e*e; , e* — e*er and ef — e”er .
The images in O of the last two idempotents are both e — ¢® = 0. So (1.2)
implies that ¢* — e*ei and ef — e’er are idempotents of O lying in J(D).
Therefore they are both zero, and e* = e*ef = ef .

We have now proved the first two statements of the proposition. The
rest of it follows directly from these.

The blocks of the order O are defined by its primitive central idempotents.
Into the block B corresponding to such an idempotent e we put the usual
assortment of things which can somehow be attached to e and O, such as the
indecomposable ring direct summands eO and eZ(0) of O and Z(D), re-
spectively, or the maximal ideals I e Max () satisfying ¢ = 1 (mod IN).
In view of Proposition 1.12, the map sending e into its image € in O defines a
one-to-one correspondence between blocks of © and those of ©. It is cus-
tomary to put everything in a block B of O into the corresponding block B
of £. We shall follow this custom as much as possible, but, as we shall see
below (in Example 13.15), the Clifford extension for B can differ from that
for B (although they are the same for group rings). So we cannot completely
identify these two blocks.

A lattice ® over the order O is a unitary left O-module which is finitely-
generated and torsion-free as an N-module, i.e., which is also an R-lattice.
Obviously & is then a finite-dimensional unitary left module over the residue
class algebra ©. The ring Endo(®) of all O-endomorphisms of £ is naturally
an associative N-algebra with identity. In fact, we have:

ProrosriTion 1.13.  For any O-lattice &, the endomorphism ring Endo(R) s
an order.

Proof. Since g is a free R-module of finite rank =, its N-endomorphism
ring Endg (®) is isomorphic to the ring of all n X n matrices with entries
in N, and hence is an order. Each element x ¢ O determines an R-endomor-
phism I — zlof . Let S be the set of all such ®R-endomorphisms. Then
Endgp(R) is clearly the subalgebra C(S in Ende(®)) of Endg(®), which is an
order by (1.3). This proves the proposition.
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Now we can apply Proposition 1.10 to the endomorphism ring Endgo(%)
and to its ideal J(Endo(®)). We know that ® is an indecomposable -
module if and only if 0 and 1 # 0 are the only idempotents of Endg(%®).
Since the Jacobson radical J(Endo(®2)) can contain no non-zero idempotent,
Proposition 1.10 implies that this occurs if and only if 0 and 1 5 0 aie the only
idempotents of Endo(R)/J(Endo(f)). The latter ring is a finite-dimen-
sional semi-simple algebra over § by (1.2). Since § is algebraically closed,
our condition on the idempotents is equivalent to Endo(®) /J(Endo(®)) being
isomorphic to §. So we have:

(1.14) (Fitting’s Lemma) An O-lattice 8 is indecomposable if and only if
Endo(®)/J(Endo(f)) ~ §, i.e., if and only if Endo(R) is a (non-commuta-
live) local ring.

As usual (compare the proof of Theorem (14.5) from Lemma (14.4) in [2]),
this implies:

(1.15) (Krull-Schmidt Theorem) If{=4 @ --- @{L =R,@ --- @ K
are two decompositions of an O-lattice ® as direct sums of indecomposable O-sub-
modules, then | = k and, after reindexing, ; is O-isomorphicto ®; , for ¢ = 1,

-, L

Since the order O is a ring with identity, its subset 1 + J(£) is a subgroup
of its unit group U(L). This subgroup has the following useful property:

ProrosiTioN 1.16.  Letnbe a positive integer not divisible by the characteristic
of §. Then the group 1 + J(D) is exactly divisible by n, i.e., for any element
y el + J(D), there is a unique element y*'" € 1 + J (D) such that (y*'™" = y.

Proof. We first assume that the order O is a commutative local ring. Let
y be any element of 1 4+ J(O). Form the polynomial ring O[Z] in one varia-
ble Z over O. Let z be the image of Z in the quotient ring

Olel = DIZ)/ (2" — y)OlZ).

Then Olz] is a free O-module of rank n with 1, 2, 2°, ---, 2" as a basis*
Hence it is a commutative order. Evidently J(D)D[z] = D)/ (D) is a two-
sided ideal of O[z] which is nilpotent modulo »O[z], since J (D) is nilpotent
module pO. It follows from this and (1.2) that J(O)O[z] C J(Ofz]).

Let Z be the image of z in the factor ring O[z]/J(D)Olz]. Since
0/J (D) ~ §, this factor ring is the F-algebra F[z] generated by 2. From
the construction of O[z], it is clear that the natural epimorphism of the poly-
nomial ring F[Z] onto 2] (sending Z into z) has the ideal (2" — 1)§F[Z] as
its kernel (remember that ¥y = 1 (mod J(D))!). Because n is not divisible
by the characteristic of §, the algebra F[Z]/(Z" — 1) §[Z] is semi-simple with
its n epimorphisms onto & sending the image of Z into the n distinet n roots
of unity, say w, - -+ , 0", 0" = 1,in §. We conclude that

(1.17a) J(Oz]) = J(O)Ole],
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(1.17b) OR)/J(Ok]) =Flzl =Far @ -+ @ Fen (as F-algebras),
(1.17¢) F=we @ we® - @ w'e,

where e;, - - - , e, are the primitive idempotents of (2] arranged in a certain
order.

Proposition 1.12 tells us that the primitive idempotents e1 , - - - , ex of the
commutative order Ofz] have e;, ---, e,, respectively, as images in §[z].
By (1.17a, b) these images generate O[z]/J (D) Olz] as an O-module. Since
Olz] is a finitely-generated O-module, the Nakayama Iemma implies that
Olz] = Ot + -+ + Des. Because the e; are the primitive central idem-
potents of O[z], we conclude that

(1.18) Ozl = Oer @ -+ ® Oer  (as R-orders).

Since O is a local ring, it is an indecomposable O-module. So is each of its
non-zero homomorphic images Oe; , 7 = 1, - -, n, for the same reason. By
construction, Ofz] is a free O-module of rank n. This, (1.18), and the Krull-
Schmidt Theorem (1.15) imply:

(1.19) The map x — ze; is an isomorphism of the order O onto Qe , for
eacht =1, --- , n.

Now there exist unique elements z; , - - - , 2, € O such that
* *
2=z @ - D zzen.

Evidently 2" = y = yer @ -+ @ yer implies (z;)" = y,for ¢ = 1,--- ,n.
On the other hand, any nt™ root % of ¥ in © defines an epimorphism of the
-algebra Ofz] onto O sending z onto . In view of the structure (1.18-19)
of O[z], this epimorphism must send

T =26 @ - ® Taen,
where x;, -+, ©, €O, onto x;, for some fixed ¢ = 1, 2, ---, n. Hence
u =2;. Thereforez:, - - - , 2. are precisely the n' roots of y in ©. By (1.17¢)
their respective images in O = § are the distinct elements w, -+, ©" 7,

" = 1. S0z, = y"'"is the unique n* root of ¥ in 1 + J(O), which proves
the proposition whenever O is a commutative local ring.

Now let © be an arbitrary order and y be any element of 1 4+ J(). Then
Ryl is a suborder of O (by (1.7)) which is obviously commutative and has the
same identity as . Proposition 1.9 says that J(O) n R[y] is an ideal of
R[y] contained in J(R[y]). Evidently y = 1 (mod J(O) nR[y]) and (by
(1.2))

J(O) nRly] 2 pOnRy] 2 pR[y].

It follows that R[y]/(J(O) n R[y]) ~ F. We conclude that
J(O) n Ryl = J(RlyD)

and that R[y] is a commutative local ring. The above argument tells us that
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there is a unique element 4" ¢ 1 + J(R[y]) such that ("'™)" = y. Because
J(O) nRly] = J(R[y]), the element 4" is the unique nt root of y in

(14 J(0)) nRy] = 1 + J(RD.

Suppose that z e 1 4+ J(O) satisfies 2" = y. Applying the above argument
to N[z] in place of R[y], we see that N[z] is a commutative local ring containing
Rly] and that 1 + J(R[z])) = (1 + J(O)) n R[z] contains two n roots, z

1/n

and y'", of y. The unicity part of the proposition for R[z] now tells us that
z = y"". Soy""is the unique nt root of y in 1 + J(O), and the proposition
is proved.

2. The Clifford extension for blocks

Suppose that H is a finite group, and that K is a normal subgroup of H.
Let © be the group algebra RH of H over the valuation ring R of §1. For
each coset o in the factor group ¢ = H/K, let O, be the RN-submodule of O
having the elements of ¢ as a basis. Then O, G, and the O, , o € G, satisfy:

(2.12) DO is a non-zero R-order,

(2.1b) { is a group,

(2.1e) £, s an RN-submodule of O, for each o € G,
(21d) O = @D e O, (as R-modules),

(2.1e) OO, = O, (module product), for all ¢, v € G.

We shall develop the theory in the general situation (2.1), indicating from
time to time the special properties of the case coming from H and K in the
above fashion.

First we colleet some trivial consequences of (2.1) in the following

ProrositioN 2.2 (a) The identity 1 of O ldes in Oy .
(b) i is a non-zero suborder of O.

(e) FEach O, , o e, is a non-zero R-lattice.

(d) @ s a finite group.

Proofs. (a) By (2.1d) there are unique elements ¢, € O, , for ¢ € GG, all but
a finite number of which are zero, such that 1 = D g €r. If y € O, then
v =yl = 2aye.

By (2.1e) the product ye, lies in O, O, = O, , for all ¢ e G. Since y € Oy,
equating homogeneous components in the above equation (using (2.1d)) gives
ye, = 0, for all ¢ % 1. Hence Oie, = 0, for any such o. If 7 ¢, we ob-
tain O, e, = O, D16 = 0 (from 2.1¢). In view of (2.1d), this implies that
De, = 0, for all ¢ e @ — {1}. But then

l=11= 2 4cle,=16=ceO.
(b) Conditions (2.1a, ¢, d) imply that Oy is an N-sublattice of O. By
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(2.1e) it is a subring of ©. We have just seen that it contains 1, which is
non-zero by (2.1a). Hence £; is a non-zero suborder of .

(¢) Conditions (2.1a, ¢, d) imply that each O,, o €@, is an R-lattice.
If O, = 0, then (2.1e) gives O1 = O, O,-1 = 0, contradicting (b). There-
fore each O, is non-zero.

(d) Because each O, is a non-zero R-sublattice of O, condition (2.1d) im-
plies that the number of elements of G is no larger than the R-rank of O,
which is finite by (2.1a). This completes the proof of the proposition.

Conditions (2.1) and Proposition 2.2 (a) can be expressed by saying that
0,{0, | o € G} is a graded Clifford system over N in the sense of [CCT] or [ICE],
with the additional hypothesis that O, as an R-module, is a non-zero R-lat-
tice. So we are free to apply the results of these articles to the present case.
For example, there is a natural action of the group & on the family Id(£;) of
all two-sided ideals of £, given by

(2.3) F = 0-139,, forall oeG, S e Id(Dy)

(see [CCT, §2]). We know from [ICE, 1.11] that the Jacobson radical J ()
is fixed by G under this action. It follows (see [ICE, 1.5]) that

(2.4) OJ(D1) = ® Y oee Or J(O1) = J(D)O s a graded two-sided ideal
of © with O, J(O1) = J(1)O, as its o homogeneous component, for any
age(.

The following will be important.
ProrosiTion 2.5. OJ(Dr) € J(O).

Proof. Because 1 = O1/pD; is a finite-dimensional algebra over §, its
radical J(Op) satisfies J(O1)™ = 0, for some n > 0. In view of (1.2),
this implies that J(1)" C Oy . Since OJ (1) = J(O1) O, we conclude
that

[OJ(O)]" = O"J(D)" € OpO1 = pO € J(D).

The proposition follows immediately from this.

We denote by € the centralizer C(£2; in Q) of O; in O, and define €, to be
€nO,, for each o e G. We remark that, in the case of the group H and its
normal subgroup K:

(2.6) € has an RN-basis consisting of the class sums of elements of H under
conjugation by elements of K.

In the gencral case, we have:

ProposiTion 2.7. (a) € s a suborder of O coniaining 1 = 1o .
(b) & = Z(1) s a central suborder of € containing 1.
(e) G, s an R-sublattice of €, for each o € G.
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(d) € = @D o 6, (as R-modules).
(e) G C C Gy, forallo, Ted.
) GG =G6GC=C,foraloed.

Proof. The definition of € and (1.3) give (a). By definition, € = O;n
C($1in D) = C(Oy1in ) is the center Z(D1) of Oy, which is clearly central
in C(O;in ). So (b) follows from (1.4) and Proposition 2.2 (a, b). In
view of (2.1e), each O, , ¢ € G, is a two-sided O;-submodule of ©. Therefore
(d) follows from (2.1d) and the definitions of € and the @,’s. Clearly each
@, is an N-submodule of €. Hence (a) and (d) imply (¢). The definitions
and (2.1e) give (e) while (f) follows from (e) and the fact that €; contains
1. So the proposition is proved.

The above properties of €, G, and the €, should be compared with those of
0, G, and the O, , listed in (2.1) and Proposition 2.2. There is one vital dif-
ference: we have inclusion in Proposition 2.7(e) in place of the equality in
(2.1e)—and one minor one: the G, , as opposed to the O, , can be zero. In
order to get back to the original properties we shall pass to a suborder of €
and then to a subgroup of G.

Let B be a block of ©; and e be the corresponding primitive central idem-
potent of that order. Evidently e is a non-zero central idempotent of
€ = C(O1in ) lyingin € = Z(£D:1). This and Proposition 2.7(f) give us
the decompositions

C=eC€® (1 —e)C (asN-algebras),
S =¢eC ® (1 —e)C (as N-modules), for each o €@.
Evidently these decompositions and Proposition 2.7 imply:

(2.8a) eCQ is a suborder of € with non-zero identity e,

(2.8b) €@, is a central suborder of ¢§ containing e,

(2.8¢) €@, vs an N-sublattice of ¢§, for each o € G,

(2.8d) eC = @D noeC,,

(2.8¢) (eG,)(eC,) C e@,, (module product), for all o, 7 € G,
(2.81) (eGC,)(eCy) = (e€y)(eC,) = €C, ,forall s eG.

Now we define:

(2.92) G[B] = {0 eG| (¢6,) (eC,-1) = eGy},
(2.9b) G[B] = @D seors €C, ,
(2.9¢) G[B], = €G,, for all o € G[B].

At last we have reached a good system.

ProrosiTioN 2.10. The properties (2.1) are satisfied with C[B], G[B], and
the G[B], in place of O, G, and the O, , respectively.

Proof. By (2.8f) the subset G[B] of G contains 1¢. If ¢, 7 e G[B], then
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(2.8e, f) and (2.9a) imply that
€1 D (eG,r) (eCn—1) 2 (e6,) (e6,) (eCen-1) 2 (e6C,) (eC,) (eCr1) (eC,p-1)
= (G,) (e€1) (eCom1) = (eC,) (eCo1) = €C; .

So equality holds and o7 lies in G[B]. Since @ is a finite group (by Proposi-
tion 2.2(d)), this implies that G[B] is a subgroup of @, which is condition
(2.1b) for our system.

Equality in the above chain of inclusions also gives

(e@v) (e@,) (6@(")~1) =eG@;.

Because (o7) " lies in the subgroup G[B], we have (eCun-1)(¢C,,) = €G; .
This, (2.9¢), and (2.8f) imply that

C[BL€[B]. = (e€,)(e€,)(e€r) = (eC,)(eC) (eCn—1) (eCr)
= (e&)(eC,,) = C[B,

for all o, 7 € G[B], which is (2.1e) for our system.

The definitions (2.9b, ¢) give (2.1d) for our system. Condition (2.1¢)
comes directly from (2.8¢). Since G is a finite group, its subgroup G[B] is
finite. So (2.8¢) and (2.9b) imply that €[B]is an R-sublattice of e€. Since
G[B] is closed under multiplication, (2.8e) and (2.9b) are enough to make
@[B] a subring of e€. The identity e of e€ is non-zero and lies in §[B] by
(2.8a, b). Therefore E[B] is a non-zero suborder of @€, and the proof of the
proposition is complete.

By definition ¢ is a primitive idempotent in the center €; = Z(0;) of Or.
Since this order is commutative, Proposition 1.12 implies (as in (1.14)) that
GC[B]y = €@, satisfies

(2.11) G[B) /J(G[Bl) ~ §.

Hence §[B]; is a local ring in the center of €[B].
In view of Proposition 2.10, we may apply (2.4) to €[B], G[B], and the
@Q[B), . Identifying each
S[B], / €[B], J( €[B)

with its image in the factor ring €[B]/C[B]J(E[Bl:), and using the fact that
G[B]J(G[BL.) = G[B]pE[Bl = pE[B]
(by (1.2)), we see easily that

(2.12) Conditions (2.1) are satisfied with §, G[B]/€[B]J(G[B]), GIB],
and the G[B], /€[B], J(€[B]1) in place of R, O, G, and the L, , respectively.

Because of (2.11), we can apply [CCT, §14] to the graded Clifford system
G[B)/€[BlJ(C[BL),  {€[Bl, /C[B], J(C[B}L) | o € G[B}
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over §. It tells us that there 18 a unique central extension G[B]* of the multi-
plicative group ¥ of § by G[B], which is defined, together with its projection
pr = preps;» onto G[B] and its injection in = ingz+ from F, by:

(2.133) pr'(¢) = [C[Bl,/C[B], J(C[BL)] — {0}, for all o ¢ G[B],
(2.13b)  G[B]* = U,co1z pr (o) is a subgroup of the unit group of

C[B]/ €[B]J(G[B),

(2.13¢) in(f) = fe + J(G[BL) epr™ (1) = [€[Bl/J(E[BL)] — {0},
forallfe F = § — {0}.

We call G[B]* the Clifford extension for the block B. Evidently the above
equations simply state that the twisted group algebra F[G[B]*] of the exten-
sion G[B]* and its one-dimensional subspaces F[G[B]*], , spanned by pr* (¢)
for ¢ € G[B], are given by:

(2.14a) g[G[B]*] = G[B]/€[B]J(GE[B),
(2.14b)  §IGIBI*], = G[Bl/G[B], J(C[Bl), for all s ¢ G[B].

By [CCT, §2] the axioms (2.1) determine a natural action of the group G
as ring automorphisms of € = C($,inO). If ye € and ¢ e G, then 3’ ¢ €
is the unique element of O satisfying

(2.15) xy’ = yx, forall xeO,.

It is clear from this definition that ¥y — 3° is an R-automorphism of the order
G, for any o e . We know from [CCT, 2.9] that

(2.16) (€)" = € = G-1,y forall o, 7eG.

In particular, the suborder €, is invariant under G. It follows that G per-
mutes the primitive idempotents of €; among themselves. We denote by
G5 the subgroup of all elements of @ fixing the primitive idempotent e of €; .

ProrosiTioN 2.17. If o e G and €€, # 0, then ¢ e Gx. Hence G[B] < G5 .
Furthermore, the subgroup G[B] is normal in Gp .

Proof. If ¢ ¢ G and ¢ ¢ G, then € is a primitive idempotent of € different
from e. Since ©; is commutative, this implies that e’ = ¢’e = 0. Hence
xze" = zee’ = 0, for any element z ee@,. In view of (2.15), this implies that
0 = 2’ = ex = 1z, 1.e., that ¢e€, = 0. This proves the first statement of the
proposition. The second follows from the first and the definition (2.9a) of
G[B] (in view of (2.8a, b)).

If 0 € Gp and 7 € G[B], then (2.92), (2.16), and the fact that y — 3’ is an
automorphism of the order € fixing e, imply that

eC; = (e6)” = (e6,)(eC-1)" = (eCr) (eCpey-1).

Therefore 7" also lies in G[B], and the proposition is proved.
We can use the fact that e¢’ = e = 0, for 0 e @ — Gy, in another way.
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It is exactly the hypothesis of [CCT, 4.3]. Using that result, (1.5), and
(2.1d), we see that:

(2.18) Conditions (2.1) are satisfied with eQe, G , and the e, = O, e (for
a € G) in place of O, G, and the O, , respectively.

Proposition 2.17 and (2.16) imply that G leaves invariant the suborder
C[Bl = @ 2ucatm ¢Cs,

and that (€[B],)° = €[Bl., for all reG[B], ¢ eGs. It follows that Gy
leaves invariant the Jacobson radical J(G@[B]i), and hence the ideal
G[B)J(€[Bl1). By (2.14) there is an induced action of G5 as algebra auto-
morphisms of FG[B]*] such that (FGB*)° = FGIBI*.-, for all = ¢ G[B],
ceGy. From (2.13) we conclude that the subgroup G[B]* of the unit
group of FG[B]*]is Qs -invariant, and that the induced conjugation action of
G5 as automorphisms of G[B]* satisfies:

(2.19a) pr(p) = pr(p)’ = 7 pr(p)r eGIB], for all peGBI*, 7¢Cs,
(2.19b)  Gs centralizes pr~' (1) = in (F).

Evidently this action of G5 on G[B]* completely determines the action of
G5 on FIGIBI*].

3. The Clifford correspondence for blocks

Our first goal is to obtain a one-to-one correspondence between the G-
invariant central idempotents of F[G[B]*] and the _central idempotents of
eQe. We start by lifting the central idempotents of F[G[B]*] back to G[B].

Lemma 3.1.  If d is a central idempotent of F[GIB]], then there is a unique
idempotent d* of G[B] having d as its image in (2.14a). This idempotent d*
is central in G[B]. The map d — d* sends the central idempotents of &IGIB)¥]
one-to-one onto those of C[B]. Furthermore, it preserves the action of Gz on these
idempotents.

Proof. (Compare that of Proposition 1.12). Proposition 1.10 gives us at
least one idempotent d* of €[B] mapping onto d. We must prove that such
a d* is always central in G[B]. The suborder G[B]; = eG; is central in
G[B] € ¢€ by (2.8b). So the Peirce decomposition of §[B] with respect to
d* is a G[B]; -decomposition:

(3.2) G[B] = d*G[B)d* @ d*G[B](e — d*) ® (e — d*) G[Bld*
® (e — d*)G[B](e — d*) (as two-sided G[B), -modules) .

The summand d*G[B](e — d¥) is an R-lattice, and hence is a finitely-
generated right €[B); -module. So it will be zero if its factor module modulo

d*G[B](e — d*)J(G[B])
is zero. But this factor module is simply the image dF[G[B]*](1 — d) of
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d*G[Bl(e — d*) in F[GBI*], by (2.14a) and (3.2). Since d is a central
idempotent of F[G[B]*], this image is zero. Therefore d*G[B](e — d*) = 0.
Similarly (e — d*) €[B]Jd* = 0. So d* is a central idempotent of G[B].

We know from Propositions 2.5 and 2.10 that G[B]J(G[BL) < J(GE[B]).
It follows that E[B]J(E[B];) contains no non-zero idempotent of €[B].
Now the proof of the first three statements of the lemma can be completed
as in the proof of Proposition 1.12. The last statement follows directly from
the third and the definition of the actions of G5 .

The above lemma gives us a G5 -invariant idempotent d* of ¢ @ correspond-
ing to each Gj-invariant central idempotent d of FGIB]*]. To show that
these are the only such idempotents of ¢€ we shall use:

LemMA 3.3. The subspace § = [® 2 peap—ais €G] ® C[BlJ(G[BL) is a
two-sided ideal of ¢€ = ® D a5 eC,. Furthermore, this ideal 3 is contained
n J(e€).

Proof. We know by (2.8b) that J(C[B];) centralizes e€. It follows that
(e€)J(E[B])) = J(E[BL)(e€)

is a two-sided ideal of e¢€. Because €[B], is an order, (1.2) implies the
existence of an integer n > 0 such that J( €[B];)"” € p€[Bs]. Then

[(e€)J(EIBL)]" = (e€)J(E[BL)" < n(e€),
which forces (e®)J(€[B]:) to be contained in J(eQ).
If ¢ e Gz — G[B] and 7 € Gz, then
(€G,) (e€ro) = (G,)(eC,)” = (eC,)(eC,)

by (2.15) and (2.16). We know from (2.8d) and Proposition 2.17 that
€€ = @ D sz eC,. So this implies that (eG,)(e€) = (e®)(eC,) is a
two-sided ideal of ¢@. Since the group @ is finite (by Proposition 2.2(d)),
there exists an integer m > 0 such that ¢™ = 1. Then (e@,)™ is an ideal of
eC; = @Q[B];. If (eB,)™ is not contained in J( G[B];), then it equals the
local ring ¢@;. This implies that (eG,)(e@,-:) = ¢C;, contradicting the
fact that ¢ ¢ G[B]. Therefore (¢G,)™ C J(€[B]:) and

[(e€) (e€C)]" = (e€) (eC,)" & (e€)J(E[Bl) & J(e€),

which implies (e€) (eG,) C J(e©).
Evidently & is contained in the two-sided ideal

(e€) J(CIBL) + 2ecaz—oim (¢€)(eGC,)

which, in turn, is contained in J(e€). Since e€ = @ Z“GB e@, , it is clear
that

(e®)J(C[Bh) < I3
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To show that (e€) (e@,) C &, for any ¢ e Gz — G[B], it suffices to prove that
(e€,)(eC,) S €[B],, J(E[B]),

for any 7 e G such that 7o e G[B]. If this is false, then the usual argument
(based on Proposition 2.10) shows that

C[Blan-1(¢C,) (¢Gs) & J(CIB),

which implies C[B]¢n-1(€€,) (e€,) = eC;, since eC; is a local ring. But this
forces (e€,-1)(e€,) = eC;, and hence ¢ € G[B], contradicting the choice of
o ¢ G[B]. We conclude that

(e€)(e€,)) & F forall oeGp — G[B],

and hence that § = (e€)J(G[BlL) + 2 seap—ain (¢€)(eC,). In view of
the above results, this proves the lemma.

We shall also need to compute the center Z(eDe) of eDe. Evidently it is
contained in C(eD;in eDe), which is equal to eC(D;in ) = e€. Since
e = @ D seap ¢Os, it follows immediately from (2.15) that

(3.4) Z(eDe) = C(Gpinel),

where, of course, C(Gin e€) denotes the centralizer of G5 in €€, i.e., the
suborder of all i e e€ such that 4° = y for all ¢ e Gz. We conclude that the
central idempotents of ee are simply the G -invariant (and hence central)
idempotents of ¢C.

Now we can compute the central idempotents of eDe.

TueorEM 3.5. The central idempotents of eDe are precisely the Gp -invariant
(and hence central) idempotents of €[B]. By Lemma 3.1, they correspond one-
to-one to their images in F(G[B]*], which are the G -invariant central idempotents
of that algebra. In particular, the primitive central idempotents of eQe are
precisely those central idempotents of G[B] whose images in F[Q[B]*] have the
form dy + --- + d,, where dy, -, dn is a Gp -conjugacy class of primitive
central idempotents of SIG[B]*]. Thus there is a one-to-one correspondence be-
tween the blocks of eDe and the G -conjugacy classes of blocks of F[G[BI*].

Proof. Inview of (2.14a) and Lemma 3.3, the algebra §[G[B]*] is naturally
isomorphic to e€/&. Clearly Proposition 2.17 implies that the epimorphism
of ¢ onto F[G[B]*] preserves the actions of Gz on these two rings. So the
image d of a Gy -invariant idempotent d; of e€ is a Gy -invariant central
idempotent of F[G[B]*]. By Lemma 3.1 there is a central idempotent a*
of @[B] which is equally G5 -invariant and has the same image d. Now d;
and d* are two central idempotents of € which are congruent modulo J(e@)
(by Lemma 3.3). It follows that dy = d* ¢ G[B]. This proves the first state-
ment of the proposition. The others follow from this, Lemma 3.1 and (3.4).

The passage from blocks of eDe to those of O lying over B is a well-known
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result of Reynolds for group rings (see [8]). The action of G on € permutes
the primitive central idempotents of §; among themselves. Let s be the sum
of the idempotents in the G-orbit of e. Then s is a central idempotent of O
lying in ©; (by (2.15)). Hence O is the direct sum (as rings) of its subrings
sO and (1 — s)©. Those blocks of © which come from blocks of s9, i.e.,
whose primitive central idempotents in O are those of sO, are said to e over
B. Obviously every block of O lies over the members of a unique G-conjugacy
class of blocks of Oy .

ProrosiTioN 3.6. The map y - ye = ey is an isomorphism of the order
Z(sD) onto Z(eDe). The inverse map sends z € Z(eDe) < eC into 2 2,
summed over representatives T of the left cosets (Gg)r of Gz in G. These maps
define a one-lo-one correspondence between the primitive ceniral idempotents of
sO and those of eDe, and hence between the blocks of O lying over B and the
blocks of eLe.

Proof. Since the central idempotent s of O lies in Oy , it is trivial to verify
that sO, G, and the sO, also satisfy (2.1). The definition of s implies that e
satisfies [CCT, 4.2] and [CCT, 4.5] with respect to the Clifford system sO,
{sO, | s e@. So [CCT, 4.4] and [CCT, 3.6] give the first statement of the
proposition (see also Proposition 4.9 below).

If zeZ(eDe), then (3.4) implies that y = 2,2 ¢C(Gin €) = Z(9).
Evidently sz = ez = 2 forces s2” = 27, for all r, and hencesy = y. Therefore
Yy eZ(sD). Because e’ = ee’z” = 0, for any r ¢ G — G5, we have z = ey,
which proves the second statement of the proposition. The rest of the
proposition follows directly from these two statements.

Putting together the preceding two results, we obtain:

TuEoOREM 3.7. The map sending c into the tmage d in F[G[B)*] of ec ¢ C[B]
defines a one-to-one correspondence between primaitive central idempotents ¢ of
sOand sumsd = dy + -+ + d, of G -conjugacy classes dy , - - - , dn of prima-
tive central idempotents of SIGIB]*]. The inverse map sends such a sum
d e FIGIB)*] into ¢ = Y (d*)", where v runs over representatives of the lefl
cosets (G) 7 of Gy in G and d* is the unique central idempotent of G[B] having d
as its tmage. Thus these maps define a one-to-one correspondence between blocks
of O lying over B and G'g -conjugacy classes of blocks of SIGIBY™.

4. Green’s theory

Green [7] has given a definition of defect groups in a very general setting.
It is only necessary to have a finite group £ acting as automorphisms of a
ring O with identity (actually, Green puts conditions on the ring ®, forcing
it to be an algebra over a field or a p-adic ring. These conditions are unneces-
sary if one uses maximal two-sided ideals in place of primitive idempotents,
as we do below). We outline his theory here.
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For simplicity, we denote by ©(¥) the centralizer
C(EnD) ={deD|d = d, for all ¢ ¢ E}.

Evidently D(F) is a subring of D containing the identity 1 = 1. If Disa
subgroup of E, let E/D be the family of left cosets Do of D in E. Then d’,
for any d ¢ ©(D) and 7 ¢ E/D, can be defined as the common value of the
d’, for ¢ e . Turthermore the trace trp_.z can be defined, as usual, by

(4.1) pos(d) = D rempd’, for all d e D(D).

Evidently trp. x is a homomorphism of the additive group of ©(D) into D(E)

which preserves both left and right multiplication by elements of D(E). So

its image D(E | D) = trp.x(D(D)) is a two-sided ideal of the ring D(E).
The ideals D(E | D) have the following obvious properties:

(4.22) D(E|D°) = D(E|D),forallo e E,D < E,

(4.2b) D(E|D) S D(E|C), forall D < C L E,
(4.2¢) D(E|E) = D(E).

Since trp.z(d) = [E:D]d, for any d e D(E), we have
(4.3) [E:DID(E) € D(E | D), forall D < E.

Because each map d — d°, o € E, is a ring automorphism of D, one can compute
(see (4.18) in [7]) that

(44) DE|C)DE|D) C 2 exDHE | Cn D), forallC,D < E.

Let M be a maximal two-sided ideal of D(H). Since each D(E | D), for
D < E, is a two-sided ideal of D(F), it satisfies either D(E | D) C IM or
D(E | D) + M = D(E). A defect group of I is a subgroup D of E whichis
minimal under inclusion among those satisfying the latter condition. Using
(4.2)—(4.4) one easily verifies (see Theorems 4i and 4k in [7]) that:

(4.5) The defect groups of M form a single E-conjugacy class. If D(L)/IMN
has prime characteristic p, then any defect group of M <s a p-subgroup of E.
If D(E) /M has characteristic zero, then {1} is the only defect group of IN.

If N is a normal subgroup of E, then the factor group E/N acts naturally as
ring automorphisms of D(N), with y* = ¢°, for any coset 7 ¢ £/N and any
o er. Evidently D(E) = D(N)(E/N). So we can use this action of £/N
on D(N) to define defect groups in E/N of the maximal two-sided ideal I
of D(E).

ProrositioN 4.6. If, in the above situation, D s a defect group of IN in I,
then DN/N 1s a defect group of W in E/N.

Proof. Let C be any subgroup of E containing N. Then (4.1) implies
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that
tI'C/I\’-»E/I‘l'(y) = trC’—»E(y)y

for all y e D(N)(C/N) = D(C). Hence D(N)(E/N|C/N) = D(E|C).
It follows that the defect groups of 9t in E/N have the form C*/N where C*
is a minimal member of the family of all subgroups C of E containing N such
that D(E | C) $ M. In view of (4.2b) and (4.5), the last condition just
says that C contains an E-conjugate D” of D. So C* is simply a minimal
member of the family of all subgroups of E containing D°N, for some o € E,
ie, C* = D'N = (DN)’, for some o ¢ /. In view of (4.5), this completes
the proof of the proposition.
Suppose that d is an idempotent of D satisfying:

(4.72) IfoeE and d’ # d, then d’d = 0,
(4.7b)  d centralizes D(H).

Let E; be the subgroup of all elements of ¥ fixing d. Condition (4.7a) implies
that any two distinct K-conjugates of d are perpendicular idempotents of D.
Hence the sum ¢ = trg,.z(d) of the distinet E-conjugates of d is an idempotent
in O(E). In view of (4.7b), the idempotent ¢ is central in D(E). So we
have the decomposition

D(E) = D(E) @ (1 —)D(E) (as rings).

The maximal two-sided ideal I of D(F) must contain either ¢D(E) or
(1 — ¢)D(E). Inthe latter case we say that M lies over d. Then it has the
form

(4.8) M=cMd (1 —c)DE),

where ¢t is 2 maximal two-sided ideal of ¢D(E).

Because Ej fixes d, it leaves invariant the subring d®d of ©. We use the
action of E; on d®d to define the defect groups in E; of any maximal two-
sided ideal of dDd(E,).

ProrosiTioN 4.9. In the above situation, the map y — dy = yd is an so-
morphism of the ring ¢D(E) onto dDd(E;). The inverse map sends any
2 e ADd(Eq) into

tro,~e(2) e cO(E).

If I is a maximal two-sided ideal of D(E) lying over d, then any defect group in
E, of the corresponding maximal two-sided ideal dIN = dcIN of dDA(Ey) s also
a defect group of M in E.

Proof. Since d is an idempotent in D, condition (4.7b) implies that
piy —dy = yd

is a ring homomorphism of ¢®(E) into d®d. Because E; fixes both d and
y e cD(E), the image o(cD(E)) is contained in dDd(E,;). Using the E-



BLOCK EXTENSIONS 221

invariance of y, we obtain

tre-e(dy) = ZveE/E'a (dy)’ = EveE'/Ea dy = cy = y.

Hence ¢ is a ring monomorphism with trz,.z as a left inverse.

If 2z e dDd(E,), then 2 = ded. In view of (4.7a), this implies that d’z =
2d’ = 0, for any E-conjugate d° ¢ d of d. We conclude that d°2" = 2’d* = 0,
for any two distinet elements p, 7 ¢ E/E;. It follows that trg,.z(z) ¢ OD(L)
satisfies

(4 t’rEd*E(z) = ( ZpeE’/E’d dp) ( ZreE’/Ed ZT) = ZfeE/Ed d’zf = trgd_,E(dZ) .
= trgd_,E(Z) .
Therefore trg,.r sends dDd(E,) into ¢D(E). Furthermore,

dtrEd"E(z) =d Z‘NE/Ed zT =dz = z.

So trg,.x is also a right inverse to ¢, which proves the first two statements of
the proposition.

Since ¢ is a maximal two-sided ideal of ¢D(FE) and dec = d (by (4.7a)),
the above result implies that det = dIt is a maximal two-sided ideal
of dDd(E;). Let D be any defect group in E; of dJR. Then there exists an
element w e dDd(D) such that

trD»E’d(w) Gdgd(Ed) - dﬂn.

The above results tell us that trp.z(w) = trg.e(trp.z,(w)) les in
¢D(E) — ¢M, and hence in D(E) — M. Therefore D(E | D) E M and D
contains a defect group C of I in K.

There exists an eclement z ¢ O(C) such that tre,z(x) ¢IN. In view of
(4.8), the projection ¢ tre.z(z) of tre.z(z) e D(E) into ¢D(E) cannot lie
in ¢t By the above results, this implies that dc tr¢.z(x) = d tre.z(x) ¢ dDR.
But

dtrc"’E(x) = dt’rC»E(x)d = ZaeE/C dxad = Zf{ZPGEd/(EdnC") (dxfd)ﬂ}
= Z‘r trEdn C”'—-)E'd(dx‘rd),

where 7 runs over a family of representatives for the double cosets C7E; in E.
Evidently each dz'd lies in d®d(Esn C"). So the above equation implies
that some trg;nc¢-z,(dz’d) does not lie in dIR, and therefore that E;n C”
contains a defect group of R in B, . In view of (4.5), such a defect group is
conjugate to D. Hence

|Cl=1C"[2|EinC"| 2 |D]|.
Since C < D, this implies C = D, which completes the proof of the proposition.

5. An operator group for €

We shall first apply Green’s theory to the case in which D is the order € of
§2. To do things with the proper generality we assume (in addition to the
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hypotheses of §1 and §2) that:

(5.1a) The residue class field § has prime characteristic p.

(5.1b) A finite group E acts as R-automorphisms of the order €, and as
automorphisms of the group G.

(5.1¢) (G,)" = G, forallo el 7ekE.

Evidently €(E) is a pure R-submodule and hence a suborder of €. In view
of (4.5), conditions (5.1a) and (1.2) imply:

(5.2)  Any defect group of any M ¢ Max (C(H)) ¥s a p-subgroup of E.

It is clear from (5.1¢) that E permutes among themselves the primitive
idempotents of the central suborder € of €. Evidently the primitive idem-

potent e of that suborder satisfies (4.7) for E. Denoting by £ the subgroup
of all ¢ ¢ E fixing ¢, we obtain from Proposition 4.9:

(5.3) The map y — ey = ye is an isomorphism of the suborder
trez.z(e) €(E) onto eC(Eg) whose inverse sends z e eC(LHg) into trgy.x(2).
If M e Max (C(E)) lies over e, then the defect groups in Ey of the corresponding
wdeal e e Max (eS(E3g)) are also defect groups of MM in L.

From (5.1¢) we obtain
(5.4) (eGQ,)" = eCyr,forallo e, 7 ¢ Ep .

In view of (2.9) and (5.1b), this implies:

(5.5a) Eg leaves invariant the subgroup G[B] of G and the suborder G[B]
of e§,
(5.5b) (€[B],)" = G€[Bly, for all ¢ e G[B], 7 ¢ Ey .

We pass easily from e€ to €[B].
ProposiTION 5.6. The order e S(E ) satisfies
(5.7) eC(Eg) = GC[Bl(Es) + J(eC(Hz)).

So there is a one-to-one correspondence between ideals I ¢ Max (e€(Ep)) and
ideals M e Max (C[B](E5z)), in which M corresponds to M n C[B](Es) and
NitoN + J(eC(Es)). If two such M and N correspond, then their defect groups,
defined by the actions of Eg on ¢€ and €[B] respectively, coincide.

Proof. Let € = @ D ge—aim €C,. In view of (5.4), (5.5a), (2.8d),
and (2.9b), the order e€ is the direct sum of its two Ep -invariant R-sub-
lattices G[B] and {. Defining (E;), as usual, to be the centralizer of Ep
in £, we conclude that

eQ(Ez) = ¥(Ez) @ E[BI(Es).
Proposition 2.17 and Lemma 3.3 imply that € J(e€). Applying Proposi-
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tion 1.9, we obtain {(Ez) C J(e€) neC(Es) < J(eC(ls)). Therefore
(5.7) holds.

The second statement of the proposition follows directly from (5.7) and
Proposition 1.9. For the third statement, notice that It = Es) & N
while

¢C(Ey | D) = {(Ez|D) @ G[Bl(Es|D),

for any subgroup D of E (where, of course, R(Ez | D) = trp.z;(¥(D))).
Since (5 | D) € (Es), we conclude that ¢G(E; | D) & I if and only if
G[B)(Ez | D) ¢ N, which implies the rest of the proposition.

Equation (5.5b) implies that €[B); is Ejp-invariant. Hence so are its
radical J( €[Bl;) and the ideal G[B]J( C[B];) which it generates. From this,
(2.14), and (5.5), we conclude that:

(5.8a) The action of Ep on €|B] induces an action of Ex as F-automorphisms
of the algebra J(G|B]*] = G[B]/G[B]J(G[Bl),
(5.80) (FIGBI*)" = §IGBI™)s- , for all ¢ € GIB), 7 ¢ Es .

The image G[B](Ez)” of G[Bl(Es) in F[G[B]*] can very well be a proper
subalgebra of SIG[BI*1(Es) (see Example 13.11 below), a circumstance which
considerably complicates the analysis. Nevertheless, we can obtain a useful
characterization of defect groups of ideals I e Max (E[B](Ez)) in terms of
defect groups of primitive idempotents in €[B](Ez)".

Let y be a non-zero element of FIGIB]*]. Then y = D seois ¥ , Where the
elements ¥y, € FIG[B]*], , for ¢ € G[B], are unique and not all zero. We denote
by A(y) the family of all p-Sylow subgroups of all centralizers C(s in Ej) in
Ej of elements ¢ € G[B] for which 3, ¢ 0. Then A(y) is a non-empty family
of p-subgroups of Ez whose maximal elements (under inclusion) will be called
the defect groups of y. Evidently these defect groups do not necessarily form
a single Ejp-conjugacy class. In fact, they need not even be closed under
I3 -conjugation.

By convention A(0) will consist only of the trivial subgroup {1} of Ez,
which is therefore the only defect group of 0 e F[G[B]*].

Lemma 5.9. If D < Ejg, then the image @[B](EBID) n FIGIB*] of
G[B|(Es | D) is the set of all elements y e C[B](Ez)’ such that each subgroup
P e A(y) is contained in some Eg -conjugate of D.

Proof. Suppose that ye G[Bl(Ez|D)’. Then y certainly lies in

C[B](Es)’. If y = 0, then by convention the only group {1} in A(y) is
contained in D. So we can suppose that 0 # § = D ez Yr, Where
Yo € JIGIBI"], , for all o € G[B].

Because y lies in G[B](E5 | D)’, there is some element & e (SZ[B](D) such
that y is the image of trpoz,(2). Hencey = trp.z,(z) wherez e F[G[B *1(D)
is the image of z. Writez = ) eqrs 2 , Where z, € FIG[B]*], , for all ¢ € G[B].
The D-invariance of z and (5.8b) imply that (z)" = 2z, for all ¢ € G[B],
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7eD. It follows that C(oin D) centralizes z, , for all o e G[B], and that

g = Za’es tree in 0y-0(2s),

where S is a family of representatives for the D-orbits in G[B]. Hence

Yy = tro.eg(2) = Zdes tree in )>rp(2,) = ZveS troe in m)-m5(Ws),

Where Wy = tl'(,v(,,- in D)-»C(s in EB)(Z,), fOI’ all g € S

Suppose that w, % 0, for some ¢ ¢ S. By (5.8b), w, lies in the one-dimen-
sional subspace F[G[B]*),. Hence FIG[B]*], equals Fw, . So it is centralized
by C(oin Ez). In particular, C(cin E;) centralizes z, € F[G[B]*],. Hence

Wy, = trow in Dy»co in 25 (%) = [C(oin Ep):C(oin D)z, .
Because w, is non-zero, this and (5.1a) imply that p does not divide the index
[C(sin Ep):C(cin D)],

and thus that C(c in D) contains a p-Sylow subgroup P of C(s in Ez).
Clearly (5.8b) and the above expression for y imply that any p ¢ G[B] satisfy-
ing y, # 0 is Ep-conjugate to some o € S for which w, % 0. So the above
argument shows that the members of A(y) are all Ez-conjugate to p-Sylow
subgroups P of C(¢ in D), for such ¢, and hence are all contained in Fp-
conjugates of D.

Now let y be any clement of G[B](E5)” such that each subgroup P e A(y)
is contained in some FEjgz-conjugate of D. Since 0 certainly lies in
G[B](E5 | D)’, we can assume that 0 % y = D ,cat5 Yo , Where 4, € FIGIB]"], ,
for all ¢ € G[B]. Choose any element ¢ ¢ €[B](E3) having y as image, and
write ¢ = Zﬂg[g] ¢s , where ¢, € §[B],, for all ¢ e G[B]. The Ejp-invariance
of ¢ and (5.5b) give (¢,)" = ¢, for all o e G[B], r e Ez. Hence C(o in Ej)
centralizes ¢, , for any o € G[B], and

¢ = ZveT trC(v in EB)—>E'B(CO‘),

where T is a family of representatives for the Ez-orbits in G[B].

If the image ¥, of ¢, is non-zero, then any p-Sylow subgroup P of C (o in Ejp)
lies in A(y) and hence is contained in an Ejs-conjugate of D. Evidently we
can choose the family 7' so that D contains a p-Sylow subgroup P of C(o in Ej)
whenever ¢ € T and y, ¥ 0. Then the index [C(¢ in Ep) :C(s in D)] is not
divisible by p. By (5.1a) its image is a unit in . So we can form the ele-
ment

b, = [C(oin Ep):C(e in D) "¢, € §[BL,(C(cin Kz)).
Then
tree in mp)>5s(C) = tree in py>rp(bs) = troseg(as),

where a, = tree in py-0(bs) € €[BI(D). It follows that y is the image of
ZaeT, Y70 trc(a in EB)»EB(Co) = ZaeT, Y70 tI'D»EB(av) € @[B](EB I D)

Therefore y ¢ §[B](Es | D)’, and the lemma, is proved.
The above lemma leads to the following method for computing defect groups.
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ProrosiTioN 5.10. Any ideal I e Max (E[B](Ep)) is the inverse tmage of
its image M’ in G[B](Ez)’. So M — M’ sends Max ( C[B](Ez)) one to one
onto Max (G[B](Es)’). If M eMax (GC[B](Es)) and d is any primitive
idempotent of the algebra G[B](Eg)’ corresponding to M’ (i.e., satisfying
d ¢ '), then the defect groups in Ey of the non-zero element d of FG[B]*] coin-
cide with the defect groups in Ep of M. In particular, these defect groups of d
form a single Ep-conjugacy class.

Proof. Propositions 2.5 and 2.10 tell us that G[B]J(E[BL) < J(G[B]).
In view of Proposition 1.9, this implies that the kernel

G[BI(Es) n G[B]J(E[B)
of the epimorphism
G[B](Es) — G[B|(Es)”

is contained in J(E[B](Es)). The first two statements of the proposition
follow directly from this.

For the third and fourth statements, let D be any defect group of I in Ep.
Then the primitive idempotent d lies in

G[BI(Es)’ = M’ + GC[BI(Es| D).

Since both M’ and C[B](E; | D)’ are two-sided ideals of the finite-dimensional
J-algebra €[B](Es)’, we conclude (see Lemma 3.3a of [6]), that d lies in at
least one of them. But d ¢ I’. Hence d ¢ C[B](Es | D)’. By Lemma 5.9,
every group P e A(d) is contained in some Ejg-conjugate of D. So we can
complete the proof by showing that every Ez-conjugate of D lies in A(d).

Writed = D ,equs d» , where d, € FIG[B]"], , for all ¢ ¢ G[B]. We know that
d is the image of an element y e G[B](Es), which we can write as
Y = D scets Yo, Where y, ¢ G[B],, for all ¢ e G[B]. In view of (5.5b), the
Ep-invariance of y implies that of ys = 2 _ees Yo, for every Eg-orbit S of
G[B]. Hence the image ds = D_sesds of ys also lies in G[B](Ez)’. Because
the sum d of the various dg does not lie in I’, we can fix an Ep-orbit S of
G[B] such that ds ¢ M’. Evidently ds # 0. The Es-invariance of ds and
(5.8b) imply that d, = 0 for all o € S. So A(ds) consists of the Ez-conjugates
of a p-Sylow subgroup P of C(o in E3), for some o ¢ S. Applying Lemma 5.9,
we see that dse C[B](Esz|P)" — M’. Hence P contains an Ejz-conjugate
D7 of the defect group D of M. On the other hand P ¢ A(ds) € A(d) is con-
tained in an Ep-conjugate of D. We conclude that P = D', and hence that
A(d) contains the set A(ds) of all Ez-conjugates of D. As remarked above,
this completes the proof of the proposition.

6. Defect groups in G

We shall use Proposition 5.10 in conjunction with Lemma 3.1 to compute
defect groups of blocks. To do so, we must assume, in addition to the hy-
potheses of §§1, 2 and 5, that:

(6.1a) @ is a normal subgroup of E.
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(6.1b)  The action of E on G is by conjugation in E: 6" = 1 'or, for all
ce(, 1ek.

(6.1c) The restriction to G of the action of E on € s the action (2.15) of G
on G.

Condition (6.1¢) implies that (&) is simply the center Z(D) of O. Hence
it and its suborder €(E) are both commutative. Because the order €(F) is
commutative, there is, in view of Proposition 1.12, a natural one-to-one cor-
respondence between primitive idempotents d of €(F) and maximal ideals
IM e Max (€(F)) in which

(6.2) M corresponds to d if and only if M = (1 — d) €(E) & J(d € (E)).

By (6.1a) and (5.1b) the group E permutes among themselves the primitive
idempotents of €(G) = Z(D), which correspond to the blocks of ©. Evi-
dently this defines an action of £ on the blocks of ©. The primitive idempo-
tents of the suborder (&) of the commutative order €(G) are clearly the
sums of the elements of the E-orbits of primitive idempotents of €(G). In-
view of the one-to-one correspondence (6.2), we obtain a natural one-to-one
correspondence between E-orbits S of blocks of O and ideals I e Max (€(E)).
We define the defect groups in I of such an E-orbit S to be those of the corre-
sponding ideal 9. If S has only one element B, we also call these the defect
groups of Bin E. In general, we denote by E3 the subgroup of all elements of
E fixing a block B ¢S. Then Es = E,, where d is the primitive central
idempotent of © (and hence central idempotent of §) corresponding to B.
Evidently (4.7) holds with € in place of ©. So Proposition 4.9 and the corre-
spondence (6.2) give:

(6.3) If B is a block of O, then any defect group in Ez of B is also a defect
group in E of the E-orbit of B.

It follows easily from (6.1c), (2.14b), and (2.15) that the induced action of
G[B] on F[G[B]*] is the ordinary conjugation action

(64) ¥ =y =p yp, forall yeFIGIBI*], oeGBl, pepr (o).

This implies that F[G[B]*|(G[B]) is the center Z(F[GIB]*]) of FGIB]*]. Since
@G[B] is a normal subgroup of E5, by (5.5a) and (6.1a, b), we can repeat
the above analysis, obtaining natural one-to-one correspondences between
Es-orbits of blocks of F[G[B]*], primitive idempotents of FG[B]*|(Ez), and
ideals in Max (F[Q[B]*](Es)). As above, we define the defect groups in Kg
of an Ez-orbit T' of blocks of F[G[B]*] to be those of the corresponding ideal
N e Max (F[GIBI*|(Es)).

The subgroup Gp is normal in Ez by (6.1a, ¢). So the Ez-orbits of blocks
of F[G[B]*] are simply the unions of the Ez-orbits of G-conjugacy classes of
blocks of FIQ[B]*]. Theorem 3.7 gives a one-to-one correspondence between
these Gp-conjugacy classes and the blocks of O lying over B. This corre-
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spondence is clearly Ejp-invariant, and hence defines a one-to-one correspond-
ence between Ez-orbits of blocks of F[G[B]*] and Eg-orbits of blocks of O
lying over B.

We shall say that an E-orbit S of blocks of O lies over B if some B € S lies
over B. Since (B) lies over B, for all ¢ ¢ E, it is clear that the members of S
lying over B form an Ep-orbit B, and that S <> R is a one-to-one correspond-
ence between E-orbits S lying over B of blocks of O and Ez-orbits R of blocks
of © lying over B. Combined with the results of the preceding paragraph,
this gives us a natural one-to-one correspondence between Ejz-orbits of blocks
of F[G[B]*] and E-orbits lying over B of blocks of O.

TuEOREM 6.5. Let T be an Ez-orbit of blocks of FIG[B]*] and S be the corre-
sponding E-orbit lying over B of blocks of O. Then the defect groups of T in Ep
are precisely the defect groups in Ey of the corresponding primitive central idem-
potent d of FIGIBI*|(Es) considered as an element of F[Q[BI*]. Furthermore,
they are among the defect groups of S in E.

Proof. Notice that conditions (2.1) are satisfied with §, F[G[B]*], GIB],
and the §[Q[B]*], in place of R, O, G, and the O, , respectively. In this case 1
is the only primitiveidempotent of FIG[B]*, >~ §. Itfollowsthatthesuborders
corresponding to €, e€, and G[B] all coincide with {[G[B]*]. Furthermore
J(FIG[BI*h) = {0}, which implies that the algebra corresponding to F[G[B]*]
is

SIG1BI*)/ {0} = BIGIBI'].

In view of (5.8), conditions (5.1) are also satisfied in this case, with Ep in
place of . Now Proposition 5.10 gives the first statement of the theorem.

The one-to-one correspondence of Lemma 3.1 between central idempotents
of {FG[B]*] and those of €[B] obviously preserves the actions of Ep. It fol-
lows that any idempotent

d ¢ JIGIBI*|(Es) S Z(FIGIBI])

is the image of an idempotent d* ¢ G[B](E5). We conclude that F[G[B]*|(E5)
and its subalgebra G[B](E5z)” have the same idempotents. In particular, any
primitive idempotent d of F[G[B]*|(Es) is also a primitive idempotent of
G[B](Z5)’. The ideal N ¢ Max (GS[B](Es)) corresponding to such a d in
Proposition 5.10 obviously corresponds to d* via (6.2). Furthermore, the
ideal

M =N+ J(eC(Ez) e Max (eC(Ep))

corresponding to I in Proposition 5.6 corresponds to the primitive idempotent
d* of eG(E;) via (6.2). Finally, the ideal

{ = trege(M) @ (1 — tregz.zle)) C(E) e Max (€(H))

corresponding to I in (5.3) corresponds to the primitive idempotent
trepr(d*) of G(K) via (6.2). From Theorem 3.7 we see that trzg.z(d”),
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and hence &, correspond to S.  Now (5.3) and Propositions 5.6 and 5.10 tell
us that the defect groups in Ky of d considered as an element of F[G[B]*] are
among the defect groups of Sin K. This completes the proof of the theorem.

_ CoroLLARY 6.6.  Any defect group in Gy of a Gp-conjugacy class of blocks of
SIGIBY) is also a defect group in G of the corresponding block of O.

Proof. 'This is the special case £ = G of the theorem.
As a consequence of the above theorem, we have:

ProrosITION 6.7. Assume that E fixes a block B of . If D is a defect
group in E of B, then DG is a defect group of B in G, while DG/G =~
D/(D n @) is a p-Sylow subgroup of E/G.

Proof. We can choose B so that B lies over B. Then S = {B} is an E-
orbit lying over B. Let T be the corresponding Ep-orbit of blocks of FG[B]*].
Since E fixes B, it leaves invariant the family of all blocks of O lying under B,
which 1s just the G-orbit of B. Hence E = Ez((. The last statement of The-
orem 6.5 implies that D is E-conjugate to a defect group Doin Ep of T. Hence
D is G-conjugate to an Ez-conjugate Dy of Dy. Since we can replace D by a
G-conjugate without changing the results of this proposition, and since Dy’ is
also a defect group in E of T, we can assume that D = D,.

Let d be the primitive idempotent of F[G[B]*](Gs) corresponding to B in
Theorem 3.7. Then d is also the primitive idempotent of FG[B]*](E5s) corre-
sponding to 7. Theorem 6.5 now tells us that D is a defect group in E; of d,
i.e., a maximal member of the family A(d) of all p-Sylow subgroups P of all
centralizers C(o in Ej3) of all elements o ¢ G[B] such that the “¢** component”
d, of d is non-zero. For any such o and P, the intersection PnGz = Pn (@G
is a p-Sylow subgroup of the normal subgroup

C(oinGp) = C(ocin Ep) n @G

of C(oin Eg). So the corresponding family A’(d), defined with G in place of
E,is {PnG|PeA(d)}. The above analysis shows that any maximal ele-
ment Dy of A’(d) is a defect group in G of B. Since D n G e A’(d), we can
choose D; to contain D nG. But D; = P n @, for some P e A(d), and P is
contained in some maximal element of A(d), which must be an Ejz-conjugate
D of D. Hence DnG <D, <D 'nG = (Dn@)". Comparing orders, we
see that Dy = DnG. So D n G is a defect group of B in G.

Let ¢ be the primitive idempotent of Z(D) = G(G) corresponding to B.
Then ¢ is also the primitive idempotent of €(E) corresponding to S = {B}.
Applying Proposition 4.6, we see that DG/G is a defect group of ¢ defined with
respect to the induced action of E/G on €(G). Because ¢ is an E-invariant
central idempotent of €(@), this order is the ring direct sum of its E-invariant
suborders ¢€(G) and (1 — ¢) €(GF). It follows that DG/G is a defect group
in E/@ for the unique maximal ideal J(¢€(E)) of cC(E) = ¢C(G)(E/G).
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The order ¢€(G), being local, satisfies c€(G) = e + J(¢€(G)). It fol-
lows that

cC(C) = Re + [cC(C) n J(cC(G))],

for any group C such that ¢ < C < E. If yecC(C) nJ(cC((F)), then
Yy’ e J(cC(R)), for all pe E. Hence

tre.e(y) ecC€(l) nJ(cC(GF)) C J(cC(E)),
by Proposition 1.9. Therefore
cC(E|C) = Rtre.z(c) + [cCE|C) nJ(cC(E))].

It follows that ¢G(E [C) & J(cC(£)) if and only if tre.x(c) = [E:Clce
J(c€(E)). In view of (1.2) and (5.1a), this oceurs if and only if p does not
divide [E:C] = [E/G:C/G]. We conclude that the defect groups in E/G of
J(c@(E)) are precisely the p-Sylow subgroups of that group. Since DG/G is
among these defect groups, this completes the proof of the proposition.

7. Defect groups in H

If we return to the situation O = RH of the beginning of §2, we see that the
above results are inadequate. Using them, we can only compute the defect
groups in G = H/K of blocks of #H, while what we really want are their
defect groups in H. So we must go a bit deeper into the structure. Instead
of just studying RH, we shall consider the more general situation in which:

(7.1a) D, H, and the D, satisfy (2.1) in place of O, G, and the O, , respec-
lively.

(7.1b) D1 is a local ring conlained in the center Z(D) of D.

(7.1¢) The residue class field § has prime characteristic p.

Of course, we obtain the special case RH by taking © = RH and O, = No,
for all o € H.

Evidently (7.1b) implies that ©® = C(D; in D). Therefore H acts natu-
rally as R-automorphisms of D via (2.15). So we can introduce groups K
and F satisfying:

(7.2a) H 1is a normal subgroup of the finite group E.

(7.2b)  The action (2.15) of H on D = C(D; in D) extends to an action of
E as R-automorphisms of the order D.

(7.2¢) (Dy)" = Dpr = Dy-15r, forallc e H, 7 e E.

(7.2d) K 1is an E-invariant normal subgroup of H.

Notice that conditions (5.1) and (6.1) are now satisfied with E, D, H, and the
D, in place of E, €, G, and the G, , respectively. So we can define as usual
the defect groups in E of E-conjugacy classes of blocks of ©.

As at the beginning of §2, weset ¢ = H/K, O = D,and O, = ® D 0er D5,
for each coset + ¢ ¢ = H/K. Evidently O, @, and the O, satisfy (2.1).
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From (2.15) for D it is clear that € = C(O;in O) = C(K in D) = D(K).
Since K is a normal subgroup of £ (by (7.2d)), there is an induced action of
E/K on € = D(K). Of course, @ = H/K is a normal subgroup of £/K.
Using (2.15) for both © and O, one verifies easily that (5.1) and (6.1) are
satisfied with £/K in place of . So we can talk about the defect groups in
E/K of II/K-conjugacy classes of blocks of © (which are the same as the
E-conjugacy classes of blocks of ©).

Finally, conditions (5.1) and (6.1) hold with £, ©;, K, and the ©, (for
o ¢ K) in place of E, €, G, and the €, , respectively. So we can consider de-
feet groups in E of E-conjugacy classes of blocks of ©;. In particular, we
can consider the defect groups in £ of the block B of Oy .

Tuarorem 7.3. Let S be an E/K-orbit lying over B of blocks of O, and T be
the corresponding B/ K-orbit of blocks of FIG[B]*]. Choose a defect group D of
T in Es/K and a p-Sylow subgroup P of Es/K containing D. Then P is the
image of a defect group C of B in Ey . For any such C, the inverse tmage D of
D in C is a defect group in E of S considered as an E-orbit of blocks of D.

Proof. Let C be any defect group of Bin Ez. We can apply Proposition
6.7 with E5 , B, O1, and K in place of E, B, O, and @, respectively. It tells
us that C n K is a defect group of B in K while CK/K is a p-Sylow subgroup of
Ez/K. By Ejz-conjugation, we can choose C so that CK/K = P, which is the
first conclusion of the theorem.

Next we show that:

(7.4) C s a defect group in CK of B.
Since C is a defect group of B in Iy and e is a primitive central idempotent of
£, there exists an element y € ¢0:(C) such that e = tre,z;(y). In view
of (4.1), we can write this as

€ = Zq treon cx-> cx(y”);

where ¢ runs over a family of representatives for the double cosets CoCK in
Ep. The idempotent e is primitive in ;(CK) which is contained in the
commutative order O:(K) = Z(£:). Hence eD:(CK) is a local ring.  Since
each trace trcon cx cx(3”) lies in eD:(CK), we conclude from the above equa-
tion that

tr con exs cx(Y°) £ J(eD1(CK)),

for some ¢ € Ex . So the ideal eO:(CK | C° n CK) is equal to the local ring
eD1(CK). Therefore e = treon cx-cx(2), for some element z € e:(C° n CK).

We know that CK/K = P is a p-Sylow subgroup of Ez/K. Hence the
index [E5:CK]is not divisible by p. In view of (7.1¢), the image of this index
is a unit of ®. Therefore

e = troxsny([Es:CK] ™) = treen cxons([Es:CK] %),
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It follows that C° n CK contains a defeet group of B in Ky . Since €7 is such
a defeet group, this implies that €7 = ¢ n CK < CK. DBecause K is a normal

subgroup of iz wehave |C"n K| == | (Cn K)' | = |Cn K ]and|C"| =] C|.
We conclude that [ C"K | = [ CK |, and hence that CK = (°K = (CK)’.
But then 27 € e1(C) and

€ = 60-—_1 = [trc«_,(cx)«(z)]"ﬁl = trc_.ox(z”'l).

Therefore C contains a defect group C; of Bin CK. But e = tre,. ex(w), for
some w € eD:(Cy), implies ¢ = tren,([Es:CK]™w). Hence C; contains a
defect group for B in Ex. This forces C; = C, and proves (7.4).

The E-orbit S of blocks of © corresponds, as usual, to a primitive idempo-
tent d of trg,.z(e)D(L). Since e centralizes D(F) C € and satisfies (4.7a),
we can apply Proposition 4.9. This tells us that any defect group D of the
corresponding primitive idempotent ed of eDe(H3), defined by the action of
Ez on eDe = eDe, is also a defect group of S in K. So the theorem will be
proved if we can show that D can be chosen equal to D.

Proposition 4.6 tells us that DK/K is a defect group in E/K for the primi-
tive central idempotent ed of eDe(Ey) = eDe(K) (Ep/K). Since e is a cen-
tral idempotent of € = D(K), wehave eDe(K) = ¢[D(K)] = e€. So DK/K
is a defect group of the primitive idempotent ed of e €(E/K) defined by the
action of E/K on eG.

We know from (2.18) that (2.1) holds for eDe = eDe, (5, and the
e, = 0,e, for ¢ e Gz . Furthermore, e€ = C(eD; in eDe). We see easily
that conditions (5.1) and (6.1) are now satisfied with eQe, G, eC, Ez/K, the
ey , and the eC, in place of O, G, €, E, the O, , and the ¢, , respectively.
If B’ is the unique block of ey corresponding to the primitive central idem-
potent e, then it is clear from the definitions that ¢€[B’] = €[B] and that
Gs[B')* = G[B]* as extensions of F by Gs[B’] = G[B] operated on by Ez/K.
If 8" is the E/K-orbit of blocks of eQe corresponding to ed, then Theorem
3.7 says that the corresponding E5/K-orbit of blocks of F[G[B'*] = FIGIBI*|
is defined by the image of ed e eC[B’] = G[B]. But this Ez/K-orbit is T by
Theorem 3.7. So Theorem 6.5 says that the defect group DK/K in Ep/K of
S’ is E/K-conjugate to the defect group D of T'in /K. Since D is only de-
fined to within Fgz-conjugacy, we may choose it so that

(7.5) DK/K = D.

Now D is a subgroup of the inverse image CK of P > D in Ey. Since D
is a defect group for ed in Ejp, there exists an element « ¢ eDe(D) such that
ed = trp,z,(x). Because ex = x and e is Ep-invariant, we have

trD_,CK(x) = trD»CK(ex) = e tl‘p_,cx(ﬁ).
By (7.4), the idempotent e lies in ¢eDe(CK | ). Therefore (4.4) gives
trpacr(2) € eDe(CK | C)eDe(CK | D) S D geex ¢De(CK | C n D).
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Hence
(.f(l = tl'()K_,E]j(tI'])_,CK(x)) € Zoe(}K ‘trcxayl}<3@e(CK I C n DV))
= D vecx €De(Ey | € n D).

We conclude that there is some element ¢ € CK such that C n D° contains a
defeet group in Ep of ed.  Since C n D' is contained in D°; which is such a de-
feet group, we have D” = CnD” < C. Writing ¢ = 7p, where 7 ¢ K, p e C,
we sce that D™ < €' = ( satisfies D'K = DK. In view of (7.5), this im-
plies that D" is contained in the inverse image D of D in C.

Replacing D by D7, we have now chosen D to be contained in D as well as
to satisfy (7.5). Since DK/K = DK/K = D, the subgroup D will be equal
to D if and only if Dn K = Dn K. By construction D n K is C n K, which
is a defect group of B in K (sce the first paragraph of this proof). So the
theorem will be proved once we show that D n K contains a defect group of B
in K.

As above, ed = trp.zy(x), for some xzeePDe(D). The element
u = trp.px(x) lics in eDe(K) = eC. The ideal & of Lemma 3.3 is Ep-in-
variant by (5.5a). If u lies in §, then so do all of its Fz-conjugates. Hence

ed = trDK—»EB(u) 68,

which is impossible since ed is a non-zero idempotent and & < J(e€) by
Lemma 3.3. Therefore w ¢S, Writing v = Z“GB U, , Where u, e e@, for
all ¢ e(s, we conclude that there is an element p e G[B] such that
u, ¢ C[Bl,J(E[B}). By (2.14b) the image @, of u, is a non-zero element of
SIGIB), , i.e., %, € GIB)*. Hence no power of 4, 18 zero. In particular, if
n > 0 is an integer such that p" = 1, then @, is a non-zero element of
SIGIB)*ly. Thereforc u, ee€ — J(eGy).

By (2.18) we have a unique decomposition of 2 € eDe = eDe in the form
T = D geap T, Where, e e, foreach ¢ e (5. Since each eD, is K-invariant,
and x is D-invariant, each 2, is D n K-invariant. I'urthermore

U = trpopx(2) = tronxsr(T) = D seap tronxsx(T).
It follows that 4, = tronk.x(%), forall ¢ € G5 . In particular,
U = tronk-x(2,).
Since u, " € @ is K-invariant, this implies that u, = trong.x(z,u, ). But

2y eeD, eCpu-1 C eOpn = ey .
Therefore

u, eeO(K | DnK) — J(eD(K)).
We conclude that D n K contains a defeet group in K of B, which, as noted
above, completes the proof of the theorem.

COROLLARY 7.6.  The intersection D n K is a defect group of B in K.
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Proof. 1In the first paragraph of the above proof it was shown that C n K
is a defect group of Bin K. Since Dn K = C n K by definition, this implies
the corollary.

Since we have operated at several levels of generality in the last three sec-
tions, it is perhaps wise to specify what happens when Theorem 7.3 is applied
to a finite group H and normal subgroup K, as at the beginning of §2. We
assume, of course, that the characteristic of the residue class field § is a prime
p. Wefix a block B of RK, and set G = H/K. Then §2 gives us the normal
subgroup G[B] of Gy = Hp/K and the Clifford extension G[B]* of F by G[B],
together with the conjugation action of G5 on G[B]*. Theorem 3.7 gives a
one-to-one correspondence between blocks B of %H lying over B and G-
conjugacy classes T of blocks of F[G[B]*]. Tix such a block B and a block B
in the corresponding class T. Green’s theory gives us defect gioups D of B
inGps=GsnGzand Cof Bin Hy .

TuroREM 7.7. In the above situation, CK/K s a p-Sylow subgroup of
Hyz/K = Gg. We can choose C so that this p-Sylow subgroup contains the p-
group D. Then the inverse image D of D in C is a defect group of B in H.
Furthermore, Dn K = C n K is a defect group of B in K.

Progf. The first statement is a consequence of Proposition 6.7 with Hp,
B, RK, K, and the No, o € K, in place of E, B, O, G, and the O, , o € G, re-
spectively. The second and third statements are the result of Theorem 7.3
with E = H,D = RH, D, = Ro, for o e H, and 8 = { B} together with (6.3)
with G5 in place of E, F[G[B]*] in place of O, and B in place of B. The last
statement follows from Corollary 7.6.

8. Brauer’s First Main Theorem

Curiously enough, Brauer’s First Main Theorem (Theorem (10B) of [1])
is valid even in the general setting (5.1). To show this, we shall use the
notation and assumptions of §5.

Fix a p-subgroup D of E;. The centralizer C (D in G[B]) is then the sub-
group of all ¢ ¢ G[B] satisfying ¢" = ¢ forall 7 e¢D. Since C(Din G[B)) is a
subgroup of G[B], Proposition 2.10 implies that (2.1) holds with

@[B](D) = @ ZaeC(D in G[B]) G[B]V’

C(Din G[B]), and the @[B], in place of O, G, and the O,, respectively.
Notice that

C[Blw J (C[BL) = @ D secto n atsny CBlr J (G[Bh)
C[B]»y n §[B]J (E[B).

So we can naturally identify the {-algebra €[B]w)/ C[Blw) J (€[B];) with the
image

SICBI* Iy = © 2occw in ot FIGBI'e
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of G[Blw in §[GIB]*]. Equation (5.5b) implies that G[B]p, is invariant
under the normalizer N (D) = N(Din Ej) of Din Ez. We conclude easily
that the results (5.8)—(5.10) are also valid with G[Bl) , FIGIB] |y , N (D),
and C (D in G[B)) in place of €[B], SIGIB]Y), Es , and G[B], respectively.

ProrosiTiON 8.1.  The restriction S to C|B](Es)’ of the natural projection of

SIGBI" = ® 2ocotn SIGIBI'L

onto

FIGBI >y = @ 2 scoww in atsn JLGIBI'
is an identity-preserving §-homomorphism of this subalgebra inio the image
C[Blm (N (D))’
in S(GIBI*] of C1Blw (N (D).

Proof. Suppose that 2 = D seqts 2 € C[B](Ez), where 2, ¢ G[B], for all
o e G[B]. Equation (5.5b) and the E; -invariance of z imply (2,)" = 2.,
for all ¢ € G[B], 7 ¢ Ex. It follows that N (D) centralizes

x = ZaeC(D in @[B]) %o

i.e., that z lies in G[B]wm) (N (D)). By definition S sends the image 2’ of 2 in
§IG[BI*] into the image z” of . We conclude that S is an §-linear map of
G[B](E3)” into G[Blm (N(D))’. Evidently 1 eF[G[B]*], implies that
S(1) = 1. So it only remains to be shown that S(yw) = S(y)S (w), for all
y, w e G[B](E5)".

This is just a repetition of the original proof of Brauer (see page 426 of
[1]). Write y = qua[g] Yo a0d W = D _seqrn) Wo , Where 4o , wo € §IGIB1M, ,
for all ¢ e G[B]. Fix 7 ¢ C(Din G[B]). Set

T = {p X ¢ eG[B] X G[B] | poc = =},
7" = {p X ¢eC(Din G[B]) X C(DinG[B)) | ps = .

The group D fixes 7, and hence acts naturally on T, with (p X ¢)" = p” X ¢,
forallp X o e T, 7 ¢ D. Denote the D-orbits of T by T, - - -, T, , and choose
pi X cieTi,fori =1, ---, n. Evidently 7" is precisely the subset of all
p X ¢ € T centralized by D, i.e., theset of all p; X ¢;,2 = 1, - -+ , n, for which
|T:| = 1.
For any ¢ = 1, ---, n and any 7 eD, the E; -invariance of y and of w
implies that
;)" = Yo and (Wo,)" = Wor .
Hence
Yo;7 Wo;r = (ypi)r (wq)T = (ypi wvi)r-

The finite p-group D acts as linear transformations of the one-dimensional
subspace F[G[B]*], over the field § of characteristic p. Hence D centralizes
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§IGIB]*]. . In particular, r e D fixes ¥,, w,, , which lies in F[G[B]*], since
pio; = w. We conclude that

ZﬂXﬂT«; Yp W = l T; l Yoi Wo; «

Since D is a p-group, | T;| is a power of p. In view of (5.1a), the above
expression is zero unless | T; | = 1. Hence

ZoxaeT Yo Wo = Zz?;l (praeTi Yo Wo) = Z?=I,IT¢I=1 Yo; Wo; = ZvaeT’ Yo Wo -

But the first sum is the =** component of yw Whlle the last is the 1r“‘ component
of S(y)S (w) (in the decomposition FIG[B]*] = ® D seorsr FIGIBI*],). Their
equality for any = e C (D in G[B]) is premsely the desired equa,tlon S (yw) =
S(y)S(w). So the proposition is proved.

The above homomorphism S is called the Brauer homomorphism defined by
D.

We next define a subset G[B] (£5 || D) of G[B] and a subspace G[B](E; || D)’
of G[B](Ez)’ by:

(8.2a) GIBI(Esz|| D) = {ceGB]|D is Ez-conjugate to a p-Sylow sub-
group of C (¢ in Ejp)}. ~
(8.2b) G[B](Es || D)" = GB](Hz)’ n (® Zscatmmmm FIGBI*L).

Evidently the non-zero elements of G[B](Ejs || D)’ are precisely those non-
zero elements y of G[B](E;)” for which A(y) consists of the Ey -conjugates
of D.

Prorosition 8.3. Choose subgroups Dy = D, Dy, - -, D, of D so that any
subgroup of D is Ep -conjugate to exactly one of Dy, -+- , D, . Then

(84) G[B](Es| D) = ® 2 iy G[BI(Es || D))" (as F-vector spaces).
Proof. It follows from Lemma 5.9 that

B|(Es | D)’ = G[B|(Es) n (® Y er FIGIBI*],),

where T = U]~ GIB](Es | D:). Hence each G[B](Es || D:)’ is contained in

G[B](E» | D)’. Since the subsets GB] (Es || D;) are pairwise disjoint, the
sum of the subspaces G[B](E; || D;)” is direct. Therefore the left side of
(8.4) contains the right side.

Now let y be any element of G[B](Es|D)’. We can write y = D et Yo s
where ¥, ¢ FIG[B]*],, for each ¢ ¢ T. Furthermore y is the image of an ele-
ment z ¢ G[B](E3), which we can write as 2 = 2 _ceas 2 , Where 2, ¢ G[B],
for all ¢ ¢ G[B]. Because z is Ej-invariant, we have (2)" = 2z-, for all
oceQB), r e E5. All the subsets G[B](Es || Di), ¢ = 1, -+, n, are clearly
Ejy -invariant. It follows that z; = ZveG[B](EBIID,') 2, lies in G[B](Ejy), for
each 7 = 1, ---, n. By (8.2b) its image y: = D seotsi(spioy Yo lies
in G[B](E; || D:)’, fori =1, -+ ,n. Hencey = y1 + -+ + yau lies in the
right side of (8.4). This completes the proof of the proposition.
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Since D is also a p-subgroup of N (D) we can similarly define
C(DinGIB)(N(D) | D) and €[Blw (N (D) | D).
The critical property of the map S is then given by:

Lemma 8.5.  The Brauer homomorphism S defined by D sends G[B](E5 || D)’
one-to-one onto G[Blwy (N (D) || D)’.

Proof. If ¢eG[B](Ez| D) nC(DinG[B]), then C = C(¢in E3) con-
tains D and has an Ejp -conjugate D" as a p-Sylow subgroup. It follows that

D is a p-Sylow subgroup of C. Hence D is a p-Sylow subgroup of Cn N (D) =
C(ein N(D)). Therefore

ceC(Din G[B]) (N (D) || D).
In view of (8.2b) and Proposition 8.1 we conclude that S maps

G[B)](Es | D)” into G[B)m (N (D) || D)".
Let -
Yy = LdeG[B](EBllD) Yo

be a non-zero element of G[B](E; || D)’, where y, e FIGIB]*], for each o.
The Ej -invariance of y gives yor = (¥,)7, for all ¢ e A[B](E || D), 7€ Ex .
It follows from this and (8.2a) that some o ¢ G[B](E; || D) satisfies simul-
taneously ¥, # 0 and D < C(sin Ez), i.e.,, ¢ e C(Din G[B]). We conclude
from the definition of S that S(y) s 0. So S is a one-to-one map
of G[B](Es || D)’ into G[Blm (N (D) || D).
Now let
w = Zae ¢(D in G[B1)(N(D)| D) Wer

be any element of G[Blw) (N (D) || D)’, where w, ¢ §{G[B]*],, for each o.
To complete the proof of the lemma, we must construct an element

y e C[B](E5 || D)’
such that S(y) = w.

If ¢ is any element of C (D in G[B]) (N (D) || D), then D is clearly the unique
p-Sylow subgroup of C(sin N(D)). Hence D is contained in a p-Sylow
subgroup P of C = C(sin E3). If D is properly contained in P, then it is
properly contained in its normalizer N (D in P) in P. But then N (D in P)
is a p-subgroup of C n N (D) = C (¢ in N (D)) strictly containing the p-Sylow
subgroup D of that group. This is impossible. Hence D = P is a p-Sylow
subgroup of C and ¢ ¢ G[B](Ez || D).

When w, = 0, the subgroup C centralizes w,. We use an argument of
Reynolds [9] to show that C also centralizes w, when w, # 0. In that case
the one-dimensional subspace FG[B]*], of FGIB]*] is equal to Fw,. From
(5.8b) it is clear that C = C (s in E3) leaves this subspace invariant. Hence
there is a function A from C to the multiplicative group F of § such that
(w.)” = N(r)w,, for all 7eC. Because the action of C on F[G[BI*], is §-
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linear, the map A is a homomorphism of the finite group C into F. In particu-
lar, its image A (C) is a finite subgroup of F, and hence is cyclic of order not
divisible by the characteristic p of §. We conclude that the kernel K of A is a
normal subgroup of C containing every p-Sylow subgroup of C. In particu-
lar, the p-Sylow subgroup D of C is a p-Sylow subgroup of K. Now the
Frattini argument tells us that ¢ = N (D in C)K. But the N (D)-invariance
of w implies that w, is centralized by N(Din C) = C n N(D). Therefore
NDinC) < K and C = K centralizes w, .

We know that w is the image of an element z ¢ €[B]p) (N (D)), which we
can write s 2 = 2 cop i aian % , Where z, € G[B], for each p. Clearly w,
is the image of z,. The N (D)-invariance of z implies that C n N (D) =
C(cin N (D)) centralizes z,. Hence trenwm-c (2) is defined. This is a
sum of various C-conjugates of z, by (4.1). Since C = C(oin Ez) leaves
invariant @[B],, which contains z,, the above trace is an element of that
submodule.

The intersection C n N (D) contains the p-Sylow subgroup D of C. Hence
the index [C:C n N (D)] is not divisible by p. 1In view of (5.1a), we can now
define a C-invariant element z, ¢ €[B], by

%z = [C:Cn N(D)]_’l trenwy-c (20).
Since C centralizes the image w, of 2, , the image of 2, in F[G[B]*], is
[C:CnND)  trenvmsc w,) = [C:Cn ND)|C:CaND)w = w,.
We must prove:

(8.6) If o’ ¢ C(Din GIB)) (N (D) || D), for some € Ey , then 2, = (z,)".

Since both D and D" are p-Sylow subgroups of C" = C (¢" in Ejp), there exists

an element p e C" such that D™ = D. Because p centralizes 2,-, it suffices

to prove (8.6) with 7p in place of 7, i.e., we can assume that 7 liesin N (D).
The N (D)-invariance of z now gives z,- = (2,)". Therefore

Lgr = [CT:CT n N(D)]_l trarnN(D).,cr ((Z.r>7>
(€7 (€ 0 N (D)T trcensonrser (o))
= (IC:CaND)| " trennmsc ()" = (@)

This proves (8.6). B

Now we define z, , for any = € G[B](#3 || D), to be (z.)" ' for any 7e Fg
such that 7" ¢ C(D in G[B]) (N (D) || D). We know from the first two para-
graphs of this proof that such a 7 exists, and from (8.6) that z, is a well-
defined element of €[B].. Clearly (z.)" = ., for any = e G[B](Ez | D),
rely. It follows that = 2 ,cemzgin &r lies in G[B](Ez) and that its
image y lies in G[B](Es || D)’. Because w, is the image of x, , for any

ceGB](Ez|| D) nCDinG[B]) = C(Din G[B]) (N (D) || D),

this element y satisfies S(y) = w. So the lemma is proved.
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We denote by Max (C[B](Ez) | D) the family of all maximal ideals
I e Max (C[B](E5)) having D as a defect group with respect to the action
of Bz on G[B]. We define Max (€[Blp)(N (D)) | D) similarly, using the
action of N (D) on §[B]wp, .

TreorEM 8.7 (Brauer’s First Main Theorem). For any p-subgroup D of
Ly, the Brauer homomorphism

S : G[B](Es)” — GC[Blw (N (D))’

induces a one-to-one correspondence between ideals M e Max (€[B](E;z) | D)
and tdeals N e Max (€[Blwy (N (D)) | D). Two such M and N correspond if
and only if the image MM’ of M in C[B)(E3)” is the inverse image S~ (N’) of the
image N’ of N in C[Blwy (N (D))’. In that case S induces an F-isomorphism
of the algebra

C[B](Exs)/M ~ C[BI(Es)"/M
onto

C[Blw) (N (D)) /% ~ C[Blw (N (D))"/N,

and N vs the only maximal two-sided ideal Ny of C[Blwy (N (D)) such that
ST < M

Proof. We denote by & the sum of the ideals G[B](E; | C)”, where C runs
over all subgroups satisfying C < D (if D = {1}, then = {0}). Then
Proposition 8.3 implies immediately that

(8.8) C[BI(Es | D)’ = GBl(Es|| D)’ ® & (as F-spaces).

Evidently D is contained in a p-Sylow subgroup of C(¢in N (D)), for all
ceC(Din G[B]). It follows that C(Din G[B]) (N (D) || C) is empty, and
that €[Blmy (N (D) || )7 = {0}, forall C & D. So (8.4) gives:

(8.92) G[Blwy W (D) | C)” = {0}, for all C % D,
(8.9b) C[Blw (W (D) | D)’ = €[Blw (N (D) || D).

The same argument shows that no ¢ e C(Din G[B]) can be contained in
GIB](Es || C), for any C < D. This and Proposition 8.3 tell us that £ lies
in the kernel of 8. So (8.8), (8.9b), and Lemma 8.5 give us an exact sequence:
C
® —= . GIBI(Es | D) —5—
C[Blw(N(D) | D)” —— 0.
Let Ny, - -+, Nn be the distinet members of

Max (€[Blw (N (D)) | D).

In view of (8.9a) and Proposition 5.10, their images N7, --- ,N5 are the
distinet maximal two-sided ideals of G[B]) (N (D))’ not containing the two-
sided ideal G[Blp (N(D)|D)’. Since § = J(C[Blw (N (D))’) is the
intersection of all the maximal two-sided ideals of this algebra, we conclude

8.10) °
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that inclusion induces an exact sequence:

g1y O CBlo W D)D)’ ng —=— G[Blw» ¥ (D) D)’
—— G[Bloy (N(D))"/Rin -+ a R, —— 0.
In particular, the intersections
N n GBI (N (D) | D), -+, % n E[Blwy V(D) | D)’

are all distinct. It follows from this and the exactness of (8.10) that the
inverse images ST(M1), ---, ST(N) are distinet two-sided ideals of
G[B](Es)’, and hence that their respective inverse images I, - -+, M, are
distinet two-sided ideals of €[B](Es).

Since N7 + C[Blw (N (D) | D)’ = €[Blw) (N (D)), forany i =1, -+ ,n
the exactness of (8.10) implies that

Ni + S(C[BI(Es)") = C[Blw (N (D))"
We conclude that S induces an algebra isomorphism of

G[B] (E5)/M: ~ G[B](Es)’/S (N

)

onto

C[Blw (N (D))/%: =~ C[Blw (N D))"/ .

Since N; is a maximal two-sided ideal of E[B]p) (N (D)), this implies that N,
is a maximal two-sided ideal of €[B](Ez). Because

N P CBlw (N (D) | D),
the exactness of (8.10) implies that

M = SN D CIBI(Es| D)’
On the other hand,
M DR 2 CB(Es| C),

for all C < D. Therefore D is a defect group of ;. So N; — M, is a one-
to-one map of Max (€[Blw) (N (D)) | D) into Max (C[B](Ez) | D).

If No is any member of Max (€[B]wp) (N (D))) different from Ny, - - -, %n )
then (8.9) and Proposition 5.10 imply that 7 contains G[B]p) (N (D) | D)’.
The exactness of (8.10) tells us that S™ (N7) contains €[B](Ey | D)”, which is
contained in none of 97, - -+, M7, , since each M, has D as a defect group.
Hence S7'(My) & M/, for s = 1, -+, n, which completes the proof of the
last statement of the theorem.

Now let M be any member of Max (G[B](Es) | D). Then 9?’ contains
£, while

G[B](Es | D)’/ (C[BI(Es | D)" n M) ~ (C[B](Ez|D)" + M')/Mm’
o~ G[B](Es)"/M,
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as algebras. It follows from the exactness of (8.10) that
S(C[B](Ez | D) n M)

is a two-sided ideal of the subalgebra (without identity!) G[B]w) (N (D) | D)’
such that the corresponding factor algebra is isomorphic to the simple algebra
(with identity) C[B](%z)’/M’. Evidently such an ideal must contain the
nilpotent ideal €[Blp) (N (D) | D)’ n 3. Because (8.11) is exact, there must
bean¢ = 1, - -+, n such that

S(GC[B)(Ex | D) n ') = N n C[Blw (N (D) | D).

Now M is another ideal in Max (G[B](Es) | D) such that M7 = S~ (N7)
and M’ have the same intersection with the two-sided ideal G[B](Es| D)”
IF M, = I, then multiplying the equations

M + M’ = C[B](Ey)" and C[B](Ey| D)’ + M = C[B|(Ex)’
gives
C[B](Es)” S M7 C[B|(H| D)+ M S (M n C[B](Ex | D)) + M = M’
which is impossible. Hence I¢; = 9. Therefore N; — M is onto, and thé
theorem is proved.

9. The Brauer analysis

We continue to use the notation and assumptions of §8. The remaining
parts of the Brauer analysis (in §11 of [1]) of the blocks of a finite group Gy
having a fixed defect group D, take us from such blocks of the normalizer
Ng, (Do) to certain N4, (Doy)-conjugacy classes of irreducible characters of the
centralizer Cq, (Dy). In our generalization of his analysis, the role of the
group algebra of Cg, (D) will be played by the image €[B]p, (D)’ in F[GIB]*|
of the suborder €[B]p (D) of G[Blpy . To describe this image, we define

(9.1) G[BI(D) = {oeC(DinG[B]) | C[Bl.(D) E G[Bl. J (C[BL)},

where, as usual, €[B], (D) is the R-sublattice of all elements of §[B], fixed by
D.

Prorosrrion 9.2, The subset GIB](D) is an N (D)-invariant normal sub-
group of C(D in G[BY). The factor group C (D in G[B])/G[B](D) is a p-group.
Furthermore

9.3) CBlm (D) = @ Xocamw SIGB]' .
Hence G[B)w) (D)’ is a twisted group algebra of G[B](D).

Proof. Since F[G[B]*] is a twisted group algebra, each SIGIB)". , for
o ¢ C (D in G[B]), is one-dimensional over §. In view of (2.14b) and (9.1),
this implies that such a ¢ lies in G[B](D) if and only if FG[B]*], is the image
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Bl, (D)’ in F[G[B]*] of €[B), (D). Ife, r e G[B](D), then
€[Bl,(D)” = §lGIBI*l, and G[B].(D)" = FIGB]")
imply that the image of €[B], (D) GS[B], (D) < €[B], (D) is

3GIBY", IGIB]"), = GBI, .
Therefore o7 also lies in G[B](D). Evidently

e e §[BL(D) $ J (€[Bl).

So 1 e ([B](D). Since G[B] is a finite group, its subset G{B] (D) is therefore
a subgroup.

The subgroup C (D in G[B]) is clearly N (D)-invariant, as is the suborder
C[BI(D). IfceGBI(D) and = e N (D), we conclude that ¢" ¢ C (D in G[B])
and that the image of €[Bl-(D) = (E[Bl, (D))" is

3IGIB"- = (BIGIBI™.)"
Hence ¢" € G[B] (D) and G[B](D) is N (D)-invariant.

Suppose that o ¢ C(Din G[B]) and y, e §[B], — G[B], J (€[B];). Since
C[B]; = e, is a local ring, we know from [ICE, 1.16] that y, is a unit of €[B]
whose inverse ;' lies in G[Bl,-1 — @[Bl,~: J(G[B]). Furthermore,
Yo €[Bls-1 = €[B];, by [ICE, 1.14]. Multiplying this last equation on the
right by €[B],, we obtain

§[Bl, = €[Bl €[B], = y, €[Bl,-: C[B], = y, C[B .

If p e D, then ¢" = ¢. So the above equation and (5.1¢) give us an element
21 € §[B]; such that (y)" = y,2:. Clearly 2 is also a unit of G[B] and
W) = 2y .

Now let 7 be any element of G[B](D). Choose

z. € §[Bl, (D) — G[B], J (C[BL).

Then ¥, @, ys € C[Bl,» . Since z e G[B], is central in €[B] (by (2.8b) and
(2.9)), we have

o'z ye)” = o) @) (o)’ = 21'Ye T Yo 21 = Yo @ Yo -

Hence ¥, % v € C[Bl« (D). Evidently the image of y; 'z, o in FIG[B]*]- is
conjugate to that of x,, and hence is non-zero. Therefore 7" ¢ G[B] (D) and
G[B](D) is a normal subgroup of C(D in G[B]). This completes the proof
of the first statement of the proposition.

For the second statement, it suffices to show that any element
o ¢ C'(D in G[B]) having order n not divisible by p is an element of G[B](D).
Let y, be, as above, any element of €[B], having a non-zero image %, in
S[GIB]*,. Then (7,)" is a non-zero element of

FIGIB o = GBI ~ .
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Because § is algebraically closed, it contains an element f such that
(fg)" =7 @)" =1

Replacing ¥, by fy, , where fis any element of 9t having f asimage in § = %/,
we see that y, can be chosen so that ()" = 1 (mod J(€[BL)). Now
Proposition 1.16 gives us an element z; e §[B]; such that (z1)" = (¥.)".
Since G[B]; is central in €[B], we can replace y, by 21 'y, to obtain (y,)" = 1.

We know that every element of €[B], has a unique expression in the form
Y, w1, where w; ¢ €[B),. Furthermore, (y,w:1)" = y, wi = wi, since
@[B]; is central in G[B]. Therefore (y, w;)™ = 1 if and only if w; is an nt-
root of 1in G[B],. Because J has characteristic p which does not divide n,
the valuation ring 9 contains precisely n nt roots of 1, of the form ¢, ¢, - -,
¢" = 1, whose images in § are the distinct n* roots of 1 in that field. In
view of (2.11), the image of w; in €[B]; /J (€[B],) must coincide with that of
¢¢ for a uniqued = 1, --- ,n. Hence

¢Twe =1 (mod J(C[B}))

is another nt*-root of 1in €[B];. Now Proposition 1.16 tells us that Swy =1,
i.e., that wy = ¢'. We conclude that ¢ye, ™%, *++, "% = ¥ are the only
nt roots of 1 in €[B],. Evidently these elements must be permuted among
themselves by any p e D. Therefore (y,)° = ¢%,, for some unique ¢ = 1,

., m. Since p centralizes { ¢ R, we have ()" = "y = ¥,. But nis
relatively prime to the order of p e D, since D is a p-group. Therefore p
centralizes y, , and

Yo € C[Bl. (D) — G[B], /J (C[Bl).

So o € G[B](D), which completes the proof of the second statement of the
proposition.

Ify = 2 vecw in oizh Yo € C[Blny , where ¥, € G[B], for all o, then clearly
y € G[Blw) (D) if and only if ()" = yoo = ¥, for all p e D, ¢ € C(D in G[B]).
We conclude that

C[Blipy (D) = @ D vectn in ats)y EIBL (D).

Equation (9.3) follows directly from this, (9.1), and the one-dimensionality
of the F-spaces FG[B]*],. Since G[B](D) is a subgroup of G[B] and §IGIB1*
is a twisted group algebra of G[B], this implies that C[B], (D)’ is a twisted
group algebra of G[B](D). So the proposition is proved.

We shall need an additional hypothesis to carry out the rest of the Brauer
analysis. Of course, everything would work under the conditions (6.1).
But we can get away with the weaker assumption that

(94) C[Blw (N (D))’ € Z(C[Blw) (D)),

where, as usual, the right term denotes the center of the algebra €[Blp) (D)’.
We should remark that (9.4) certainly holds when (6.1) is satisfied, since
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C (D in G[B]) is then a normal subgroup of N (D) = N (D in Ez) (by (5.5a)
and (6.1)), which implies that

C[Blw (N (D)) S €[Bln (C(DinG[B])) = Z(C[Bln),

by the definition (2.15) of the action of G{B] on E[B].

It follows from Proposition 9.2 that the subalgebra G[B]m) (D)’ of FG[B]*|
is N (D)-nvariant. So N (D) permutes among themselves the ideals
N e Max (C[B]ip) (D)”). For any such N, its stabilizer N (D) in N (D) acts
naturally as algebra automorphisms of the simple factor algebra
€[Bl»y (D)’/N. Obviously D, which centralizes [B] (D)”, is a subgroup
of N(D)s. So the §- subspace

[C[Blw) (D)’/NIN (D)= | D)
of G[Blw (D)7/N is defined.
The Brauer analysis can now be completed by:

THEOREM 9.5. When (9.4) holds there is a one-to-one correspondence between
the ideals I e Max (C[Blipy(N (D)) | D) and the N (D)-orbits of ideals
N e Max (C[Blw) (D)”) satisfying

(9.6) [C[Blw) (D)'/RI(N (D)2 | D) # {0}.

Such an M corresponds to the orbit of such an N if and only if
M = N n CBln N D))’

In that case the N (D)-conjugates of It are the only ideals

No € Max (€[Blw) (D))
satisfying
o n C[Blny N (D))" < M.

Proof. TFor any N e Max (G[Bli (D)), we denote by AN] the factor
algebra G[B]) (D)’/MN. This is a finite-dimensional simple algebra over the
algebraically closed field §. Hence its center Z (UAN]) is just F-1. Since
C[Blw (N (D))’ contains the identity of €[B] (D)’, condition (9.4) implies
that its image in A[N] is precisely F-1. So

[Blwy W D))"/ M n €[Blwy (N(D))”) >~ § (as F-algebras),
and

N n C[Blw (N (D))’ e Max (C[Blw) IV (D))").

Hence the inverse image M = MMN) of N n C[Blipy (N (D))’ is a maximal
two-sided ideal of €[B]w) (N (D)) satisfying M’ = N n C[B]wm) (V (D))”.
Suppose that N satisfies (9.6). Since D centralizes

AN) = C[Blw (D)'/N,
there exists an z € A[N] such that w = trp.ywy () 5 0. Because the algebra
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G[Blp) (D)’ is finite dimensional, it contains an element y having = as image
in A[N] such that y e No for all Ny = N in Max (C[Bl (D)’). This implies
that 5" e = N )% forall e e N(D) — N(D)n. So the image in AN] of

troonmy YY) = 2ovoryn ¥

is just Z“N(D)m/p a2 = w # 0. We conclude that trp.xm () ¢ . If 2

is any element of G[B]wp) (D) having y as image, then this implies
that trp.xw) (&) € €Blipy W (D) | D) — M. Therefore D contains a defect
group C of M.

If C < D, then G[B]») (N (D) | C)” = {0} by (8.9a). Since M is the inverse
image of M’, it therefore contains E[Blwp (N (D) | C). This is impossible
for the defect group C of M. Hence C = D and

M e Max (C[B]w (N (D)) | D).

Since N (D) centralizes 9¢”, it is clear that M (N°) = MM)” = I, for all
ce N(D). Suppose that Ne e Max (€[Blp) (D)’) is not N (D)-conjugate to
M. Then, by construction, y° e Woforall e e N (D). Hencetrp.xm ) € No .
We conclude that trp.ym (2) lies in the inverse image IM(Mo) of
No n G[Blipy (N(D))’. Since this element does not lie in ¢, we must have
P (o) $ M.  This proves the last statement of the theorem, and shows that
we have a one-to-one correspondence between all the N (D)-orbits of ideals

N e Max (C[B]w) (D)J)
satisfying (9.6) and some of the ideals
M e Max (€[Blw) (N (D)) | D).

It remains to be shown that we obtain every such It in this way. First
notice that IN certainly has the form I (N) for some ideal

N e Max (€[Blw) (D)”).

Indeed, if this is false, then %', which lies in Max (€[Blwy (N (D))’) by
Proposition 5.10 (for N (D) and C(D in G[B]) in place of Ez and G[B]),
contains none of the maximal two-sided ideals

N n C[Blw (N (D))",

for M e Max (G[Blp) (D)7). Hence M’ does not contain their product.
But this product is contained in their intersection, which is

GC[Blw (N (D))" n J (E[Blwy (D)”) S J (C[Blwmy (N (D))”) S W,

by Proposition 1.9. The contradiction proves the above statement.
Now we fix an ideal % e Max (€[Blw (D)’) such that M = MMN). We
must show that 9 satisfies (9.6). If % =N, Na, -- -, N, form the N (D)-
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conjugacy class of R, then the natural map of G[B]py (D)’ into
AM] @ --- @ AN
(as algebras) is an epimorphism with kernel %y n -+ n N.. Hence N (D)

acts naturally on A[9H] @ -+ @ AMN.] so that this map is N (D)-invariant
Because I has D as a defect group, there is an element z ¢ §[B]p) (D) such
that tronvwy (2) ¢ M. It follows that the image z of zin ANH] @ -+ - @ AN,

satisfies trp.,N(D) () 0. Writez =2, ® --- ® z,, where z; ¢ 2[[%,-] for
t=1,:--,n Then

0 # trp.n (@) = trpowm @) + -+ + trpsnmy @a).
So there exists an 7 = 1, - - - , n such that trp,xwm (@) # 0. It follows that
T wmg, (z;) is a non-zero element of A[N.]. If ¢ ¢ N (D) satisfies N; = N,
then z, = 2} will be an element of A[N] = A[N] such that

trpanmyy (@) = trorwmig (z3) = [t Do w(D)g, ()] = 0.

Therefore 9 satisfies (9.6). This completes the proof of the theorem.

Condition (9.6) does not look very much like Brauer’s conditions in The-
orem (11B) of [1]. However, we shall show that it is equivalent to them under
the hypothesis (6.1).

ProposiTioN 9.7.  Suppose that (6.1) holds. Then an tdeal
N e Max (G[Blw) (D))
satisfies (9.6) if and only of it satisfies the two conditions:
(9.8a) [N(D)2:D-GIBI(D)] # 0 (mod p),
(9.8b) [C[Blw) (D)/NI(GIBI(D) | D n GIBI(D)) # {0}.
Proof. It follows from (6.1c) that the action on €[B]p) (D)’ of any element
o ¢ G[B](D) is that of conjugation by any non-zero element of {[G[B]*], .
In view of (9.3), this implies that
[C[Blw (D)'1(GIB](D))

is the center Z (S[B]wy (D)’). As in the proof of Theorem 9.5, the image of
this subalgebra in AN] = C[Blw) (D)’/N is the center F-1 of that algebra,
which is centralized by N (D)». By Proposition 9.2 and (6.1b), G[B](D)
is a normal subgroup of N (D). From the above description of its action on
C[Bli»y (D)’ and (9.3), it is clear that G[B](D) < N(D)n. Hence
D-GQ[B](D) is a subgroup of N(D)s. If e AN, then

trpsp-aiimy &) = tronem-esim (@)
lies in the image §-1 of [€[B]wy (D)’1(GIBI(D)) in AN]. So we have
troavmg () = tro-eaim-nyw)1y trospcimm (@))
= [N(D)x :D-G[B](D)]-troneis1(0)-ata1(n) ().
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It follows that
AN](N (D) | D) = [N (D) :D-G[BI(D)]ANRI(GIBI(D) | D n GIBI(D)).

Because § has characteristic p, the equivalence of (9.6) and (9.8), which is
the proposition, is a direct consequence of this equation.

Condition (9.8a) is obviously comparable to Brauer’s index condition on the
inertial subgroup in (11B) of [1], to which it reduces in his special case. To
bring (9.8b) into the form of Brauer’s statement we need only apply Theorem
9.5 once more.

ProrosiTioN 9.9. The ideals N e Max (G[Bly (D)7) satisfying (9.8b)
correspond one-to-one to the blocks B of the twisted group algebra G[B]) (D)’
having defect group D n G[B](D) in GIB](D). Two such N and B correspond
if and only if N e B. In that case N s the only ideal in Max (G[B]p) (D))
lying in B.

Proof. In view of Proposition 9.2, the axioms (2.1), (5.1), and (6.1) are
all satisfied if &, O, G, the O,, ¢ € G, and E are replaced by §, C[B]wm (D)’
G[B1(D), the FGIB)*., o ¢ GB](D), and GQ[B](D), respectively. In this
case the orders and algebras corresponding to €, €, G[B], and F[G[B]*] all
coincide with G[B]p) (D)7, while the groups corresponding to Ep, Gz, and
G[B] all coincide with G[B] (D).

We use D n G[B](D) in place of D. By Proposition 9.2 the group corre-
sponding to C(D in G[B]) is now G[B](D). Hence the order corresponding
to G[Blp is €[Blw (D)’. Since D n G[B](D) < D centralizes G[B) (D)”,
the order and algebra corresponding to G[Blp) (D) and €[B]p (D)” also coin-
cide with G[Blw) (D)”.

The group corresponding to N (D) = N (D in E3) is now G[B](D), which
operates on the twisted group algebra G[B]m) (D)’ of G[B](D) in the usual
manner by conjugation. It follows that the order [€] ](D) (D)’ (G[B] (D))
corresponding to G[B]p (N (D)) is now the center Z (C[B]wy (D)’). Hence
its maximal ideals I correspond one-to-one to the blocks B of G[B] (D)”.
By definition the defect groups of I are those of the corresponding block B.
Since G[B] (D) (which corresponds to N (D)) acts as inner automorphisms of
C[Blpy (D)’, it leaves invariant all ideals 9t e Max (G[B]wp (D)’). Now
Theorem 9.5, applied to the new situation, gives the present proposition.

10. First half of the analysis of G[B]*

We can use the Brauer analysis to compute the Clifford extension of a block
in terms of those of its corresponding characters. We shall do this under the
assumption that (7.1) holds. So we can apply the above theories to D, H,
and the 9, , o ¢ H, in place of O, G, and the O,, ¢ ¢ @. Condition (7.1b)
tells us that ®; is a local ring which is central in ©. It follows that the sub-
orders corresponding to G, eC, and €[B] all coincide with D, while the sub-
groups corresponding to Gz and G[B] both coincide with H. We denote by
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H* the central extension of F by H corresponding to G[B]*. In view of (2.14),
its twisted group algebra F[H*] is given by:

(10.1a) §H] = D/DJ (D1),
(10.1b)  FH™, = Dy /Ds J (D1), for all o e H.

We shall use the superscript I to denote the images of objects in F[H™], re-
serving the superscript J, as usual, for their images in FGIB]*] (as defined
below).

We fix a normal subgroup K of H. Inview of (2.16) and (7.1¢), conditions
(5.1) are satisfied with K, D, H, and the D, in place of E, €, G, and the G, ,
respectively, using the operation (2.15) of K < H on ® and the conjugation
action of K on H. The subgroup corresponding to Ej is now K. For any
p-subgroup D of K, we define, as in §§8, 9:

(1023:) @(D) = @ Zae ¢(D in H) Ea ) _
(10.2b) %’[H*](D) = @{D) = @ ZdeC(D in ) %[H*]a;
(102¢) N(D) = N(DinK),
(102d) HD) ={ceCDinH) | D, D) €D, J (D1)}.
We denote by S the Brauer homomorphism of D (K)" into Dy (N (D))’

defined (in Proposition 8.1) by the subgroup D.
Let G be the factor group H/K. Asin Theorem 7.3, we define:

(10.3a) O = D,
(10.3b) O, = @ X per Do, for all cosets ¢ G = H/K.

Then O, G, and the D, also satisfy (2.1). Itis clear from (2.15) that:

(1042) €=C(OinY) =C(KinD) = DK) = OK),

(104b) G =COinL,) =CKinO,) = O(K), forall 7 € G.

As usual, we fix a block B of O , and define e, €, G[B], G[B], and G[B]* as
in §2. Since K acts as automorphisms of the order O; = @ D _,ex D, , We can
choose the above p-group D to satisfy:

(10.5) D 4s a defect group in K of B.

The hypotheses of Brauer’s First Main Theorem 8.7 are now satisfied with
K, O, K, and the D,, o ¢ K, in place of Ep, @[B], G[B], and the G[B],,
o € G[B], respectively. In view of Proposition 8.1, the Brauer homomorphism
used in that theorem is simply the restriction to O; (K)* = @7 of the above
homomorphism S. Since €, is a commutative order, its primitive idempotent
¢ corresponds to the unique maximal ideal

(10.6) M= J(E&) @ (1 —e)6,

in which it doesn’t lie. Condition (10.5) says that M lies in Max (0, (K) | D).
So Theorem 8.7 gives us a unique ideal 9t e Max (Oi1,py (V (D)) | D) such that

(10.7) MW= S7TR) n O (K),
where, of course, O1.i) = O1N Dy = ® D vecd in ) Do -
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More generally, we define:

(10.82) Oy = Dy = @ Zue o inm Ds,
(10.8b) ;) =0, N Oy = ® D veci inn Do, for all cosets e G = H/K.

Evidently (2.16) and the N (D)-invariance of C (D in H) imply that O(p) is an
N (D)-invariant suborder of ©. Hence Op) (N (D)) is a well-defined subor-
der of Opy. Since N (D) = N (D in K) is a subgroup of the normal subgroup
K of H, it leaves invariant each coset 7 of K in H. Therefore O, and O;,(p)
are N (D)-invariant R-sublattices of O, and O,y (N (D)) = C(N (D) in
Orpy) 18 a well-defined R-sublattice of O, p) .

Prorosition 10.9. (a) The suborder Oy (N (D)) of O s invariant under
N (D in H) and centralized by N (D) = N (D in K),

b) D NV(D)) is a central suborder of Oy (N (D)) containing the
identity of O,

©) OmWD) = @2 aOnmy (N (D)) (as R-modules),

d) D0y (N (D))Ori0y N (D)) E Oprimy (N (D)), for all p, 7 ¢,

) Oy = Oy WD), forall e G, e N(D in H).

Proof. Since C(D in H) is a normal subgroup of N (D in H), it is clear
from (10.82) and (2.16) that the suborder O is N (D in H)-invariant.
Since N (D) = N (D in K) is also a normal subgroup of N (D in H), the sub-
order Oy (N (D)) = C(N (D) in O(py) satisfies (a).

Clearly O1,0y = £1 0 Opy is an N (D)-invariant suborder of £ containing
1o e ®D1. Hence sois O,y (N (D)). By (2.15) each element of

OQCMinK)) = D(C(Din K))
centralizes

@1,(1)) = @ ZaeC(D in K) @a .
Since C (D in K) is a (normal) subgroup of N (D), we conclude that

Ooy(ND)) S OWN (D)) € OCDinK))
centralizes
O, (N (D)) S Oi,o) -
Therefore (b) holds.

Evidently (10.8) implies Oy = @ Z"g Or,py . Since all these R-lattices
are N (D)-invariant, equation (c¢) is an immediate consequence of this.

The definition (10.8) also gives O,,(p) Orp) & Opr.0y , for all p, 7 € G.  The
inclusion (d) follows directly from this.

Finally, (e) is a consequence of (10.8b) and (2.16). So the proposition is
proved.

From (10.1) and (10.3) it is clear that the image O = F[H™] is the direct
sum of the images OF = @ D, JIH s, for all 7eG. It follows from this
and Proposition 10.9 (¢) that the F-algebra O (N (D)) is the direct sum of
the images ., (N (D))?, for 7 e @, of the O,y (N(D)). So Proposition
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10.9 implies:

(10.102) Oy V(D))" 4s a N (D in ) -invariant F-subalgebra of F|I*],
and is centralized by N (D).

(10.10b)  Kach O,y (N (D))", for v € G, is an F-subspace of Oy (N (D))",

(10 10¢) D1,y (N (D))’ is a central subalgebra of, and contains the identity
of, Oy (N D))"

(10.10d) Oy N (D))" = @D rea Oriy N (D))" (as F-spaces).

(10.10e) Dy, 00 (N (D))" O;,0y (N (D))" S Oy NV (D)), for alll p, 7 € G.

(10.10f)  [Ori;y (N D))" = O,y N (D)), for all 7 G, w e N(D in H).

Trom (10.10c, e) it is clear that the maximal ideal N’ of Oy, (V (D))’
satisfies

Ory N (D)) N = ROy V(D)) S O,y N (D)), forall 7eG.
In view of (10.10d), this implies that it generates a graded two-sided ideal.
Doy (N D) R = ROy (ND)) = @D _rea Oy V(D))

of Oy W (D))'. We note by B the corresponding factor algebra. For each
7 ¢ G, we identify

Oroy N (D)) /Oy (N (D))

in the usual way with its image in 8, and call the resulting -subspace B, .
Notice that B; = O,y N (D))/N' ~ § by (10.10c), since N is a maximal
ideal in the commutative subalgebra O, p) (N (D))’ of Oy (N (D))". Hence
(10.10) gives:

(10.11a) B is an F-order.

(10.11b) Each B, , 7 € G, is an F-subspace of B.
(10.110) 581 = %'1% .

(10.11d) B = @ D e B: (as F-spaces).
(10.11e) B, B, € B,-, forall p, 7 ¢ G.

By (10.10f) the group N (D in H) leaves invariant the subalgebra
Oray(N(D))", and hence permutes its maximal ideals among themselves.
Let N (D in H)g be the subgroup of all = ¢ N (D in H) fixing #'. Evidently
N (D in H)g leaves invariant the ideal Oy (N (D))'R’, and hence acts natu-
rally as automorphisms of the factor algebra 8. From (10.10a, f) we have:

(10.12a) N (D) AN (D in H)g and N (D) centralizes B,
(10.12b) (B,)" = Br,forall e G,m e N(Din H)q .

In view of (10.11c, e) and (10.10e) we can define a subset @[N] of G by
GN] = {1eG| B, B, = By}

10.13
1019 = {re@|Drm (N (D)) ' D100 N (D))" G NTY.
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This subset satisfies:

Prorosrrion 1014, The subsel GIN] s an N (D in 1) gy-invariant normal
subgroup of 11 (D)oK /K (where I (D)y = I (D) n N (D in H)g). Thereis a
unique cenlral extension GIRI™ of FF by GIN] whose twisled group algebra is given
by:

(10.152)  FGINT*] = © Dreom Br,

(10.15b)  FIGINT). = B, for all 7 ¢ GIN].

Proof. Suppose that 7 € GI0N]. Then (10.13) gives us elements
Yy eO,mND)) and zeOr-1,m) (N (D))

such that 42" ¢ W’. In particular, y* % 0. By (10.8b) there is a unique de-
composition ¥ = 2 _secn in ) Yo , Where 7, € D, for each ¢ e C(Din 7). Since
D fixes y and also fixes each ¢ € C(D in 7), it follows from (2.16) that D fixes
cach 1, , i.e., that y, € ©, (D), for all ¢ e C (D in 7). Obviously there is some
o e C(D in 7) such that ¢ = 0. By (10.2d), this ¢ lies in H(D). Sor =
oK e H(D)K/K, and G[0N] is a subset of H (D)K/K.

Since C(D in 7) € N (D in H) is a coset of C(D in K) & N (D), Proposi-
tion 10.9(a, e) tells us that each ¢ ¢ C(D in 7) induces the same automorphism
of the order O1,(py (N (D)). In particular, there is a fixed ideal

N1 e Max (D1, (N (D)))
such that N = Ny, foralle e C(Din 7). Equation (2.15) gives
Yl = 4% N = Ny, forall oeC(Din 7).

Since ¥y = X secn inn Yo , this implies that 9 = Ny. If MW # N, then there
is an element w € 9y such that w = 1 (mod N). By construction the product
yz lies in Op.y (N(D)) — N. Henceyzw e Ny — N. But z e Oy (N (D))
centralizes w e O1,0) (N (D)) by Proposition 10.9(b). Hence

yew = ywz ey z = Nyz T NO1,wy N (D)) = N.
This contradicts the fact that yezw ¢ M. Therefore N, = N = N7, for all
o eC(Din 7). Since some such ¢ can be chosen in H (D) (by the preceding
paragraph), we conclude that G[M] is a subset of H (D)q K/K.
If p is also an element of GIN], then (10.11¢) and (10.13) give
B =9B,8,-1=8,F18-1=9B,8.98-1=93,88,-195,-:.
From (10.11e) we get B, B, C B,, and B,~1 B,~1 & By-1,-1 = Bn-1 . Hence
5‘81 = EBp %r 58,—1 %p_l g ESp S'Br %(pr)'—l g %p‘r EB(p'r)_1 g 581 .
So B,, Bn—1 = By and p7 e GIN]. Since 1 lies in GIN] by (10.11¢), we con-

clude that G[9N] is a subgroup of the finite group G.
The above argument also shows that 8, 8, Bun-1 = By . Since (o)’
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also lies in the subgroup G[N], we have B,n-1 B,r = B;. Inview of (10.11c),
this implies

%p B, = $p B, B, = ‘SBp B, %(m)‘1 SBpr =B,98, = SBpT .
This and (10.11a, b, ¢, d) tell us that ® D o Br , {B. | 7 € GIN]} is a graded
Clifford system over § satisfying [CCT, 14.1]. Then [CCT, §14] gives us the
unique central extension GIN]* of F by G[N] satisfying (10.15).

It is clear from (10.12b) and (10.13) that the subgroup G{R]is N (D in H )y-
invariant. Since H (D)g is a subgroup of C(D in H)y < N(D in H)y (by
Proposition 9.2), we conclude that G[9] is a normal subgroup of H (D)x K/K.
So the proposition is proved.

CoroLLARY 10.16.  The action of N (D in H )y on B leaves invariant the sub-
algebra F[GINT*]. Hence N (D in H)y acts as automorphisms of GIN* so that
the extension maps pr : GIN]* — GIN] and in : F — GIN]* satisfy:

(10.17a) pr (o) = pr (o))" e GIN], for all p € G[E)E]*,_r eN(Din H)g,

(10.17b) N (D in H)g ceniralizes Ker (pr) = in (F).

Furthermore, the normal subgroup N (D) of N (D in H)g centralizes GIN]*.
Proof. 'This is an immediate consequence of the proposition and (10.12).
Propositions 8.1 and (10.4) tell us that the Brauer homomorphism 8 is an

identity-preserving §-homomorphism of the algebra ¢’ = ®(K)” into

Oy (N D))" = Dy NV (D))"
Composing it with the natural maps of € onto € and Oy (VN (D))’ onto
B = Oy (N (D))"/Ow (N (D)) R,
we obtain an identity-preserving R-homomorphism 8’ of the order € into the

F-algebra B. Equation (10.7) implies that
S@E) € NS Ow) V(D))
Hence S'(M) = 0. In view of (10.6), this says that S’(1 — e¢) = 0 and
S'(J(&)) = 0. So §() = §(1) = 1, and the restriction of S’ is an
identity-preserving N-homomorphism of the suborder €[B] C e@ into B.
Furthermore,
S’(G[BlJ (C[BL)) = S'(C[B])S' (J (¢61)) = {0}.

By (2.14a), this implies that S’ induces a unique identity-preserving &-

homomorphism S of the algebra F[G[B]*] into B so that the following diagram
commutes:

Bl —— 6 —— & -5, D (N(D))

(10.18) l l

SIGIBI*] 5 .

Here all the unlabelled maps are either inclusions or natural projections.
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The definition of S in Proposition 8.1 tells us that it carries &+ & FH™|,
into O,y V(D))" = Oy (N (D)) n FH™,, for any e G. It follows that
S’ sends €[B], € G, into B,, for all 7 ¢ G[B]. In view of (2.14b), this im-
plies that

(10.19) SGIGBI*,) S B,, forall 7eGIB].

Now we can give the first half of the analysis of G[B]*.

TugoreM 10.20. The homomorphism 8 sends the algebra F[GIB]] iso-
morphically onto FIGIN*]. Hence G[B] = GIN], and the restriction of S is an
isomorphism of GIBI* onto GIN]* as extensions of F by G[B] = GIN]. Further-
more, Gy 1s equal to N (D in H)y, K/K, and the isomorphism S preserves the ac-
tions of N(D in H)n/N (D) ~ Gy in the sense that
(10.21) S@™) = S(y)", forall yeFGB)*], reNDinH)g.

Proof. Since our operator groups D, N (D), and K are all subgroups of the
normal subgroup K of H, the ideals and submodules corresponding to those of
§8 are all graded with respect to G = H/K. Thus, in addition to (10.10d)
and Proposition 10.9(c), we easily verify that:

(10.222) Oy (N (D) | D)" = @ 2 rea Oroy W (D) | DY,

(10.22b) Ow(N(D) | D) = ® 26 Orwy (N(D) || D),

(1022 ¢) O(K)' = @ DX ea O(K)7,

(1022d) O(K||D) = @ e O(K || D),

where, in each case, the 7t term on the right is the intersection of the left side
with O7 .
We shall use these gradings to show that G[It] is a subgroup of G[B]. Let
r be any element of G[J]. Then (10.10e) and (10.13) imply that
O,y (N(D))'Or-1,0y (N (D)) is a two-sided ideal of 1,y (N (D))" which
is not contained in the maximal two-sided ideal #'. Hence
N+ 0.0y (N (D)) 'O,y (N (D))" = O1,00(N(D))".
Since D is a defect group of N, we also have
N + OLwy(N(D) | D) = D1,y (N(D))".
Multiplying the former equation on the right and left by the latter, we obtain
N + O1,w)(N(D) | D)'O;, 0y (N (D)) ' Or1,0) (N (D)) 'O, (N(D) | D)'
= O (N(D))".
Because Oy (N(D) | D)" is a two-sided ideal of D) (N(D))’, the inclu-
sions (10.10e) and the decomposition (10.22a) give
Oy (N(D) | D) Or,n(N(D))" S Or,0y(N(D) | D),

Or1,0) (N (D)) "1,y (N(D) | D) € O,-1,0y(N(D) | D)".
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This and the preceding equation imply
N+ O,y (N(D) | D)'Or-1,n(N(D) | D) = O1,00(N(D))".
From the definitions (10.8a) of Oy = D) and (8.2) of Owmy(N(D) || C)*
it is clear that Oy (N (D) || €)' = 0, for all subgroups C < D. Therefore
Ow)(N(D) | D) = Owy(N(D) || D),

by (8.4). In view of the decompositions (10.22a, b), the preceding equation
now becomes

R + Ony(N(D) | D)'Or1,0(N(D) | D) = D1, (N(D))".

By Lemma 8.5, the homomorphism S sends O(K || D)’ one-to-one onto
Om(N(D) || D)'. Since it also carries O,(K)” into O,y (N (D))’, it must,
in view of (10.22b, d), send O,(K || D)’ onto O, (N (D) || D)’. Similarly,
it sends O,-1(K || D)" onto O,-1,i0)(N(D) || D)'. Therefore the preceding
equation and (10.7) imply that

M+ O.(K || D)'O~1(K || D) = Ou(K)".
Since O,(K || D)' € O,(K)" and O,-1(K || D)’ C 0O,-1(K)’, this gives
MW + O(K)'O-1(K)' = Ou(K)".
Taking inverse images in O1(K) = €, O,(K) = €, and O,-1(K) = -1,

we obtain

SJE_I— @r (S-r"‘l = @1-
Multiplying this by the central idempotent e of € and using (10.6), we get

J(e€) + (eC,)(e€-1) = eG;.

But (e€,) (e€,~1) is a two-sided ideal of ¢§; by (2.8¢). Hence
(e@,)(eC-1) = €&
and 7 ¢ G[B] by (2.92). Therefore_G[éR] is a subgroup of G[B].
By (10.19), the homomorphism S carries FG[B]*: = §-1 into B;. Since

S is identity-preserving and §-linear, this and (10.11¢) imply that it induces
an isomorphism of J[GIB)*h onto By. If 7 is now any element of G[B], then
(10.11e), (10.19), and the equation

SIGIBI*L = FIGIBI.JGIBI"],-x
yield

1 = S(FIGBI" ) = S(FGIBI*1) S(FGB]L-1) S BB, S By .

Therefore B, B.-1 = By and 7 € GN], by (10.13)_. Hence G[B] = G[N]. In
view of (10.15) and (10.19), t_his implies that S is an F-homomorphism of
FIGIBI*] into FIGIN]*| carrying F[G[B]"] into FIGIN]*], , for all 7 ¢ G[B] = G[N]
and sending §[G[B]*]; isomorphically onto FIGIN)*).. The first two state-
ments of the theorem follow directly from this and [CCT, 13.10].
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The inverse image Hp of G in H fixes B and K, and hence permutes among
themselves the defect groups of Bin K. But these groups are just the K-con-
jugates of D. We conclude that Hy = N(D in H)z . K, where N(D in H)p
is the subgroup of N(D in H) fixing B. Evidently N(D in H)p is also the
subgroup of N(D in H) fixing the maximal ideal IR lying in B. From the
definition of S in Proposition 8.1, it is clear that

(10.23)  S¥") = S(y)", forall yeO(K)' = € and weN(Din H).

In view of the unicity of the relation between I and 0 in Brauer’s First Main
Theorem 8.7, this implies that N (D in H) 5 is also the subgroup N(D in H)g
of N(D in H) fixing . So Gz = Hy/K = N(D in H)s K/K.

Finally, (10.21) follows directly from (10.23) and the definition of S. So
the theorem is proved.

11. Second half of the analysis of G[B]*

We continue to use the notation and hypotheses of the preceding section.

Conditions (5.1) and (6.1) are clearly satisfied with K, ©,, K, and the
Dy , o € K, in place of E, €, G, and the &, , ¢ € G, respectively. So (9.4) holds
(see the remarks immediately after it) and Theorem 9.5 gives us a unique
N (D)-orbit in Max (D1, (D)”) corresponding to

N e Max (D1, (N(D)) I D).
Fix an ideal & in this N(D)-orbit. Then (9.6) becomes

(11.1) [O1,0(D) /(N (D)s | D) # {0}.
By Proposition 9.2, the image Oy (D) is the twisted group algebra
(11.2a) Owy(D)" = FHD) = @ 2oencmr FHs,

of the inverse image H(D)* in H* of the subgroup H(D) of C(D in H). Tt
follows that

Oy (D) = FHD)lnuwy = @ 2oz JH',
for all cosets ve¢G@ = H/K.

Notice here that  n H(D) is either empty (in which case FH (D) *.nrw =
{0}) or else is a coset of the normal subgroup K(D) = K n H(D) in H(D).
Furthermore, 7 — = n H(D) is the natural isomorphism of H(D)K/K onto
H(D)/K(D).

Equation (11.2b) tells us in particular that O,y (D)’ is the twisted group
algebra F[K(D)*| of the inverse image K(D)* of K(D) in H*. So
2 e Max (D1, (D)") corresponds to a unique irreducible {-character ¢ of
the algebra F[K(D)*.

We recall from [CCT] the construction of the Clifford extension H(D) (o).
Since K(D) is a normal subgroup of H(D), the natural conjugation action
[CCT, 15.4] of H(D) on F[H(D)*] leaves invariant the subalgebra F[K(D) *].

(11.2b)
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So H(D) permutes among themselves the ideals in Max (F[K(D)*]). The
intersection N,ez»® is an H(D)-invariant two-sided ideal of FK(D)*]. It
follows (see [CCT, 2.4] and [CCT, 13.2]) that

%[H(D) *]( nveH(D)BV) = ( ndeH(D)Sa) %[H(D) *]
is a graded two-sided ideal of F[H (D)*], with:

(11.3a) §H (D)’:](ﬂ,,e,,(mﬁ") = @ 2w xo [H(D)*,(Noerry®),
(11.3b)  FHD)",(Meea®) = (Noer®)FH(D)™), S FHD)",,
for all p ¢ H(D)/K(D).

As usual, we identify each factor space F[H (D) *],/FIH(D)*),(Nyerry®”) with
its image in the factor ring, setting:

(114a) % = §IHD)*/FHD) (N,
(114b) %, = FHD)*L/FHD) ) (Neeaer¥), for all p ¢ H(D)/K(D).

Then, by [CCT, 13.3], conditions (2.1) are satisfied with §, ¥, H(D)/K(D),
and the ¥, in place of R, O, G, and the O, , respectively.

The subalgebra % = FIK(D)*)/(Moer®) is finite-dimensional and semi-
simple. Let d be the unique primitive central idempotent of 9; corresponding
to its maximal two-sided ideal &/ (Nyern’), so that

(11.5) 1= =MW1 —d) =Y (Neerry?).

We denote by H(D), the subgroup of H(D) fixing & (or, equivalently, ¢ or d)
under conjugation. Then, by [CCT, 13.9], conditions (2.1) are also satisfied
with §, d¥d, H(D), /K(D), and the d%, = %, d, for p e H(D), /K(D), in
place of R, O, G, and the O, , o € G, respectively. Iinally, by [CCT, 8.7 and
15.14], H(D)*(¢) is the unique central extension of F by H(D), /K (D) whose
twisted group algebra is given by:

(11.6a) FIH(D) ()] = C(d¥; in dAd),
(11.6b)  FIH(D) ), = C(d; in dW,), for all p e H(D), /K(D).

From the definition (10.2d) of H(D) it is clear that it is a normal subgroup
of N(D in H). Hence so is its intersection K (D) with K. It follows that
N (D in H) acts by econjugation on H(D) /K (D), and that the natural conjuga-
tion action of N(D in H) on F[H™] leaves invariant the subalgebra F[H (D)™
and satisfies

(JIHD)")™ = SH(D) )=, for all
peH(D)/K(D), e N(Din H).

(11.7)

In particular, N(D in H) leaves FK(D)*] invariant. So it permutes among
themselves the members of Max (FK(D)*]). Let N(D in H), be the sub-
group of N (D in H) fixing ® e Max (FK(D)*]) (or, equivalently, fixing ¢).
Since N (D in H), leaves invariant both H(D) and &, it follows from (11.4)
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and (11.7) that there is an induced action of N (D in H), as F-automorphisms
of the factor algebra U satisfying
(11.8)  (A)" = W=, forallpe H(D)/K(D), 7 e N(Din H),, .

Because N(D in H), fixes &, it fixes the corresponding primitive central
i_dempotent d of ;. From this, (11.8), and (11.6) we conclude that
SIH(D)*(@) is a N(D in H), -invariant subalgebra of %, that H(D), /K(D)
is a N(D in H), -invariant subgroup of H(D)/K(D), and that

(FHD) X)) ™ = FH(D) @) ,
forall peH(D),/K(D),mreN(Din H),.
Evidently the subgroup N(D), = N(D in H), n K -centralizes

H(D),/K(D). Because each F[H(D)*(p)], is one dimensional over §, this
and (11.9) imply the existence of a unique map

w:N(D), X [H(D),/K(D)]— F

(11.9)

satisfying
y" = w(m p)y,
forall weN(D),,peH(D), /K(D),y eFH(D)e), .

Since N(D), acts as algebra automorphisms of F[H(D)™(e)], this map is
bilinear in the sense that:

(11.10)

w(mm,p) = w(m, p)o(m, p),

forall m,meN(D),,peH(D), /KD),
w(m, prp2) = w(m, pr)w(m, p2),

jorall weN(D),,p,peH(D),/K(D).

So we can define normal subgroups N (D), of N(D), and H(D), of H(D),by:

(11.12a) N(D)o = {r e N(D), | w(m, p) = 1, for all p e H(D), /K(D)},
(11.12b) H(D)w = {p e H(D), | w(m, oK(D)) = 1, for all 7 ¢ N(D),}.

Because F is the multiplicative group of a field § of characteristic p, we have:

(11.13) Both N(D),/N(D), and H(D), /H(D), are abelian p’-groups.
The map w induces a non-singular bilinear pairing of these groups into the cyclic
subgroup of | N(D), | roots of unity in F. Hence they are naturally dual to
each other.

We denote by H(D)*(p), the inverse image of H(D),, /K(D) in H(D) *(o).
Then (11.10) implies that the twisted group algebra of the extension
H(D)*(p),, satisfies

SIH (D) (e)a)

(11.11a)

(11.11b)

® 2 permaxm SH(D) ),

(11.14) _ .
SIH (D) {)](N(D),).

Il
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Any element o e K(D) acts on F[H"] as conjugation by any non-zero ele-
ment y, of FH*],. Hence o acts on A as conjugation by the image §, of ¥,
in ;. By (11.2b) and (11.4b) these images §,, for ¢ e K(D), span ;.
It follows that

(11.15) AK(D)) = C(Urin A).

Since d is a central idempotent of 2, , this and (11.6a) imply that
FH (D) @) = dC(¥y in A)d = dAI(K(D)).

Combined with (11.6) and (11.14), this gives:

(11.16a) FH(D) (o)l = dAd(N(D),),
(1L.16b) FH(D)*@)], = dA,(N(D),), for all p e H(D)o /K(D).

_ Wehave just seen that the normal subgroup K (D) of N (D in H) , centralizes
JLH(D)*()]. Since D centralizes Oy (D)" = F{H (D)™}, it is also a normal
subgroup of N(D in H), centralizing FIH(D)*(@)]. By (11.10), this implies
that

(11.17) K(D)D JIN(Din H) and K(D)D < N(D),.

The natural projection y — 7 of Oy (D)’ = FH(D)*] onto its factor al-
gebra 9 clearly sends the subalgebra §[H (D)*|(N(D)) C FH(D)*|(N(D),)
into A(N(D),). Inviewof (11.15),the N(D), -invariant central idempotent
d of % centralizes A(N(D),) € A(K(D)). It follows that the map
y — dy = yd is an algebra homomorphism of A(N (D),) into dAd(N(D),) =
SIH(D)*(¢)o]. Hence

T:y—dy = gd

is an identity-preserving homomorphism of the algebra F[H(D)*|(N(D))

into §[H (D) *(¢)al-
Theorem 9.5 tells us that

N = 20 Oy (N(D))' C La FIH(D) k(N (D)).

Hence the image of %’ in 2, is contained in that of £, which is (1 — d) % by
(11.5). Since
d(l —d) =d—d* =0,

we conclude that T(M') = {0}. So the restriction of 7' is a homomorphism of
the subalgebra O (N (D))" € FH(D)*|(N(D)) into FH(D)*(¢).] sending
the two-sided ideal D) (N (D))" into zero. Hence it induces a unique
identity-preserving homomorphism 7' of the factor algebra

B = Owy(N(D))' /O (N(D)) "'
into

SH (D) )]
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so that the following diagram commutes:

O (N (D))" — FH(D)* N (D)) —— A(N(D)s)

J AN
(11.18) T\\ y—yd = dy

B ! 5 FHD) .
Here the unlabelled maps are either inclusions or (restrictions of) natural
projections.
In view of (11.2b) and (11.4b), the natural projection sends O,, ) (N (D))’
into Wenuoy(N(D),), for all 7 e @ = H/K. Because d lies in %; , multipli-
cation by it sends the image of O, (N (D))’ into

%[H(D) *<¢>w] n %rﬂH(D) .

By (11.6) and (11.14), this intersection is FH (D) *(¢)olnu ) if 7 0 H(D) <
H(D), (i.e., if + ¢ H(D), K/K), and {0} otherwise. Since B, is the image
of O,y (N(D))" in B, we conclude that

(11.19) T(8,) € JHD) Dluw , i 7eH(D)u K/K,
' - {0} , i 7eG— (H(D)uK/K).
Now we can complete the analysis of G[B]*.

TaeorEM 11.20. Group G[N] s equal to H(D), K/K. The homomorph-
ism T sends the subalgebra F[GIN*] of B isomorphically onto FH(D) (o).
Hence its restriction is an isomorphism of GIR]* onto H(D)* (e, as exten-
sions of F, which is compatible with the natural isomorphism + — rn H(D), of
GIN] onto H(D),/K(D).

Furthermore, the group N (D 4n H)g is equal to N(D in H),N (D), and the
above isomorphism preserves the actions of

N(D in H)u/N(D) ~ N(D in H),/N(D),,
wn the sense that
(11.21) T(y™ = T(y)", forall yeFGN*, e N(DinH), .

Proof. The semi-simple algebra U; is the direet sum of its sub-algebras
d¥; and (1 — d) Yy, both of which are N(D), = N(D)¢-invariant. In view
of (11.2b), (11.4b), and (11.5), this implies that (11.1) is equivalent to

dA;(N(D), | D) # {0}.

By (11.16b) the space dd(N(D),) = FIH(D)*(e)h = §F-1 is one dimen-
sional over §. Hence its non-zero subspace dd:i(N(D), |D) is equal to
itself. In particular, the identity 1 lies in the two-sided ideal dAd(N (D), | D)
of dAd(N(D),). So dAd(N(D),) = dAd(N(D),|D). In view of (11.16),
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this implies that
SH(D) @), = d%,(N(D), | D), forall peH(D),/K(D).
Now fix an element p ¢ H(D),/K(D). Choose any non-zero element
y e JIH(D) X)), -

Then y ¢ H(D) *(@) is a unit of FH (D)™ ()], and its inverse z = y lies in
SIH(D)*(@),-1. So the above equation gives us two elements z € d2, = A,d
and w e d¥,-: = ,-1 d such that

(1122) Yy = tI’D-»N(D),P(Z), xr = y_l = trD»N(D)w(w).

By (11.2b) and (11.4b) we can choose elements 2y ¢ O,k (D) and
wy € Oy-1x,0 (D) having z and w, respectively, as images in %. Since both
Oox, 0y (D) and O,-1x,0y(D) are N(D)-invariant, the product zgws lies in
1, (D), for any o,7 ¢ N(D). Evidently we can choose an element
do € O1, (D) so that its image dg in D1,y (D)" = FIK(D)¥] satisfies

di = 1 (mod 8)
= 0 (mod ¥), forall ¥ s Lin Max(F[K(D)¥).

Then dg , do also lie in Oy, 0y (D), for any o, 7 € N(D). Furthermore, the
above conditions on dy imply that

(dozoweds) ' = (do)°(26ws) " (ds)” = 0 (mod ),
unless o, 7 e N(D), = N(D)g.
We conclude that
Yo = trosnw(dozo) € Oox, (N (D))
and

Ty = tI'D.,N(D)('wodo) € Qp—lx,(b)(N(D))
satisfy

(Yoro) " = Dorenoyn (dizgwids)” = Do mevmyorn (dizowids)”  (mod €)
= trp-n@,(de2o) tro-nmy,(Wodo) (mod ),

By construction, the image in 9 of dp is the identity d of F[H(D)*(x)]
(see (11.6a)). Hence the image of dw is dz = 2, and that of wedy is wd = w.
Now (11.22) and the above congruences tell us that the image in %; of the
product of ¥ € O,x, ) (N (D))" and 25 € O,-1x, 0y (N (D))" is congruent to d
modulo the image of & Hence 45 25 ¢  n Oy, (N(D))’, which is R’ by
Theorem 9.5. From (10.13) we conclude that pK e G[N]. Therefore
H(D),K/K < G").

Since the algebra homomorphism 7 is identity-preserving, it sends 8; = §-1
isomorphically onto F[H(D)*(p)h = F-1. Now let = be any element of
GN]. By (10.13) we have B,8,-1» = B;. Hence

T(B,) T(B~1) = T(B) = -1 = {0}.
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In particular, T(8,) # {0}. So (11.19) tells us that r ¢ H(D), K/K.
Therefore GI] = H(D), K/K, which is the first statement of the theorem.
Because T sends F[G(N)* = B, isomorphically onto F[H (D)™ ()):, the
second and third statements of the theorem follow directly from this, (11.19),
and [CCT, 13.10].

The unicity of the correspondence in Theorem 9.5 between 9 and the
N (D)-conjugacy class of  tells us that

N(DinH)y = N(Din H)s N(D) = N(D in H),N(D).

Finally, (11.21) is an immediate consequence of the definition (11.18) of 7.
So the theorem is proved.

12. Computing Clifford extensions for blocks

Before putting together the two halves of the above analysis to obtain
the final result, we recall what all the notation means. We assume that
(7.1) holds, and denote by H* the central extension of F by H satisfying
(10.1). We choose a normal subgroup K of H, denoting the factor group
H/K by G. We also choose a block B of O; = @ D ,xD,. We fix a
defect group D of B in K.

Define the normal subgroup H(D) of N(D in H) by (10.2d). Then the
image of Dy (D) in FH] is (by (9.3)) the twisted group algebra F[H (D) *
of the inverse image H (D)* of H(D) in H*. Let K(D)* be the inverse
image in H(D)* of the normal subgroup K(D) = K n H(D) of N(D in H).
Then the Brauer analysis of Theorems 8.7 and 9.5 gives us a unique N (D in K)-
orbit of irreducible characters ¢ of F[K(D)*] corresponding to the block B.

Choose such a character ¢. Since K(D)* is a normal subextension of
H(D)*, [CCT)] gives us a Clifford extension H(D)*(e) of F by H(D),/K(D),
where H(D), is the subgroup of H(D) fixing ¢ under conjugation (see (11.4)
and (11.6)). The similar subgroup N(Din H), of N(D in H) acts naturally
by conjugation on H(D) *(o), centralizing the image of F and leaving in-
variant the projection onto H(D),/K(D). Its normal subgroup N(D in K),
centralizes H(D),/K(D). Hence there is a unique bilinear map

w:N(Din K), X [H(D),/K(D)] — F
such that

(12.1)  p" = w(m, pr(p))p, forall peH(D) g), = e N(DinK),.

We define the normal subgroup H (D), of H(D), to be the inverse image
of the “right kernel” of » (see (11.12b)). Then the inverse image H (D) *(¢),
in H(D)*) of H(D),/K(D) is precisely the centralizer of N(D in K),
in H(D)*(@). So it is acted upon naturally by N(D in H),/N(D in K), .
We apply the analysis of §2 to O = D, G, B, and the O, = @ > Des
for r ¢ @ = H/K. Thesuborder € is now just ©(K) (by (10.4a)). So the
Brauer homomorphism S defined in Proposition 8.1 sends the image
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6" = D(K)' of € in F[H™] into the subalgebra
JH(D)*) (N(D in K))

of FIH(D)*|(K(D)). The natural map of FH(D)*|(K(D)) into
§[H (D)*(g)] defines a homomorphism 7' of the subalgebra

SH(D)* (N (D in K))

into F[H(D)™p)s] (see diagram (11.18)). Combining these maps with
the inclusion G[B] € €, we obtain an R-homomorphism of E[B] into
SIH(D)*(g)o). By (10.18) and (11.18) this map induces a unique homo-
morphism R of the factor algebra F[G[B]*] of €[B] into F[H (D)™ (e)] so that
the following diagram is commutative:

GIB] —— 6" S SHD)N(D in K))

(12.2) l T

_ i
SIGIBI* —ZE SUH(D) (o).

Now we have:

Turorem 12.3. The group G[B] is equal to H(D), K/K. The map R is
an isomorphism of the algebra SIGIBY*] onto F[H (D)*(p)e] which preserves the
gradings in the sense that

(12.4) R(FIGIBI)) = SH(D) X naw , forall = eG[B].

Hence 1ts restriction is an isomorphism of G[B]" onto H(D)*(¢), as extensions
of F which vs compatible with the natural isomorphism

r—rnH(D) = rn H(D).

of GIB] = H(D), K/K onto H(D).,/K(D).

Furthermore, the group Gg s equal to N(D in H), K/K, and the above iso-
morphism preserves the actions of Gz ~ N (D in H),/N(D in K), in the sense
that

(12.5) R(y™) = R(y)", forall y eFG[B)*], e N(Din H),/N(DinK), .

Proof. This is just the logical union of Theorems 10.20 and 11.20, plus
the grading conditions (10.19) and (11.19).

Perhaps we should note a few of the special properties of the case of blocks
of groups, i.e., the case in which D is the group ring R H of the finite group H.
and D, = Ro, for all ¢ ¢ H. It is evident from (10.1) that FH™] is, in this
case, the modular group algebra FH, with F[H*], = §o, for all o ¢ H. The
group D is now an ordinary defect group of the p-block B of the normal
subgroup K of H. By (10.2d), the subgroup H (D) coincides with C(D in H),
and K(D) with C(D in K). The irreducible character ¢ of FC(D in K) =
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SIK (D)™ is just one of the modular irreducible characters in the blocks of
C(D in K) corresponding to the block B in §11 of [1]. Its Clifford extension
H(D)*(p) is that, C(D in H){p), of ¢ in C(D in H), and the bilinear map
of (12.1) sends

N(Din K), X [C(D in H),/C(D in K)]

into F. Its “right kernel” H(D)./K(D) is now C(D in H),/C(D in
K), whose inverse image
C(D in H){g)o

in C(D in H)({p) is canonically isomorphic to the Clifford extension
C(D in H)u(e)
of pin C(D in H), (see [CCT, 16.1]).

Setting G = H/K, and defining G5, G[B], and G[B]* as in §2, we obtain
the following special case of the above theorem for blocks of groups:

_ CoroLLARY 12.6. The group G[B] equals C(D in H), K/K, while the map
R of the theorem defines an isomorphism of G[B]* onto C(D in H), (o) as ex-
lensions of F which is compatible with the natural isomorphism

r—rnCDin H)a

of G[B] onto C(D in H),/C(D in K). Furthermore, Gz equals
N(D in H), K/K, and the above isomorphism preserves the conjugacy actions of
Gp~N(Din H),/N(D in K), on the two extensions.

13. Miscellanea

In the situation of §2, the group G acts on the family Id(;) of two-sided
ideals & of O by (2.3). We shall say that such an ideal & lées in the block
Bif

(13.1) e=1 (mod%).
Since e is a central idempotent of Oy , this occurs if and only if
(13.2) F=e3D (1 —e)D.

Turthermore & — e is a one-to-one correspondence between two-sided
ideals & of £ lying in B and two-sided ideals 3 = Je of the suborder e, .

ProrositioN 13.3. The subgroup G[B] of G fixes every two-sided ideal J
of O lying in B.

Proof. If ¢ € G[B], then Proposition 2.7(b), (2.9a), the inclusions e€,-1 &
D=1, & C O, , and (2.1e) give

€0, C eCO, = (eC,) (eC-1) O, T (6€,) 010, = (e€,) 1 C 0,01 = €D, .

Hence ¢Q, = (¢6,)O;. Since ¢ also lies in the subgroup G[B], a symmetric
argument shows that O, ¢ = 01(eC,).
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Because e is a central idempotent of ;, the product e§ = Je is also a
two-sided ideal of ;. Using (2.3) and the above formulas (for the elements
o, 1, and ¢~ of Q[B]), we compute

(e3)" = D130, = O1(eCo-1)F(eC,) O1

D1(eC,-1) (C,) FOr
= D1(e€)J0;1 = DeFO; = €.

Here we used the fact that e€, € € = C(£; in O) centralizes & € O,
and the definition (2.9) of G[B].

We know from Proposition 2.17 that ¢ ¢ G[B] < G centralizes e, and
hence 1 — e. Inview of (2.15), this implies that O,-1(1 —e) = (1 — &) D,-1.
Hence the two-sided ideal (1 — ¢) Oy satisfies

[ = e)O) = Or-1(1 — )10 = (1 — )0 1010, = (1 — ).

By (18.2) we have 3’ = ()" + [(1 — )D)" = e + (1 — )1 = F
So the proposition is proved.

To each maximal two-sided ideal I of O lying in the block B we can now
assign a Clifford extension G[B(IR) of F by G[B] as follows: the G[B]-in-
variance of I implies that O,IM = MO, , for all ¢ ¢ G[B], and hence that

DemM = & ZveG[B] O, M

is a graded two-sided ideal of the suborder D¢ = @ quc[m O, of O.
We identify each O,/9, M, ¢ ¢ G[B], naturally with its image in the factor
algebra Oors/Oers M. Then conditions (2.1) are satisfied with §, Oars/
Derny M, G[B], and the O,/0O, M, in place of R, O, G, and the L, , respec-
tively. In addition, £1/O; M >~ O;/IN is a finite-dimensional simple algebra
over the algebraically closed field §. It follows (see [CCT, §§8, 14]) that
there is a unique central extension G[BI{(IR) of F by G[B] whose twisted group
algebra is given by:

(13.4a) JIGIBKIY] = C(O/M in Ogrm/Oorm M),
(13.4b)  FGBYM), = C(O1/M in Oo/OuIM), for all o € G[BI.

This Clifford extension for M is related to the Clifford extension G[B]* for
B by:

ProrosiTioN 13.5. For any maximal two-sided ideal I of 1 lying in
the block B, the natural map of C[B] C Qe tnto Oersr/Derny M tnduces an
isomorphism ¢ of the algebra F[GIB)*] onto FIGIBII)] sending F[G[BI*,
onlo F[GIBUM)), , for all o € G[B]. Hence the restriction of ¢ is an isomorphism
of GIB)* onto GIBYIMN) as extensions of F by G[B.

Proof. Evidently the natural map is an R-homomorphism ¢ of

G[B] € €(D1in Verny)
into

SIGIBKM)] = C(O/M in Oota/Ootm M)
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Since the identity e of €[B] is congruent to 1 modulo I, it is mapped onto
the identity of FG[BYI)]. Furthermore ¢ sends €[B], C L, into

SIGIBIY), = C(O/M in O/O M),

for all ¢ ¢ G[B]. Hence ¢(E[B];) = FGBII: ~ §F. In view of (2.11),
this implies that J( E[Bli), and therefore G[B]J(E[B};), are contained in the
kernel of ¢. This and (2.14) tell us that ¢ induces an §-homomorphism
¢ of the algebra F[G[B]*] into FGIBIM)] sending FG[B]*], into FIGBIM). ,
for all ¢ ¢ G[B]. Since ¢ maps F[G[BI*, = F-1 isomorphically onto
SIGIBXID], = §-1, the proposition follows from this and [CCT, 13.10].

Besides the above “modular’” maximal two-sided ideals I, the block B
also contains some “‘ordinary” maximal two-sided ideals 9, which also have
Clifford extensions. The $R-order O defines the finite-dimensional algebra
F ® O = § ®x O over the field of fractions § of . Conditions (2.1) imply
the same conditions for § ® O and its F-subspaces F ® O, = F @ 2 O, ,
for 0 € G. We say that a two-sided ideal ® of § ® O, lies in the block B
if the image 1 ® e of ¢ is congruent to 1 modulo . Since RN is a valuation
ring and & is an {-subspace of §F ® O, , we have & = §F ®x J, where

I={yeDi|1®yef}.
Evidently & is a two-sided ideal of O, lying in B. Because
R=FO0-1)(FONFOD) =8 ® 0130, = §F®F,
for all ¢ € G, Proposition 13.3 implies that
(13.6) (@[B] fixes every two-sided ideal & of §F ® Oy lying in B.

As in (13.4), the Clifford extension G[B}(M) for a maximal two-sided ideal
N of F ® Oy lying in B is the central extension of the multiplicative group F
of § by G[B] whose twisted group algebra is given by:

(13.72)  FIGBIOD] = C((F ® O)/Nin (F ® Oora) /(T ® Das)N),
(13-7Gb) ]g[G[B](%)], = C((F ® O)/Nin (T ® O)/(F ® OHIN), for
all o € G[B].

The Clifford extension G[B()) of F is not directly comparable with the
Clifford extension G[B]* of F. However, the former extension determines a
“residue class extension” G[B] (M) (see [ICE, 4.8-4.13]) of F by G[B] which
turns out to be naturally isomorphic to G[B]*. We recall the construction of
this new extension.

Since § is an algebraically closed field, the subset tor(G[B}(M)) of all tor-
sion elements of G[BM) is actually a subgroup, and G[BKN) is the product
of this subgroup and the image of F (see [ICE, 4.8]). Hence

tor(GIBKN))» = tor(GIBKN)) N pr (o)
is a coset of tor(G[BIM)): = U-1, for any ¢ € G[B], where U is the subgroup
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of all roots of unity in §. Evidently U is contained in the unit group of the
integrally closed subring R, from which we conclude that the 9-submodule
RIGIBKM)], of FIGIBKM)], generated by tor(G[BIN)), is an R-lattice of rank
one generated by any element of tor(G[BKN®)), . Clearly

tor (G[BIN))stor (GIBIN)). = tor(G[BKNY).- ,

for all ¢, 7 ¢ G[B], which implies that R[G[BIM)] = ® D sears; RIGIBIODL ,
G[B], and the R[G[BKM)], satisfy (2.1) in place of O, G, and the D., , respec-
tively.

The suborder R[G[BII)], = R-1is alocal ring whose radical J(R[G[BI(O)])
is just p-1. As in (2.12-2.14), this determines a unique central extensmn
GIBKN) of F by G[B] whose twisted group algebra is given by:

(13.82) & (‘)?Y [G[B](‘ﬁ)]/ PRIGIBKM],
(13.8b) % BI) 1, = RIGIBKI/PRIGIBIM)], , for all o ¢ GIB].
(Compare [ICE 4.12].)

Before describing the isomorphism of G[B]* onto G[B}M)~, we note the
following useful result:

Lemma 13.9. Let A, © FIGBKW], , for oeG[B], be any R-sublattices
such that (2.1) holds with A = @ D ,eom Ao, G[B], and the U, in place of
0, G, and the O, , respectively. Then A = R[G[BIN)] and A, = R[G[BIMW)], ,
for all ¢ € G[B].

Proof. Tix elements ¢eG[B] and yetor(G[B{MN)),. Then the one-
dimensional subspace F[G[BIMW)], is equal to Fy. In particular, any element
2 € U, has the form z = fy, with f € §.

If f ¢ R, then f* ¢ R, for all n > 0, since N is a valuation ring. There
exists an n > 0 such that ¢” = 1 (by Proposition 2.2(d)!). Then

y" e tor(ABIN)en = U-1

is a generator for R[G[BJM)ly = N-1. Since N is a valuation ring, it is the
only ER—order in § Hence A = R-1 = Ry". But U = Up» con-
tains 2" = f"y" which does not lie in Ry”. This contradiction proves that f
always lies in %, and hence that U, is an R-sublattice of FG[BIIM], = RNy.

If A, = Ry, then we must have A, C py. But then

1 © FIGBIW]— = Ry~

and R-1 = % = AA,-1 C pyRy " = p-1, which is impossible. Therefore
A, = Ny, and the lemma is proved.
Now we have:

Prorosition 13.10. For any mazxvmal two-sided ideal W of § ® 1 lying
in B, the natural map of Oers) tnto

(T ® Dearm) /(T ® Oars))N
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sends G[B] onto N[G B](%) 1, and induces an algebm isomorphism ¢ of F[G[B]*]
onto FIGIBKNY™| sending FIG[B*|, onto FGIBYN) ), , for all o € G[B]. Hence
the restriction of ¢ is an isomorphzsm of G[B ] onto G[BXRN)™ as extensions of F
by G[B].

Proof. F¥rom (13.7) it is clear that the restriction ¢ of the natural map of
Doz into (F @ Doas) /(F @ Datsy) N sends C[B] C C(O; in Ogpp) into
FIGBXM)] and €[B), into FG[BKW)], , for all ¢ ¢ G[B]. Because the image
1 ® e of the identity e of €[B] is congruent to 1 modulo N, the map ¢ is
identity-preserving. It follows from this and Proposition 2.10 that (2.1)
holds with ¢(€[B]), G[B], and the

¢(€[Bl,) < JIGIBKMW)I,

in place of O, G, and the O, , respectively. So Lemma 13.9 tells us that
o(C[B]) = R[GIBKM)] and ¢(C[B],) = RIGBIW),, for all ¢ ¢ G[B]. In
view of (2.11), the composition of ¢ with the natural epimorphism (in (13.83))
of R[G[BIMN)] onto F[G[BKN)] is an R-epimorphism having

C[BlJ(€[B)

in its kernel. By (2.14) it induces an F-epimorphism ¢ of F[G[B]*] onto
SIGIBIN) 7] sending FG[B]*], into %[G B](‘ﬁ) , , for all ¢ € G[B]. Since the
restriction of y is an isomorphism of FG[B]*]; = §-1 onto FGBIMW) L = §-1,
the proposition follows directly from this and [CCT, 13.10].

Even in the situation where both (5.1) and (6.1) hold, the image €[B](Ez)”
of §5 can be strictly smaller than {[G[B]*](E5), while the group G[BI(D) of
Proposition 9.2 can be strictly smaller than C(D in G[B]). Both these
phenomena are illustrated by the following example:

Ezxample 13.11. Let H = {p) X {(m) be the direct product of two cyclic
groups {p), () of prime order p. Assume that § has characteristic zero,
while § has characteristic p. Let H* be the unique central extension of F
by H generated over F by two elements p*, 7~ satisfying:

(13.12a) pr (p*) = p, pr (z¥) =
(13.12b)  (p? = (#? =1
(13.12¢) p*n* = n'p",

where { is a primitive p* root of unit in §. Then, as above, R[H*], H, and
the R[H™), , o € H, satisfy (2.1) in place of O, G, and the O, , respectively.

Evidently R[H™; = %-1 has only one block By. Since R[H"]; is central
in N[H™], the suborders corresponding to G, ¢€, and G[B] all coincide with
R[H™], while Hy, = H[B) = H.

Since J(ER) = p contains ¢ — 1, it is clear from (13.12) and (2.14) that
SH [Bo] 1 = RIH*]/oR[H¥] is just the group algebra §H, and hence that
HI[B,|* is the split extension H X F of F.

We set E = H, operating on R[H™] as usual via (2.15). Then (5.1) and
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(6.1) hold, while Ez, = E. Irom (13.12) we see that
RIH*|(Epy) = Z(R[H")) = RH":.

Because F[H[Bo]*| = FH is abelian, this gives

(13.13) RIH*(E3) = §-1 € FH = FH[Bo)*|(Es,).

Like its residue class algebra {H, the order R[H*| has but one block B,
whose defect group (in £ or in H) is D = E = H. Since D cen-
tralizes H[By] = H, equations (9.1) and (13.12) give

(13.14) H[By(D) = {1} < C(D in H[By]) = H.

When (2.1) holds, the residue class algebra O = O/p9O, the group @, and
the subspaces O, = 9,/p90, (identified with their images in ) also satisfy
(2.1) with § in place of ®. Proposition 1.12 gives us a unique block B of O,
corresponding to the block B of O, , the primitive central idempotent & in B
being the image of e. So we can define Clifford extensions G[B]* and G[B]*
of F by subgroups G[B] and G[B] of G. The order R[H*] of Example 13.11
can be used again to show that G[B]* need not be isomorphic to G[B]*.

Example 13.15. Evidently © = R[HY], ¢ = H/(x), and O, =
® Do RHY,, for 7 €@, satisfy (2.1). Condition (13.12b) implies that
O1 = R[x*] is isomorphic to the group ring R(r). Hence O; has only one
block B and ¢ = 1. From (13.12¢) we get € = C($,in ©) = ©,. Hence
G[B] = ¢€ = € = O1, G[B] = 1, and G[B]* is the split extension (1) X F
of F.

On the other hand © ~ JH is commutative. Hence

C=0(5nd) =5,
which implies that §[B] = é€ = € = O, that G[B] = G, and that G[B]* is

the split extension G@ X F of F. Evidently G[B]* is not isoniorphic to G[B]*,
In general, the relations between G[B], G[B]* and G[B], G[B]* are given by

ProrosrtioN 13.16. The group G[B] is a normal subgroup of G[B], and
G[B]/GI[B] is a p-group, if F has prime characteristic p, and is {1} otherwise.
The natural map of O onto O induces a monomorphism & of G[B]* into G[B]*
as extensions of F compatible with the inclusion map of G[B] into G[B.

The group Gz is equal to G , and the above monomorphism { is G -tnvariant.

If O, G, and the O, come from a finite group H and ils normal subgroup K as
at th(fk beginning of §2, then G[B] = G[B] and  is an isomorphism of G[B]* onto
G[B]".

_ Proof. The natural map of O onto O sends € = C(O: in O) into
€ =C(S1inD) and G into & = €n O, , forall o e G. By (2.15) it pre-
serves the actions of G on € and on €. This and the uniqueness of the rela-
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tion between e and & in Proposition 1.12 imply that Gz = G5. Proposition
2.17 tells us that both G[B] and G[B] are normal subgroups of G5 = G5.
Hence G[B] normalizes G[B].

If o e G[B], then (e@,)(eC,~1) = @ by (2.92). Since the images of
eG,, eC,~1 are contained in &C,, &8,-1, respectively, this implies that
e (G,) (&€,-1). Inview of (2.8¢, f), we conclude that (&G,) (¢C,-1) = &€, ,
i.e., that o ¢ G[B]. Hence G[B] is a normal subgroup of G[B].

By (2.14) the natural maps of O onto O and €[B] onto F[G[B]*] induce an
9R-homomorphism of §[B] into FQ[B]*] sending G[B], into FIG[B]*], , for all
o ¢ G[B] < G[B]. Since éis the image of e, this %-homomorphism is identity-
preserving. From (2.11) and the fact that FG[B]*y = -1, we conclude
that J( €[B]y) is in its kernel, and hence that it induces an identity-preserving
homomorphism £¢* of the algebra F[Q[B]*] into FIG[B]*] sending FG[B]*], into
§IG[B)*], , for all ¢ € G[B], and sending F[G[B]*l, = §-1 isomorphically onto
§IGIB*h = §-1. An application of [CCT, 13.10] now gives the second state-
ment of the proposition with the restriction of £* as &.

We have already seen that Gz = G3. From its definition ¢ is clearly Gp-
invariant. So the third statement holds.

When O, G, and the O, come from H and K, then (2.6) implies that G, is
the image of €, , for all ¢ € G. If o ¢ G[B], then this and

(&€,) (6€,-1) = &G,
!mply that (¢@,) (eG,-1) is a two-sided ideal of e, generating that ring modulo
the kernel ¢§; n pO; of the epimorphism onto &€, . But this kernel is con-
tained in ¢& n J(O1) C J(e&) by (1.2) and Proposition 1.9. Hence
(eG,) (eC,-1) = eC; and o ¢ G[B]. This is enough to prove the last statement
of the proposition.

It remains to be shown that G[B]/G[B] is either a p-group or trivial, depend-
ing on the characteristic of §. For this it suffices to prove that any element
o € G[B] whose order n is not divisible by the characteristic of § is also an
element of G[B].

We can choose an element § € &8, = €[B], whose image § is a non-zero
element of F[G[B]*],. Then §" is a non-zero element of F[G[B]*]» = §-1.
Since the field §§ is algebraically closed, it contains an element f so
that f"§" = 1. Replacing 7 by f§, we can assume that §* = 1, i.e., that

7" e&+ J(G[BL).

By Proposition 1.16 there exists an element zeé 4+ J(G[B]) such
that 7"2" = & Since G[B]; = &€, centralizes ¥ (by (2.8b)), we have
(g2)" = §"z" = €. So we can replace 7 by 7z and assume that 7" = &.
Choose an element y ¢ O, having § as its image. Since §é = &y = §, we
can replace y by eye and assume that y eeD, = O,e. The power y" ¢ Oy
has 4" = & as image, and hence lies in e + peD; C e + J(e;). In view of

(1.7) and Proposition 1.9, this implies that y" ee + J(R[y"]). Now Proposi-
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tion 1.16 gives us an element w e e + J(R[y"]) such that y"w" = e. Since w
is a polynomial in y" (with coefficients in %), it commutes with  and its image
in O, is contained in {[F"] = §-é. It follows that we may replace y by yw
to obtain an element y of e, satisfying ¥ = e whose image § lies in &G, .

Clearly ¥ is a unit of eDe whose inverse ¥ = 5" lies in eO,~1 = €Opn-1 .
From (2.1e) we see that 3y (eDy)y = eO;. This gives e the structure of a
lattice over the group ring R(y) of the cyclic subgroup (y) of order n generated
by y. Because n is not divisible by the characteristic of {, this group ring is
the direct sum

Ry) = NS --- N

of n copies of %, with the projection onto the 7t copy sending y onto ¢, for a
fixed primitive n* root ¢ of unity in R. It follows that eD; has a decomposi-
tion

e = U® --- @ (as Ry)-lattices),
where y acts on the 7t sublattice &; by
(13.17) v ey = ', forall ze%, i=1,---,n.

Taking residues, we see that éD; is the direct sum of the images ¥; = &, /p%
of the €;. But the image 7 € &8, centralizes é0; . So conjugation by ¥ is
trivial on each & . Since the image of ¢ is a primitive nt root of unity in §,
this and (13.17) imply that & = & = .-+ = €, = {0}. By the Nakayama
Lemma this forces & = .-+ = 8,1 = {0}. Hence eO; = &, . Therefore y
centralizes eD; , 1.e., ¥ e C(eD; In eD,) = G, .
Now it is clear that 4™ = 4" " eeG,-1 and e
view of (2.8e, f) this implies that (eG,) (e€,-1)
and the proof of the proposition is complete.

vy e (€6,) (e€m1). In
e¢§; . Therefore ¢ € G[B],

Index of notation

We list here certain symbols and definitions used throughout the paper
followed by the number of the statement in which they are defined, or the
number of the statement next following their definition. The reader should
notice that certain symbols which have a general meaning in one section may
have a more restricted one in others. Thus £, which denotes a gen-
eral R-order in §1, is fixed from (2.1) on as a specific R-order. In §7 and
§8§10-12 it has even more restricted meanings, while in the intervening §8
and §9 it reverts to its definition in (2.1). In these cases the notation used in
a given section is indicated at or near the beginning of that section. Further-
more, we list in this index the places at which the meaning of the symbol in
question changes as well as that at which it was originally fixed.

Finally, there are certain notational conventions used repeatedly in the
paper which are summarized at the end of this index.
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Brauer homomorphism S............ ............. (8.2), (10.3)
L (2.6)
BB, G By e (2.9)
CBI(Es || D). ..o (8.2)
CIBlD) - o e (8.1)
CBIoy(N(D) | D)oo (8.5)
Do (8.1), (10.5)
B (4.1), (7.1)
Doy, oeH. .. . (7.1)
DBy« + « e e e (10.2)
A(Y) o (5.9)
defect group of blocks of O....................... (6.3)

of elements of FGBI*............... (5.9)

of maximal ideals.................... (4.5)

of orbits of blocksof O............... (6.3)

of orbits of blocks of FIBI™]......... (6.5)
B o (4.1), (5.1), (6.1), (7.2)
e (2.8)
E/D .. . (4.1)
Endo(®) ..o (1.13)
F o (18.7)
B (1.1)
F o (2.13)
T (1.1)
SIGBY) . . (2.14)
{1 P (8.1)
g[G[ER]*] ...................................... (10.15)
SIH™ . (10.1)
72 1 (10.2)
G o (2.1), (7.3), (10.3)
G e (2.17)
GIB] . . (2.9)
GIBY ... (2.13)
GIBI(D) .o ..(9.1)
GIBI(Es ||D). ... (8.2)
GBI - (13.4)
GBI . . (13.7)
GIBUY . (13.8)
GIR] - (10.13)
GIRTE . (10.14)
H . (2.1), (7.1), (10.1)
H (10.1)
H(D) ... (10.2)
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HD) @) o oo (11.6)
H(D)y oo (11.12), (12.2)
) (00) M0 (11.14)
Id(O) oo (2.3)
JO), J(O) oo (1.2)
K o (2.1), (7.2), (10.2)
lattice over .. ... (1.13)
over K. ..o (1.2)
Max () oo (1.3)
Max (G[BI(Ez) |D) ..o, (8.7)
Max (€[Blpy(N(D)) |D).oovovvei ... (8.7)
N(D) oo (8.1), (10.2)
N(D) g oo (11.12)
O (1.2), (2.1), (7.3), (10.3)
0 (2.1), (7.3), (10.3)
0 S (1.2)
D) s Ory(D) o ooeeee e (10.8)
B e e e e (11.10), (12.1)
Order. . ... .. (1.2)
D (1.1)
pure N-submodules. .. ...l (1.2)
) £ P (1.1)
R (12.2)
residue class modules, algebras................. (1.2)
S (8.1), (10.3)
S (10.18)
T, T (11.18)
trp.,E ....................................... (4:.1)
U(D) .o (1.16)
Z(0) o (14)

In general the centralizer of X in Y, however defined, is denoted by
C(X in Y). Similarly the normalizer of X in ¥ is denoted by N(X in Y),
except in a few special cases noted above when it is just called N(X). There
is one exception to this notation when X is a group acting on a ring Y. In
that case the centralizer C(X in Y) is usually denoted by Y (X), a notation
introduced in §4. In this situation the expression Y(X | Z) stands for the
image of the trace map trz.x : Y (Z) — Y(X), where Z is some subgroup of X
(see §4, particularly (4.1)-(4.4)). The same notation is often used for the
centralizer of X and the image of the trace map when Y is just some X-invar-
iant submodule of a ring on which X acts.

When a group X acts on a set Y the stabilizer in X of a point ¢ € Y is usually
denoted by X,. This should not be confused with the special notation
H(D),, N(D), and H(D)*¢), concerning the bilinear form w of §11. Nor
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should it be confused with the notation X, for the y* component, y ¢ Y, of the
grading of a ring X with respect to a group Y.

In general the expression X™ is reserved for a central extension of F by a
group X. In that case F[X™] denotes the corresponding twisted group algebra
of X over §.

Throughout the paper the superseript J is used to denote the images in the
factor ring F[Q[B]*] = G[B]/G[B]J(E[B)) of elements or subsets of G[B].
In §§10-12 the superseript I is similarly used to denote the images in F[H*] =
D/DJ(D1) of elements or subsets of D. One should note that the super-
seript J enters into certain expressions, such as G[B](Es| D)’ and
G[B)wy(N(D) || D)’ listed above, which are defined directly in F[G[B]*] and
not as images (although, of course, they could have been so defined).
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