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Authors often tell us that their fictitious characters have wills of their
own, and that they can grow and develop, during the writing of a long novel,
in ways altogether unforeseen when the work was begun. The present article
has some of the characteristics of these stubbornly independent literary crea-
tions. It started out as a simple observation--now quite buried in Theorem
10.20 below--that Brauer’s First Main Theorem about blocks led to an iso-
morphism between certain group extensions associated with those blocks, an
isomorphism which could be used as a reduction technique in the study of
outer automorphisms of finite groups. During the initial write-up of this
observation it developed that these group extensions behaved as if they were
Clifford extensions H[B]* for blocks B of normal subgroups K of finite groups
H, in the sense that the blocks of H lying over B could be computed from
those of the twisted group algebra of H[B]*. Furthermore, the original
isomorphism became only a step in a reduction process paralleling Brauer’s
well-known analysis of blocks [1], a process yielding a reasonably simple
formula for the Clifford extension H[B]* for the block B in terms of an ordi-
nary Clifford extension for any of the conjugacy class of irreducible charac-
ters corresponding to B in Brauer’s theory. Obviously one couldn’t discuss
either blocks or Brauer’s analysis without a thorough study of defect groups,
culminating in a method for computing the defect groups of a block of H
lying over B from the defect groups of a corresponding block of the Clifford
extension H[B]*. Finally, the whole theory had to be put in suitable ab-
stract settings (as in [3]) for the sake of possible generalizations as well as to
clarify the actual content of the various theorems. Thus, from minor revisions
to complete rewritings, from small improvements to whole new sections, the
paper grew and expanded into a fullblown theory of block extensions in which
the original observation is all but lost and any connec,ion with outer auto-
morphisms has completely disappeared.
Some of the maladjustments inherent in the manner in which this article

grew are still visible in the final result, particularly in the choice of abstract
set*ings. The axioms (2.1) used in the definition of the Clifford extension
for a block and in the construction of the associated Clifford correspondence
are quite suitable for the purpose, based as they are on the developed theory
of [3] and [4]. However, when it came to defect groups and Brauer’s analysis,
no satisfactory fixed set of axioms was found. Indeed, throughout the part
of the paper (4-9) devoted to these subjects the hypotheses change from
section to section--sometimes even from theorem to theorem--in a most
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disconcerting manner, and the reader will have to pay attention in order to
known just which assumptions imply which conclusions.

Perhaps a more deta.iled discussion of the various settings will help explain
some of the problems here. The axioms (2.1) define what is, in the language
of [3] and [4], a graded Clifford system (C), {] e G} over a valuation ring
9 in an algebraically closed field, with the additional hypothesis that (and
hence each ) be a finitely-generated free -module. Of course one obtains
the original situation by letting (C) be the group ring 9H of H over 9, by let-
ting G be the factor group H/K, and by letting be r, for every coset
zeG H/K.
To study defect groups we start in 4 with one of Green’s theories [7] which

defines them in a very simple setting consisting only of a ring with identity
and a finite group E of automorphisms of . His idea that defect groups be-
long properly to an "outside" operator group E, and not necessarily to any of
the groups G, H or K involved with the ring (C), is very useful and we employ
it throughout the paper.
Having chosen to define defect groups in an operator group E, we must then

decide on which of our rings and groups E is to act, and how its action is to be
connected with the other structures of the theory. One obvious idea would
be to make E act as -automorphisms of (C) in such a way as to permute the
direct summands , z e G, among themselves. The permutations of the
(C), which modules correspond one-to-one to the elements of G, would then
define an action of E as automorphisms of the group G. Furthermore, all
the other objects used to define Clifford extensions for blocks in 2 would re-
ceive actions of appropriate subgroups of E in the correct manner. The prob-
lem with this idea is that there is no way to apply it to the usual special case
G E. The group G H/K does not normally act as automorphisms of the
ring 9H! However, we know from 2 of [3] that G does act naturally as
automorphisms of the centralizer C(1 in (C)) of 1 in (C), a subring which
plays an important role in this paper. Furthermore, in view of (3.4) below,
all the important steps in the Clifford theory for blocks depend only on the
structure of as a G-graded algebra over and on this action of G (so that
one could dispense altogether with (C) and the (C) if one wished to etherealize
the subject a bit more). So the "correct" ring for E to act upon is and
not (C).
The natural hypothesis tying the action of E on to the rest of the struc-

tures would be to make E act as automorphisms of the group G in such a way
that the action of G on as well as the G-grading of remain E-invariant.
It turned out, however, that the latter condition alone was sufficient to imply
many useful results, including generalizations of the usual method for com-
puting defect groups by means of Sylow subgroups of centralizers of elements
(in Proposition 5.10) and, more importantly, of Brauer’s First Main Theorem
(Theorem 8.7 below). Following the general principle that one shouldn’t
assume more than one needs to prove one’s theorems, we stick to the weaker
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hypothesis that the G-grading of be E-invariant in the axioms (5.1) for
5 and 8, without worrying about the relations between the actions of G and
Eon .

In other parts of the theory, however, the E-invariance of the action of G
on is definitely needed. We introduce it into the axioms (6.1) for 6 by
making the actions of E on G and of G on come from an embedding of G
as a normal subgroup of E. Then we cn prove a general result (Theorem
6.5) which, when specialized to the case G E in Corollary 6.6, tells us that
the G-defect groups of a block/ of (C) lying over the block B of are simply
the G-conjugates of the defect groups in G (the stabilizer of B in G) of the
G,-orbit of blocks of the Clifford extension G[B]* (called H[B]* bove) corre-
sponding to/ under the Clifford theory for blocks. The additional axioms
(6.1) are also used in 9 to carry out the rest of the Bruer nalysis of blocks
in our abstract setting, although one almost unrecognizable form of his theory
(Theorem 9.5) can be proven under a weaker assumption (9.4).
Even these two sets of axioms are not enough for everything. If you think

a bit about the original situation in which (C) 9tH and G H/K, it becomes
clear that what is needed is not a defect group in G of the block B but a defect
group in H of that block. So, after having carefully removed H and K from
our axioms, leaving only the group ring (C) 9H and the factor group
G H/K, we must go back and put them in again! This is done in (7.1) and
(7.2). Even these axioms, which describe a twisted group algebra of H
over a local ring , together with an embedding of H as a normal subgroup
of an operator group E on , are slightly more general than those of a group
ring. The resulting Theorem 7.3 then tells us how to compute defect groups
in this E of E-orbits of blocks of (C) in terms of defect groups of B in E and of
defect groups in E/K of the corresponding E-orbit of blocks of the Clifford
extension G[B]*, where B is ny block of lying under some block of the
original E-orbit.

Because of the importance of the last result, it is worthwhile explaining in
some detail what it becomes in the usual case in which E H and (C) 9H.
The Clifford extension G[B]* H[B]* for block B of (C) 9tK is then a cen-
tral extension of the multiplicative group F of the residue class field of the
valuation ring by a certain normal subgroup G[B] of G H/K (see 2).
The stabilizer G of B acts naturally as automorphisms of the Clifford exten-
sion G[B]*, centralizing/P and compatible with the projection of G[B]* onto
G[B]

__
G. The Clifford correspondence (Theorem 3.7) is then one-to-one

between the blocks/ of (C) 9H lying over the block B of (C) 9K and
the G-conjugacy classes T of blocks of the twisted group algebra [G[B]*] of
the Clifford extension G[B]*.

In the above situation Green’s theory gives us defect groups C of the block
B in H coming from the conjugation action of H as automorphisms of the
group ring (C)1 9K. It lso gives us defect groups b in G of the G,-con-
jugacy class T coming from the action of G H/K on the twisted group ring
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[G[B]*]. In fact, a general result of his theory (Proposition 4.9 below) is
that /) can be chosen to be a defect group in GB. (GB) of any block
B e T. We wish, of course, to compute a defect group D in H of the block B.
The result, given in Theorem 7.7 below, is the following"

(0.1a) The factor group CK/K is a p-Sylow subgroup of H/K G.
(0.1b) If C is chosen so that the p-Sylow subgroup CK/K contains the p-

subgroup I) of G then the inverse image in C of I) <_ CK/K is a defect group
of BinH.

(0. lc) Finally, D n K C n K is a defect group of B in K.

Here, of course, p is the characteristic of the residue class field , which is sup-
posed to be a prime.
As mentioned above, the Brauer analysis of blocks in terms of a conjugacy

class of characters of the centralizers of their defect groups can be generalized
into a method for computing the Clifford extension for a block in terms of some
ordinary Clifford extensions of the corresponding characters. This is dis-
cussed in the long Sections 10, 11 and 12 below in the context of the "twisted
group algebra over a local ring" of the axioms (7.1). The resulting Theorem
12.3 is also important enough to warrant a detailed explanation here, at least
for the usual special case in which H and G H/K.

Fix a defect group D in K of the block B of K. Brauer’s analysis
[1] gives us a unique NK(D)-conjugacy class of blocks b of defect zero in
DC:(D)/D corresponding to B. Any such block b contains a unique modular
irreducible character , which we can regard as an irreducible -character of
CK(D). Then has, as in [3], a Clifford extension CR(D)(,,), which is a cen-
tral extension of / by the stabilizer CR(D),/C:(D) of e in Cn(D)/C:(D).
Furthermore, the stabilizer Nn(D) of in the normalizer NI(D) acts by
conjugation on C(D)() centralizing/P and leaving invariant the projection
of C.(D) (> onto C.(D)/C(D).
At this point a curious complication arises due to the fact that the normal

subgroup N(D), of NI(D) need not centralize the Clifford extension
CI(D) (). Of course it must centralize both F and the factor group

Cu(D) ()/1
_

Cu(D) /C:(D) Cu(D) /(NK(D) n Cu(D) )

But it can still act non-trivially on C,(D)(}, i.e., the bilinear form

o’N(D) X [C,(D) /Cr.(D)] --, F
defined by

(0.2) (y) o(r, r)y for all z N(D) re CR(D) /C(D), and
y e Cu(D) (q) such that is the projection of y

can be non-trivial. It turns out that the important subgroup is the "right
kernel"

C,(D)/C(D) Ire Cu(D)/C(D) o((r, ) 1, for all (r eNK(D)}
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of this form. Its inverse image C,(D) in C,(D), is a normal subgroup of
N(D) ,, and the factor group C,(D) ,/Ca(D), is abelian of order relatively
prime to the characteristic p of (see (11.13) below). Its other inverse
image C,(D)@} in Ca(D)@} is canonically isomorphic to the Clifford ex-
tension Ca(D)@} of in Ca(D), by 16 of [3]. Furthermore, Ca(D)@} is
normalized by N,(D), and centralized by N:(D). So it is acted upon
naturally by the factor group Na(D),/NK(D),.
Now we can state the final result. It is obvious from the description of the

Clifford correspondence for blocks preceding (0.1) above (or from 3 below)
that we need to compute the stabilizer G of B in G H/K, its normal sub-
group G[B], and its action on the Clifford extension G[B]* as well as that Clif-
ford extension itself. All of these things are given in terms of the above ob-
jects by Corollary 12.6 below which states that"

(0.3a) G, 2V,(D) , K/K.
(0.3b) G[B] Ca(D) K/K.
(0.3c) G[B]* is naturally isomorphic to Ca(D),o@} as extensions of ,

compatibly with the natural isomorphism of
G[B] Ca(D),o K/K onto Ca(D),/C:(D) Ca(D)/[Ca(D), n K].

(0.3d) The isomorphism in (0.3c) and the natural isomorphism of
G, N,(D) , K/K onto N,(D) ,/N(D) , N,(D) /[Na(D) n K]

carry the action of G, on G[B]* onto the action ofiVa(D) ,/5fK(D) , on Ca(D)
Thus the Clifford extension for blocks and its associated structures are more or
less effectively computable.
The rings used in this paper are usually orders over the valuation ring 9 in

an algebraically closed field (when they are not algebras over the residue
class field of 9). We include in 1 a quick theory of such orders , show-
ing that they enjoy all the good properties of p-adic orders (such as the ability
to lift idempotents and blocks from factor rings, the fact that 1 + J((C))
behaves like a p-group, the Krull-Schmidt Theorem for finitely-generated
indecomposable modules, etc, etc.) as well as those stemming from the
gebraic closure of both and .

Finally, in 13 we collect various miscellaneous results about the connections
between the Clifford extension for a block and the Clifford extensions for the
ordinary and modular characters in that block, and about the relations be-
tween the Clifford extensions for corresponding blocks of the -order (C)1 and
its residue class -algebra (C)1.
We have already said that the present article was much rewritten during its

gestation. The rewriting, in fact, has continued even after the paper was ac-

cepted by the Illinois Journal. Thus the present introduction is newly written
in June, 1972, some two years after the rest of the work. At the same time
the numbering of statements and theorems has been almost completely changed
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as a result of a new division into 13 sections in place of the original 6. In a
further (probably vain) attempt to improve its readability, :m index of symbols
and definitions has been added to the end of the paper.
One notational convention must be mentioned immediately. The two arti-

cles [3] and [4], on which we depend heavily, are denoted in the text by their
initials [CCT] and [ICE], respectively. Thus a reference to [CCT, 2] is to
section 2 of [3], while [ICE, 1.11] sends the reader to numbered statement 1.11
(in this case a proposition) of [4].

It is obvious from the above descriptions that this whole work is but a minor
generalization of that of Professor Richard Brauer, in particular of [1]. It was
therefore appropriate that the results in it were first announced at a sympo-
sium honoring his 70th birthday (see [5], where the reader will find a further
description of the contents below). I wish to thank publicly Professor Brauer
for his help and inspiration over the many years of our acquaintance. He has
been an excellent teacher and colleague, as well, of course, as the discoverer
of practically all the basic results in the theory of blocks. My only regret
in our relationship is that I had no interest at all in group theory when I was
his student, and hence could only profit partially from his teaching! For these
reasons this paper is dedicated to him.

1. The orders
When dealing with proiective representations of finite groups, it is very con-

venient to use only algebraically closed fields. Otherwise one is forever mak-
ing finite extensions of the ground field to simplify factor sets, obtain absolutely
indecomposable modules, or what have you. So we begin by choosing a valua-
tion ring 9 subject only to the condition that its field of fractions be alge-
braically closed. We denote by the unique maximal ideal of 9 and by
the residue class field 9/. The fact that is algebraically closed clearly
implies"

(1.1) The residue class field is algebraically closed.

Incidentally we do not exclude the useful case in which 0, and
==.
Any finitely-generated torsion-free module over the valuation ring 9 is free

of finite rank. As usual, we call such modules 9-lattices. Evidently any
finitely-generated 9-submodule of an 9-lattice 9 is again an 9-lattice, as is
any torsion-free factor 9-module /. In the latter case, is called a pure
9-submodule of 9. In fact, such an is an 9-direct summand of (since
/ is free), and hence is itself an 9-lattice. The residue class module
/ is a vector space over whose finite dimension equals the 9-rank

of .
An -order (or simply an order) (C) is an associative 9-algebra with identity

1 1 which is an 9-lattice when considered an an -module. Then is
a two-sided ideal of , and the residue class algebra (C)/(C) is a finite-
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dimensional associative algebra with identity over . The Nakayama Lemma
for the finitely-generated 9?-module implies that any maximal left ideal of

contains p. It follows that the Jaeobson radicals J() and J((C)) of
and (C), respectively, are related by"

(1.2) J() is the inverse image in (C) of J

In particular, /J((C))
___

(C)/J() is a finite-dimensional semi-simple algebra
over . So the family Max () of all maximal two-sided ideals of (which
is the inverse image of the corresponding family Max (/J()) for /J()
is finite.

Since is not noetherian (unless ), not every -subalgebra with
identity of an -order is a suborder of . However, most of the subalge-
bras which occur in the usual constructions are suborders. For example, if
S is a subset of , then the centralizer of S in , the set C(S in ) of all
x e such that xs sx, for all s e S, is clearly an -subalgebra of containing
le. Using the fact that is a torsion-free -module, one easily sees that
C(S in ) is a pure -submodule of , and hence is an -lattiee. Therefore.

(1.3) C(S in ) is a suborder of , for any subset S of .
Taking S , we obtain:

(1.4) The center Z() of is a suborder of .
If e is an idempotent of , then ee is an -subalgebra with e as its identity"

The Peiree decomposition implies that ee is an -direet summand of , and
hence that"

(1.5) ee is a suborder of , for any idempotent e of .
Another trick is to use the -linear transformation T y xy of defined

by an element x e . Since is a free -module of finite rank, we can define
the characteristic polynomial

X-1f(X) det (Xl T) X + a + + a
of T in the usual way. Its coefficients a, a all lie in . From the
Hamilton-Cayley equation f(T) 0, we deduce"

(1.6) x + al x
n-1 + + an f(x) f(x) le [f(T)](le) 0.

It follows that the -subalgebra [x] of all -polynomials in x is generated as
an -module by 1, x, x: ,-1,x Hence"

(1.7) [x] is a suborder of , for any x e .
Equation (1.6) can also be used to compute inverses of units. If x is a

unit of , then T is an invertible -linear transformation of the free -module
of finite rank. It follows that the determinant (- 1)a of T is a unit of
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X(Xn-1 + al x
n’-2 31- -}- an-l) --an,

we obtain
--1 Xn--2X (--an)--l(xn-1 - al + + a,_l) e [x].

Therefore"

(1.8) If x is a unit of, then x-1 lies in [x].

The property (1.8) has the following useful consequence"

PROPOSITION 1.9. If’ is a suborder of (with or without the same identity),
then J() n t

_
j(t).

Proof. The identity e of (C)’ is an idempotent of (C). By (1.5), ee is a
suborder of containing (C)’. We know that J(e(C)e) eJ((C))e J() n
ee. So it suiiices to prove the proposition for e(C)e and (C)’, i.e., we can
assume that 1 19 e ’.

Evidently J((C)) n (C)’ is a two-sided ideal of (C)’. So it suffices to show that
1 -t- yis aunitof(C)’, for everyyeJ((C)) ’. But 1 + yisaunit of,
since y e J(), and (1 -t- Y)-ie [1 -- y]

__ , by (1.8). Therefore 1 --y
is a unit of ’, and the proposition is proved.
The critical property of our orders is that idempotents of the residue

class algebra can be "lifted" to idempotents of . It is convenient to
prove this in a mildly stronger form.

PROPOSITION 1.10. If , is a two-sided ideal of , then every idempotent e

of the factor ring / is the image of an idempotent of .
Proof, First we simplify . Let x be any element of mapping onto

e. Form the polynomialf(X) X -- al -- - a of (1.6). Let
[X] be the polynomial ring in the variable X over , and y be the image
of X in the factor ring 9t[y] [X]/f(X)[X]. Evidently [y] is an -al-
gebra with identity, and is free -module with 1 y, y .-1y as a basis.
So it is an order. By (1.6) there is an -algebra epimorphism of [y] onto
[x] sending y onto x. Composing this with the natural map of [x] into
/, we obtain an -algebra epimorphism of [y] onto the subMgebr
1 + e of /, sending y onto e. If we can find an idempotent e’e [y]
mapping onto e, then its image e" [x] will be an idempotent of mapping
onto e. Hence we can assume that [y] nd/ 1 + e.

Because is algebraically closed nd is integrally closed in , the poly-
nomial f(X) factorizes completely in [X]"

f(X) (X cl) (X c) for some o, "", c, e.
Let , e be the images of c, c, respectively, in , and let d,

d be the distinct members of the set {1, }. For ech j 1,



206 E.C. DADE

m, definers(X) to be the product of those X c, i 1, n, for
which e d..

If j, k 1, m and j k, then the images in [X] [X]/p[X] of
fi(X) and f(X) are powers of X d. and X d, respectively. Since
d. d, they are relatively prime and their resolvant is a non-zero element of. It follows that the resolwnt of fi(X) and f(X) is a unit of and hence
that

9[X] =fi(X)[X]-4-f(X)D[X], for all j,k 1,... ,m with j k.

Because f(X) f(X) f,(X), this implies that [y] has the ring decom-
position

[y]- [X]/f(X)[X]

(1.11) "[X]/fl(X)[X] @ @ [X]/f,(X)[X]

where (C). is the image in 9[y] of 9[X]/fi(X)[X], for ech j 1, m.

Evidently ny is isomorphic to [X]/f(X)[X], where ](X) is the
image in [X] of fi(X). By construction ](X) is power of X d.
Hence

/j()
_

[x]/(x )[x]
_ .

In view of (1.2), this implies that (C)ffJ((C)) --_ is field, nd hence that
(C) is local ring.
The epimorphism of [y] onto 91 -4- 9e crries the decomposition (1.11)

onto the ring decomposition

l+e=(R)-.. (R)’
where (C). is the image of (C)., for j 1 m. Since (C). is local ring, its
image is either local ring or zero. So the identity e of (C) is either a
primitive idempotent of 1 d- e or zero. Because 1 d- 9e is commutative,
the above decomposition implies that the non-zero e. are its only primitive

id,empotents and that ny idempotent of 1 d- e is sum of certain of the
e. In prticulr, e is such g sum. So it is the image of the sum of the identi-
ties e of the corresponding (C)., which sum is an idempotent of [y] by (1.11).
This completes the proof of the proposition.
An arbitrary idempotent of can be the image of many idempotents of (C).

However, this is not true for central idempotents.

PROPOSITION 1.12. If e is a central idempotent of , then there is a unique
$

idempotent e* of having e as its image. This idempotent e zs central in .
The map e ---+ e sends the central idempotents of one-to-one onto those of ,
and the primitise central idempotents of (C) one-to-one onto those of .

Proof. By Proposition 1.10 there is n idempotent e* of mpping onto e.
We first prove that gny such e is centrgl in .
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The Peirce decomposition of (C) is

e*e* (R) e*(C)(1 e*) @ (1 e*)e* (R) (1 e*)(1 e*)
(as -modules).

Clearly each summand is an -lattice. By the Nakayama Lemma, the sum-
mand e*(C)(1 e*) is zero if its image

e*(1 e*)/pe*(1 e*) - e(1 e)

is zero. But e(1 e) e(1 e)(C) 0, since e is a central idempotent
of . Hence e*(1 e*) 0. Similarly (1 e*))e* 0. This implies
that e* is a central idempotent of (C).
Now let e be another idempotent of mapping onto e. Both e* and e

nre central idempotents of . Hence so are e*e, e* e*e and e e e
The images in of the last two idempotents are both e e 0. So (1.2)
implies that e* * * * * *e e and e e e are idempotents of lying in J().
Therefore they are both zero, and e* e*e e
We have now proved the first two statements of the proposition. The

rest of it follows directly from these.
The blocks of the order are defined by its primitive central idempotents.

Into the block B corresponding to such an idempotent e we put the usual
assortment of things which can somehow be attached to e and , such as the
indecomposable ring direct summands e and eZ() of (C) and Z(), re-
spectively, or the maximal ideals e Max ((C)) satisfying e 1 (rood )).
In view of Proposition 1.12, the map sending e into its image in defines a
one-to-one correspondence between blocks of and those of . It is cus-
tomary to put everything in a block/ of into the corresponding block B
of . We shall follow this custom as much as possible, but, as we shall see
below (in Example 13.15), the Clifford extension for/ can differ from that
for B (although they are the same for group rings). So we cannot completely
identify these two blocks.
A lattice 9 over the order is a unitary left -module which is finitely-

generated and torsion-free as an -module, i.e., which is also an 9-lattice.
Obviously is then a finite-dimensional unitary left module over the residue
class algebra . The ring End() of all -endomorphisms of is naturally
an associative -algebra with identity. In fct, we have"

PaOeOSTION 1.13. For any -lattice , the endomorphism ring End() is
an order.

Proof. Since is a free -module of finite rank n, its -endomorphism
ring End () is isomorphic to the ring of all n X n matrices with entries
in , and hence is an order. Each element x e determines an -endomor-
phism - xl of . Let S be the set of all such -endomorphisms. Then
Endz() is clearly the subalgebra C(S in End(9)) of End(), which is an
order by (1.3). This proves the proposition.



208 E.C. DADE

Now we can apply Proposition 1.10 to the endomorphism ring Ende()
and to its ideal J(Ende()). We know that 9 is an indecomposable -module if and only if 0 and 1 0 are the only idempotents of Ende().
Since the Jacobson radical J(Ende()) can contain no non-zero idempotent,
Proposition 1.10 implies that this occurs if and only if 0 and 1 0 are the only
idempotents of Ende()/J(Ende()). The latter ring is a finite-dimen-
sional semi-simple algebra over by (1.2). Since is algebraically closed,
our condition on the idempotents is equivalent to End(9)/J(Ende() being
isomorphic to . So we have"

(1.14) (Fitting’s Lemma) An (C)-lattice is indecomposable if and only if
End()/J(End())

_ , i.e., if and only if Endz() is a (non-commuta-
tive) local ring.

As usual (compare the proof of Theorem (14.5) from Lemma (14.4) in [2]),
this implies"

(1.15) (Krull-Schmidt Theorem) If 1 l 1 k
are two decompositions of an -lattice as direct sums of indecomposable -sub-
modules, then tc and, after reindexing, 9i is -isomorphic to i for i 1,

Since the order is a ring with identity, its subset 1 + J() is a subgroup
of its unit group U(). This subgroup has the following useful property"

PROPOSITION 1.16. Let n be a positive integer not divisible by the characteristic
of . Then the group 1 - J() is exactly divisible by n, i.e., for any element
y 1 J(), there is a unique element y/’ y.1 + J() such that (y/’)

Proof. We first assume that the order is a commutative local ring. Let
y be any element of 1 -1- J(). .Form the polynomial ring [Z] in one varia-
ble Z over . Let z be the image of Z in the quotient ring

O[z] (C)[Z]/ Z y) (C)[Z].
Then C[z] is a free C-module of rank n with 1, z, z, z as a basis"
Hence it is a commutative order. Evidently J((C))[z] (C)[z]J() is a two-
sided ideal of [z] which is nilpotent modulo O[z], since J() is nilpotent
module . It follows from this and (1.2) that J()[z] J([z]).

]et 2 be the image of z in the factor ring [z]/J()[z]. Since
/J() --’<- i, this factor ring is the -algebra {[] generated by . From
the construction of [z], it is clear that the natural epimorphism of the poly-
nomial ring [Z] onto {[] (sending Z into ) has the ideal (Z" 1)[Z] as
its kernel (remember that y 1 (rood J())!). Because n is not divisible
by the characteristic of , the algebra [Z]/(Z" 1)[Z] is semi-simple with
its n epimorphisms onto sending the image of Z into the n distinct nth roots- in . We conclude thatof unity, say,. ,e ,o 1,

(1.17a) J([z]) J() [z],
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(1.17b) [z]/J((C)[z]) [2] ex (R) (R) e, (as -algebras),

(1.17c) 2 oel ( 0 e2 ( ( o en,

where el, e, are the primitive idempotents of [2] arranged in a certain
order.

Proposition 1.12 tells us that the primitive idempotents el e of the
commutative order [z] have o, "", e, respectively, as images in [2].
By (1.17a, b) these images generate [z]/J((C))[z] as an -module. Since
[z] is a finitely-generated -module, the Nakayama Lemma implies that
[z] e -t- -[- e* Because the ei are the primitive central idem-
potents of [z], we conclude that

(1.18) [z] e* @ @ (C)e* (as -orders).

Since is a local ring, it is an indecomposable (C)-module. So is each of its
non-zero homomorphic images e, i 1, n, for the same reason. By
construction, (C)[z] is a free -module of rank n. This, (1.18), and the Krull-
Schmidt Theorem (1.15) imply"

* * for(1.19) The map x --> xei is an isomorphism of the order onto ei
each i 1, n.

Now there exist unique elements z Zn such that

z- z e @ (R) z,en.

Evidently z" y ye @ @ ye* implies (zi) y, for i 1, n.
On the other hand, any nth root u of y in (C) defines an epimorphism of the
-algebra (C)[z] onto (C) sending z onto u. In view of the structure (1.18-19)
of [z], this epimorphism must send

x xle @ (R) x,e,

where x, ..., x e(C), onto x, for some fixed i 1, 2, .-., n. Hence
u zi. Therefore z, z are precisely the nth roots of y in . By (1.17c)

nltheir respective images in are the distinct elements , --., 0

03 1. So z y/ is the unique nth root of y in 1 + J(), which proves
the proposition whenever (C) is a commutative local ring.
Now let be an arbitrary order and y be any element of I + J((C)). Then

[y] is suborder of (by (1.7) which is obviously commutative and has the
same identity as . Proposition 1.9 says that J() n 9[y] is an ideal of
[y] contained in J(O[y]). Evidently y 1 (mod J((C)) n [y]) and (by
(1.2))

J() n 9[y]_ n [y] p[y].

It follows that 9[y]/(J() n 9[y]) --- . We conclude that

J() n [y] J ([y])

and that 9[y] is a commutative local ring. The above argument tells us that
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there is a unique element yl/ e 1 -4- J([y]) such that (yl/). y. Because
J() n [y] J([y]), the element yl/. is the unique nth root of y in

(1 -t- J())n[y] 1 -4- J([y]).

Suppose that z e i -[- J((C)) satisfies z" y. Applying the above argument
to [z] in place of [y], we see that [z] is a commutative local ring containing
[y] and that 1 + J([z]) (1 -4- J((C))) n [z] contains two nth roots, z
and yl/,, of y. The unicity part of the proposition for 9[z] now tells us that
z yl/,. So yl/, is the unique nt root of y in 1 -f- J(), and the proposition
is proved.

2. The Clifford extension for blocks
Suppose that H is a finite group, and that K is a normal subgroup of H.

Let (C) be the group Mgebra H of H over the valuation ring of 1. For
ech coset z in the factor group G H/K, let , be the -submodule of )
having the elements of as a basis. Then (C), G, and the , z e G, satisfy:

(2.1a)
(2.15)
(2.1c)
(2.1d)
(2.1e)

is a non-zero -order,
G is a group,

is an 9-submodule of (C), for each G,
(R), (as -modules),

(module product), for all (r, r G.

We shall develop the theory in the general situation (2.1), indicating from
time to time the specia.1 properties of the case coming from H and K in the
above fashion.

First we collect some trivial consequences of (2.1) in the following

PROPOSITION 2.2 (a) The identity 1 of lies in 1.
(b) 1 is a non-zero suborder of (C).

(c) Each (r e G, is a non-zero 9-lattice.
(d) G is a finite group.

Proofs. (a) By (2.1d) there are unique elements e e (C), for e G, all but
finite number of which re zero, such that 1 e. If y (C), then

y yl _.ye.
By (2.1e) the product ye lies in (C) (C) , for all e G. Since y (C)1,
equating homogeneous components in the above equation (using (2.1d)) gives
ye 0, for allz 1. Hence(C)e 0, for any such . If reG, weob-
tain (C) e 1 ea 0 (from 2.1e). In view of (2.1d), this implies that
e 0, forallaeG {1}. But then

1 1.1 -’ 1.e 1.o el el.

(b) Conditions (2.1a,, c, d) imply that 1 is an 9-sublattice of . By
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(2.1e) it is a subring of ). We have just seen that it contains 1, which is
non-zero by (2.13). Hence 1 is a non-zero suborder of .

(c) Conditions (2.13, c, d) imply that each , a e G, is an 9-lattice.
If (C) 0, then (2.1e) gives (C)1 ,-1 0, contradicting (b). There-
fore euch is non-zero.

(d) Because each is non-zero -sublttice of , condition (2.1d) im-
plies that the number of elements of G is no larger than the -rank of ,
which is fite by (2.13). This completes the proof of the proposition.

Conditions (2.1) and Proposition 2.2 (a) can be expressed by sying that, { a e G} is a graded Clifford system over in the sense of [CCT] or [ICE],
with the additional hypothesis that , as an -module, is a non-zero -lat-
rice. So we are free to apply the results of these rticles to the present cse.
For example, there is a natural action of the group G on the family Id() of
all two-sided ideals of , given by

(2.3) - for all G, Id()

(see [CCT, 2]). We know from [ICE, 1.11] that the Jacobson radical J()
is fixed by G under this action. It follows (see [ICE, 1.5]) that

(2.4) J() J() J() is a graded two-sided ideal

of with J() J() as its a homogeneous component, for any

The following will be important.

PROPOSITION 2.5. J() J().

Proof. Because / is a finite-dimensional algebra over , its
radical J(l) satisfies J()" 0, for some n > 0. In view of (1.2),
this implies that J(l) . Since J(l) J(), we conclude
that

[J(l)] ’J() 1 J().

The proposition follows immediately from this.
We denote by the centralizer C(C in ) of in , nd define to be
n , for ech a e G. We remark that, in the case of the group H and its

normal subgroup K"

(2.6) has an -basis consisting of the class sums of elements of H under
conjugation by elements of K.

In the general case, we have"

PROPOSTION 2.7. () is a suborder of coni.aining 1 1
(b) 1 Z() is a central suborder of containing 1.
(c) is an -sublattice of , for each G.
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d (R) (as -modules
e for all , e G.
(f) 1 1 for all e G.

Proof. The definition of and (1.3) give (a). By definition, 1 1 n
C((C)1 in (C)) C((C)1 in 1) is the center Z((C)I) of (C)1, which is clearly central
in C(1 in (C)). So (b) follows from (1.4) and Proposition 2.2 (a, b). In
view of (2.1e), each , G, is a two-sided (C)l-submodule of (C). Therefore
(d) follows from (2.1d) and the definitions of and the ’s. Clearly each

is an 9-submodule of . Hence (a) and (d) imply (c). The definitions
and (2.1e) give (e) while (f) follows from (e) and the fact that 1 contains
1. So the proposition is proved.
The above properties of , G, and the should be compared with those of

(C), G, and the (C), listed in (2.1) and Proposition 2.2. There is one vital dif-
ference: we have inclusion in Proposition 2.7(e) in place of the equality in
(2.1e)and one minor one: the , as opposed to the (C), cn be zero. In
order to get back to the original properties we shall pass to a suborder of
and then to a subgroup of G.

Let B be a block of 1 and e be the corresponding primitive central idem-
potent of that order. Evidently e is a non-zero central idempotent of

C(1 in ) lying in 1 Z(I). This and Proposition 2.7(f) give us
the decompositions

e @ (1 e) (as-algebras),

e (R) (1 e as -modules for each ( e G.

Evidently these decompositions and Proposition 2.7 imply:

(2.8a) e is a suborder of with non-zero identity e,
(2.8b) e1 is a central suborder of e containing e,
(2.8c) e is an -sublattice of e, for each G,
(2.8d) e (R)ee,
(2.8e) (e) (e) e (module product), for all r, G,
(2.8f) (e) (el) (el) (e) e ,for all G.

Now we define:

(2.9a) G[B] {(e e (e)(e-i) el},
(2.9b) [B] @,e,
(2.9c) [B] e, for all a e G[B].

At last we have reached a good system.

PROPOSITION 2.10. The properties (2.1) are satisfied with [B], G[B], and
the [B] in place of , G, and the respectively.

Proof. By (2.8f) the subset G[B] of G contains l a. If (r, r G[B], then
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(2.8e, f) and (2.9a) imply that

el

_
(e) (e()-l)

___
(e) (e) (e()-l) (e) (e) (e,-,) (e-l)

(e)(el)(e-l) (e)(e-l) e.
So equality holds and r lies in G[B]. Since G is a finite group (by Proposi-
tion 2.2(d)), this implies that G[B] is a subgroup of G, which is condition
(2.1b) for our system.
Equality in the above chain of inclusions also gives

(e) (e,) (e()-l) el.
Because (at)- lies in the subgroup G[B], we have (e(,)-)(e,) el.
This, (2.9e), and (2.8f) imply that

(el)(e) [B],

for all a, r e G[B], which is (2.1e) for our system.
The definitions (2.9b, e) give (2.1d) for our system. Condition (2.1e)

comes directly from (2.8e). Since G is a finite group, its subgroup G[B] is
finite. So (2.8e) and (2.9b) imply that [B] is an 9-sublattiee of e. Since
G[B] is closed under multiplication, (2.8e) and (2.9b) are enough to make
[B] a subring of e q. The identity e of e is non-zero and lies in [B] by
(2.8a, b). Therefore [B] is a non-zero suborder of e(, and the proof of the
proposition is complete.
By definition e is a primitive idempotent in the center 1 Z(I) of 1.

Since this order is commutative, Proposition 1.12 implies (as in (1.14)) that
[B]I e satisfies

(2.11) [B]1/J([B]1) - .
Hence [B]I is a local ring in the center of [B].

In view of Proposition 2.10, we may apply (2.4) to [B], G[B], and the
[B]. Identifying each

[B] /[B] J([B])

with its image in the factor ring [B]/[B]J([B]), and using the fact that

[BIJ([B]) D__ [B][B]

(by (1.2) ), we see easily that

(2.12) Conditions (2.1) are satisfied with , [B]/[B]J([B]), G[B],
and the [B] /[B] J([B]i) in place of 97, , G, and the respectively.

Because of (2.11), we can apply [CCT, 14] to the graded Clifford system

[B]/ [B]J( [B]I), [B] /[B] J([B]I) oe G[B]}
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over . It tells us that there is a unique central extension G[B]* of the multi-
plicative group of by G[B], which is defined, together with its projection
pr prEB, onto G[B] and its injection in inzcBl, from F, by"

(2.13a)
(2.135)

pr-l(a) [[B]/[B] J( [B]I)] {0}, for all a e G[B],
G[B]* UorB pr-l(z) is a subgroup of the unit group of

g[B]/ g[B]J( g[B]l),

(2.13c) in (f) fe + J(g[B]l) epr- (1) [g[B],/J(g[B]I)] {0},
for all f e F {0}.

We call G[B]* the Clifford extension for the block B. Evidently the above
equations simply state that the twisted group algebra [G[B]*] of the exten-
sion G[B]* and its one-dimensional subspaces [G[B]*], spanned by pr-1 ()
for z e G[B], are given by:

(2.14a)
(2.145)

[G[B]*] [B]/[B]J([B]I),
[G[B]*] [B]/ [B], J([B]), for all z e G[B].

By [CCT, 2] the axioms (2.1) determine a natural action of the group
as ring automorphisms of C(x in ). If y e and e G, then ye
is the unique element of (C) satisfying

(2.15) xy yx, for all x e.
It is clear from this definition that y - y is an -automorphism of the order, for any z e G. We know from [CCT, 2.9] that

(2.16) r) -1 for all , reG.

In particular, the suborder 1 is invariant under G. It follows that G per-
mutes the primitive idempotents of among themselves. We denote by
G the subgroup of all elements of G fixing the primitive idempotent e of .
PROPOSITION 2.17. If G and e O, then (r G,

Furthermore, the subgroup G[B] is normal in G,.
Hence G[B]

_
GB

Proof. If e G and e G., then e is a primitive idempotent of different
from e. Since G is commutative, this implies that ee eCe 0. Hence
xe xee 0, for any element x e e. In view of (2.15), this implies that
0 xe ex x, i.e., that e 0. This proves the first statement of the
proposition. The second follows from the first and the definition (2.9a) of
G[B] (in view of (2.8a, b)).

If e G and r e G[B], then (2.9a), (2.16), and the fact that y - y is an
utomorphism of the order fixing e, imply that

e-- (e)-- (e)(e-,)= (e)(e()-).

Therefore r also lies in G[B], and the proposition is proved.
We can use the fact that ee e% 0, for e G G., in another way.
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It is exactly the hypothesis of [CCT, 4.3]. Using that result, (1.5), and
2. ld), we see that"

(2.18) Conditions (2.1) are satisfied with ee, G, and the e e (for
( G,) in place of , G, and the respectively.

Proposition 2.17 and (2.16) imply that G. leaves invariant the suborder

and that (g[B]r) [B]r, for all r G[B], z G,. It follows that
leaves invariant the Jacobson radical J(g[B]l), and hence the idea]
g[B]J(g[B]l). By (2.14) there is an induced action of G, as algebra auto-
morphisms of [G[B]*] such that ([G[B]*]) [G[B]*],, for 311 r G[B],
a C G,. From (2.13) we conclude that the subgroup G[B]* of the unit
group of [G[B]*] is G,-invariant, and that the induced conjugation action of
G, as automorphisms of G[B]* satisfies"- G[B], for all(2.193) pr(p*) pr(p) r pr(p)re

(2.19b) G, centralizes pr-1 (1) in

Evidently this action of G, on G[B]* completely determines the action of
G, on [G[B]*].

3. The Clifford correspondence for blocks
Our first goal is to obtain a one-to-one correspondence between the

invariant central idempotents of [G[B]*] and the central idempotents of
ee. We start by lifting the central idempotents of [G[B]*] back to [B].

LEMMA 3.1. If d is a central idempotent of [G[B]*], then there is a unique
idempotent d* of [B] having d as its image in (2.143). This idempotent d*
is central in [B]. The map d -- d* sends the central idempotents of [G[B]*]
one-to-one onto those of [B]. Furthermore, it preserves the action of G, on these
idempotents.

Proof. (Compare that of Proposition 1.12). Proposition 1.10 gives us at
least one idempotent d* of [B] mapping onto d. We must prove that such
a d* is always central in [B]. The suborder [B]I e is central in
[B]

_
e by (2.8b). So the Peirce decomposition of [B] with respect to

d* is a [B]I-decomposition"

(3.2) [B] d*[B]d* @ d*[B](e d*) (R) (e d*) [B]d*
(R) (e d*)[B](e d*) (as two-sided [B]I-modules).

The summand d*[B](e d*) is an -lattice, and hence is a finitely-
generated right [Bh-module. So it will be zero if its factor module modulo

d*[B](e d*) J( [B])
is zero. But this factor module is simply the image d[G[B]*](1 d) of
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d*[B](e d*) in [G[B]*], by (2.14) and (3.2). Since d is a central
idempotent of [G[B]*], this image is zero. Therefore d* [B](e d*) 0.
Similarly (e d*) [B]d* 0. So d* is a central idempotent of [B].
We know from Propositions 2.5 and 2.10 that [B]J([B])

___
J([B]).

It follows that [B]J([B]) contains no non-zero idempotent of [B].
Now the proof of the first three statements of the lemma can be completed
as in the proof of Proposition 1.12. The last statement follows directly from
the third and the definition of the actions of G..
The above lemma gives us a G. -inwriant idempotent d* of e correspond-

ing to each G.-invariant central idempotent d of [G[B]*]. To show that
these are the only such idempotents of e we shall use:

LEMMA 3.3. The subspace ( [@

_
e] [B]J([B]) is a

two-sided ideal of e @ ’.e Furthermore, this ideal is contained
in J(e).

Proof. We know by (2.8b) that J([B]) centralizes e. It follows that

(e) J([B]) J([B]I) (e)

is a two-sided ideal of e. Because [B] is an order, (1.2) implies the
existence of an integer n > 0 such that J( [B])"

___
o[B]. Then

[(e) J( [B])]" (e) J([B])" c__ O(e),
which forces (e)J([B]) to be contained in J(e).

If e G, G[B] and r e G,, then

(e) (e) (e) (e) (e) (e)

by (2.15) and (2.16). We know from (2.8d) and Proposition 2.17 that
e @ _Y’e.e. So this implies that (e)(e) (e)(e) is a
two-sided ideal of e. Since the group G is finite (by Proposition 2.2(d)),
there exists an integer m > 0 such that a 1. Then (e) is an ideal of
e [B]. If (e) is not contained in J([B]), then it equals the
local ring el. This implies that (e)(e-) e, contradicting the
fact that a e G[B]. Therefore (e)

___
J([B]) and

[(e) (e)] (e) (e)

___
(e) J([B])

_
J(e),

which implies (e) (e)

___
J(e).

Evidently , is contained in the two-sided ideal

(e) J([B]I) q- Z,..--[B] (e) (e)

which, in turn, is contained in J(e). Since e @ -’.., e, it is clear
that

(e)J([B]) .
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To show that (e) (e,)

_ ,, for any e GB G[B], it suffices to prove that

(e.) (e)

_
[B]r J([B]I),

for any r e GB such that rr G[B]. If this is false, then the usual argument
(based on Proposition 2.10) shows that

[B](r)-l(e,) (e) J([B]I),

which implies ($[B](,)-(e,) (eG) el, since e is a local ring. But this
forces (e-l) (e) el, and hence a-1 e G[B], contradicting the choice of
r G[B]. We conclude that

(e) (e) for all eGB G[B],

and hence that (e)J([B]t) -t- o,-.j (e)(e). In view of
the above results, this proves the lemma.
We shall also need to compute the center Z(ee) of ee. Evidently it is

contained in C(e in ee), which is equal to eC( in(C)) e. Since
ee @ ’]o, e, it follows immediately from (2.15) that

Z(ee) C(G, in e),

where, of course, C(GB in e) denotes the centralizer of G, in e, i.e., the
suborder of all y e e such that y y for all a e G.. We conclude that the
central idempotents of ee are simply the G.-invariant (and hence central)
idempotents of e.
Now we can compute the central idempotents of ee.
THEOREM 3.5. The central idempotents of ee are precisely the G, -invariant

(and hence central) idempotents of [B]. By Lemma 3.1, they correspond one-
to-one to their images in [G[B]*], which are the G, -invariant central idempotents
of that algebra. In particular, the primitive central idempotents of ee are
precisely those central idempotents of [B] whose images in [G[B]*] have the

form dl + + d, where dl, d, is a G,-conjugacy class of primitive
central idempotents of [G[B]*]. Thus there is a one-to-one correspondence be-
tween the blocks of ee and the GB -conjugacy classes of blocls of [G[B]*].

Proof. In view of (2.14a) and Lemma 3.3, the algebra [G[B]*] is naturally
isomorphic to e/,. Clearly Proposition 2.17 implies that the epimorphism
of e onto [G[B]*] preserves the actions of G. on these two rings. So the
image d of a G-invariant idempotent d of e is a G-invariant central
idempotent of [G[B]*]. By Lemma 3.1 there is a central idempotent d*
of [B] which is equally GB-invariant and has the same image d. Now d
and d* are two central idempotents of e which are congruent modulo J(e)
(by Lemma 3.3). It follows that d d* e [B]. This proves the first state-
ment of the proposition. The others follow from this, Lemma 3.1 and (3.4).
The passage from blocks of ee to those of lying over B is a well-known
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result of Reynolds for group rings (see [8]). The action of G on permutes
the primitive central idempotents of 1 among themselves. Let s be the sum
of the idempotents in the G-orbit of e. Then s is a central idempotent of
lying in (C)i (by (2.15)). Hence (C) is the direct sum (as rings) of its subrings
s(C) and (1 s)(C). Those blocks of (C) which come from blocks of s, i.e.,
whose primitive central idempotents in (C) are those of s, are said to lie over
B. Obviously every block of (C) lies over the members of a unique G-coniugacy
class of blocks of (C).

PROPOSITION 3.6. The map y - ye ey is an isomorphism of the order
Z(s) onto Z(ee). The inverse map sends z e Z(ee)

_
e into zr,

summed over representatives r of the left cosets GB)r of GB in G. These maps
define a one-to-one correspondence between the primitive central idempotents of
s and those of ee, and hence between the blocks of lying over B and the
blocks of ee.

Proof. Since the central idempotent s of (C) lies in (C)1, it is trivial to verify
that s(C), G, and the s(C) also satisfy (2.1). The definition of s implies that e
satisfies [CCT, 4.2] and [CCT, 4.5] with respect to the Clifford system s,
Is(C), z e G}. So [CCT, 4.4] and [CCT, 3.6] give the first statement of the
proposition (see also proposition 4.9 below).

If zeZ(ee), then (3.4) implies that y zeC(Gin) Z((C)).
Evidently sz ez z forces sz z, for all r, and hence sy y. Therefore
y eZ(s). Becauseez eez 0, forany reG- G,wehavez ey,
which proves the second statement of the proposition. The rest of the
proposition follows directly from these two statements.

Putting together the preceding two results, we obtain"

THEOREM 3.7. The map sending c into the image d in [G[B]*] of ec [B]
defines a one-to-one correspondence between primitive central idempotents c of
s and sums d dl -- - d, of G, -conjugacy classes di ,dn of primi-
tive central idempotents of [G[B]*]. The inverse map sends such a sum
d e [G[B]*] into c (d*) , where r runs over representatives of the left
cosets G,) of G, in G and d* is the unique central idempotent of ([B] having d
as its image. Thus these maps define a one-to-one correspondence between blocks
of lying over B and G, -conjugacy classes of blocks of [G[B]*].. (reen’s theory
Green [7] has given a definition of defect groups in a very general setting.

It is only necessary to have a finite group E acting as automorphisms of a
ring with identity (actually, Green puts conditions on the ring , forcing
it to be an algebra over a field or a o-adic ring. These conditions are unneces-
sary if one uses maximal two-sided ideals in place of primitive idempotents,
as we do below). We outline his theory here.
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For simplicity, we denote by (E) the centralizer

C(Ein) {deld d, for all z e E}.

Evidently (E) is a subring of containing the identity 1 12. If D is a
subgroup of E, let E/D be the family of left cosets Dz of D in E. Then d,
for any d e (D) nd r e E/D, can be defined s the common wlue of the
d, for z e r. Furthermore the trace trDE can be defined, as usual, by

(4.1) trD_E(d) ’.1 d, for all de (D).

Evidently tr is a homomorphism of the additive group of (D) into (E)
which preserves both left nd right multiplication by elements of (E). So
its image (EID) tr((D)) is a two-sided ideal of the ring (E).
The ideals (EID) have the following obvious properties"

(4.2a) (E D) (E D), for all e E, D <_ E,

(4.2b) (E D) (E C), for all D <_ C <_ E,

(4.2c) (E E) (E).

Since tru(d) [E’D]d, for any d e (E), we have

(4.3) [E’D](E) (E D), for all D <_ E.

Because each map d -- d, z e E, is ring automorphism of , one cn compute
(see (4.18) in [7]) that

(4.4) (E C)(E D) E(E C D), for all e, D
_

E.

Let ) be maximal two-sided ideal of (E). Since each (EID), for
D <_ E, is a two-sided ideal of (E), it stisfies either (E D)

___
J or

(E]D) J (E). A defect group of ) is subgroup D of E whichis
minimal under inclusion among those satisfying the latter condition. Using
(4.2)-(4.4) one esily verifies (see Theorems 4i and 4k in [7]) that"

(4.5) The defect groups of ) form a single E-conjugacy class. If (E)//J
has prime characteristic p, then any defect group of is a p-subgroup of E.
If (E) /:i has characteristic zero, then {1} is the only defect group of.

If N is a normal subgroup of E, then the factor group E/N cts nturlly s
ring automorphisms of (/V), with y y, for any coset r E/N and ny
z e r. Evidently (E) (N)(E/N). So we can use this action of E/N
on (N) to define defect groups in E/N of the mximal two-sided ideal )

E.of(

PROIOSTION 4.6. If, in the above situation, D is a defect group of J in E,
then DiV//N is a defect group of J in E/N.

Proof. Let C be any subgroup of E containing N. Then (4.1) implies
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that
trc/N/N(y) trc(y),

for all y (N) (C/N) (C). Hence (N)(E/NIC/N) (E C).
It follows that the defect groups of !) in E/N have the form C*/N where C*
is a minimal member of the family of all subgroups C of E containing N such
that (EIC g J. In view of (4.2b) and (4.5), the last condition just
says that C contains an E-conjugate D of D. So C* is simply a minimal
member of the family of all subgroups of E containing DiV, for some z e E,
i.e., C* DN (DN), for some z e E. In view of (4.5), this completes
the proof of the proposition.

Suppose that d is an idempotent of satisfying:

(4.7a) If ( eE and d d, then dd O,
(4.7b) d centralizes (E).

Let Ed be the subgroup of all elements of E fixing d. Condition (4.7a) implies
that any two distinct E-conjugates of d are perpendicular idempotents of .
Hence the sum c tr(d) of the distinct E-conjugates of d is an idempotent
in (E). In view of (4.7b), the idempotent c is central in (E).. So we
have the decomposition

(E) c(E) (R) (1 c)(E) (as rings).

The maximal two-sided ideal 9:rt of (E) must contain either c(E) or
(1 c)(E). In the latter case we say that lies over d. Then it has the
form

(4.8) O) cFt @ (1 c)(E),

where c is a maximal two-sided ideal of c(E).
Because Ed fixes d, it leaves invariant the subring dd of . We use the

action of Ed on dd to define the defect groups in Ed of any maximal two-
sided ideal of dd(E).

PROPOSITION 4.9. In the above situation, the map y dy yd is an iso-
morphism of the ring c(E) onto dd(E). The inverse map sends any
z dd(E) into

tr(z) e c(E).

If is a maximal two-sided ideal of (E) lying over d, then any defect group in
E of the corresponding maximal two-sided ideal d dc of dd(Ed) is also
a defect group of in E.

Proof. Since d is an idempotent in , condition (4.7b) implies that

:y --. dy yd

is a ring homomorphism of c(E) into dd. Because E fixes both d and
y c(E), the image q(c(E)) is contained in dd(E). Using the E-
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invariance of y, we obtain

trEd(dy) s/sd dY) ,/dy cy y.

Hence q is a ring monomorphism with tr as a left inverse.
If z dd(Ed), then z dzd. In view of (4.7a), this implies that dz

zd O, for any E-conjugate d d of d. We conclude that dPz zrd O,
for any two distinct elements p, r e E/Ed. It follows that tr,E(z) e (E)
satisfies

dz=c tr(z) /d)(/dz) / tr(dz)
trE(z).

Therefore tr.. sends dd(E) into c(E). Furthermore,

dtrd(z) d ,/z dz z.

So tr is also a right inverse to , which proves the first two statements of
the proposition.

Since c is a mximal two-sided ideal of c(E) and dc d (by (4.7a)),
the above result implies that dc!l d is a maximal two-sided ideal
of dd(E). Let D be any defect group in E of d!fft. Then there exists an
element w e dd(D) such that

trE(w) e dd(E) d!fft.

The above results tell us that tr.(w) tr(tr.(w)) lies in
c(E) c, and hence in (E) ff. Therefore (EID) !fit and D
contains a defect group C of ) in E.
There exists an element x e (C) such that trc(x)e. In view of

(4.8), the projection c trc(x) of trc(x) e(E) into c(E) cannot lie
in c. By the aboe results, this implies that dc tr c*(x) d trc(x) e d!DL
But

d tr c(x) g tr c(x) d ’/c dxd , ,(c) (dxd)}
trEc(dxd),

where r runs over a family of representatives for the double cosets CrEd in E.
Evidently each dxd lies in dd(E C). So the above equation implies
that some trc(dxrd) does not lie in d!fft, and therefore that E C"
contains a defect group ofd in E. In view of (4.5), such a defect group is
conjugate to D. Hence

Since C _< D, this implies C D, which completes the proof of the proposition.

5. An operator group for (

We shall first apply Green’s theory to the case in which is the order of
2. To do things with the proper generality we assume (in addition to the
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hypotheses of 1 and 2) that"

(5.1a) The residue class field has prime characteristic p.
(5.1b) A finite group E acts as {R-automorphisms of the order , and as

automorphisms of the group G.
(5.1c) ) for all e G, teE.

Evidently (E) is a pure {R-submodule and hence a suborder of . In view
of (4.5), conditions (5.1a) and (1.2) imply"

(5.2) Any defect group of any e Max ((E) is a p-subgroup of E.

It is clear from (5.1c) that E permutes among themselves the primitive
idempotents of the central suborder 1 of . Evidently the primitive idem-
potent e of that suborder satisfies (4.7) for E. Denoting by E, the subgroup
of all a e E fixing e, we obtain from Proposition 4.9"

(5.3) The map y ---> ey ye is an isomorphism of the suborder
trE(e) (E) onto e(E) whose inverse sends z e e(E) into trE,(z).
If J e Max ((E) lies over e, then the defect groups in E, of the corresponding
ideal eJ e Max (e(E,) are also defect groups of 9J in E.

From (5.1c) we obtain

(5.4) (e) e for all (r e G, r e E
In view of (2.9) and (5.1b), this implies"

(5.5n) E, leaves invariant the subgroup G[B] of G and the suborder [B]
of e,

(5.5b) ([B]) [B], for all (r e G[B], r e E

We pass easily from e g to g[B].

PROPOSITION 5.6. The order eg(E,) satisfies

(5.7) eg(E,) g[B](E.) q- J(eg(E,) ).

So there is a one-to-one correspondence between ideals e Max (e(E,) and
ideals 9t e Max (g[B](E.)), in which 3 corresponds to n [B](E.) and

to R q- J(e(E,) ). If two such and correspond, then their defect groups,
defined by the actions of E, on e and [B] respectively, coincide.

Proof. Let g (R) o-ot.l eg. In view of (5.4), (5.5a), (2.8d),
and (2.9b), the order e is the direct sum of its two E,-invariant {R-sub-
lattices [B] and g. Defining g(E,), as usual, to be the centralizer of E.
in , we conclude that

e(E,) g(E,) @ [B](E.).

Proposition 2.17 and Lemma 3.3 imply that g J(eg). Applying Proposi-
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tion 1.9, we obtain (EB)

___
J(e)n e(EB)

_
J(e(E)). Therefore

(5.7) holds.
The second statement of the proposition follows directly from (5.7) and

Proposition 1.9. For the third statement, notice that (EB) (R)

while
e(E, [D) 9(E, D) @ [B](EB

for any subgroup D of E (where, of course, (E ]D) trDE((D))).
Since (E D) (EB), we conclude that e(EB D) ) if and only if
[B](E D) , which implies the rest of the proposition.
Equation (5.5b) implies that q[B]l is E-invariant. Hence so are its

radical J([B]I) and the ideal @[B]J([B]I) which it generates. From this,
(2.14), and (5.5), we conclude that:

(5.8a) The action of Es on [B] induces an action ofE as -automorphisms
of the algebra [G[B]*] [B]/ [B]J( [B]I),

(5.85) ([G[B]*]) [G[B]*]r, for all ire G[B], re Es
The image [B](E) J of [B](EB) in [G[B]*] can very well be a proper

subalgebra of [G[B]*](E) (see Example 13.11 below), a circumstance which
considerably complicates the analysis. Nevertheless, we can obtain a useful
characterization of defect groups of ideals e Max (q[B](EB)) in terms of
defect groups of primitive idempotents in [B](Es)J.

Let y be a non-zero element of [G[B]*]. Then y o y, where the
elements y e [G[B]*], for e G[B], are unique and not all zero. We denote
by A(y) the family of all p-Sylow subgroups of all centralizers C(a in Es) in
E of elements z e G[B] for which y - 0. Then A(y) is a non-empty family
of p-subgroups of E whose maximal elements (under inclusion) will be called
the defect groups of y. Evidently these defect groups do not necessarily form
a single E-conjugacy class. In fact, they need not even be closed under
E -conjugation.
By convention A(0) will consist only of the trivial subgroup {1} of EB,

which is therefore the only defect group of 0 e [G[B]*].
LEMMA 5.9. f D < E, then the image [B](Es D) in [G[B]*] of

[B](E D is the set of all elements y e [B](Es) z such that each subgroup
P e A(y) is contained in some Es-conjugate of D.

Proof. Suppose that y e[B](EID) . Then y certainly lies in
[B](Es) z. If y 0, then by convention the only group {1} in A(y) is
contained in D. So we can suppose that 0 y , y, where
y [G[B]*], for all a e G[B].

Because y lies in [B](E ID)J, there is some element x e [B](D) such
that y is the image of trD(x). Hence y tr_.E(z) where z [G[B]*](D)
is the image of x. Write z - z, where z e [G[B]*], for all e G[B].
The D-invariance of z and (5.85) imply that (z) zr, for all z G[B]
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r e D. It follows that C(a in D) centralizes ze, for all G[B], and that

z es tr c(e in D)--.D(Ze),

where S is a family of representatives for the D-orbits in G[B]. Hence

where we trc(e in D)C(e in. F,B)(Ze), for all e S.
Suppose that we 0, for some e S. By (5.8b), we lies in the one-dimen-

sional subspace [G[B]*]e. Hence [G[B]*]e equals we. So it is centralized
by C( in EB). In particular, C( in E,) centralizes ze e [G[B]*]e. Hence

we trc(e in -)c(e in BB)(Ze) [C(o" inE.):C(a in D)]z.

Because we is non-zero, this and (5.1a) imply that p does not divide the index

[C( in E,):C( in D)],
and thus that C( in D) contains a p-Sylow subgroup P of C( in E.).
Clearly (5.8b) and the above expression for y imply that any p e G[B] satisfy-
ing yo 0 is E,-conjugate to some e S for which we 0. So the above
argument shows that the members of A(y) are all E.-conjugate to p-Sylow
subgroups P of C( in D), for such , and hence are all contained in E.-
conjugates of D.
Now let y be any element of [B](E.) J such that each subgroup P e A(y)

is contained in some E-conjugate of D. Since 0 certainly lies in
[B](E, D) , we can assume that 0 y e, ye, where ye e [G[B]*]e,
for all e G[B]. Choose any element c e [B](E,) having y as image, and
write c eo, ce, where ce e [B]e, for all e G[B]. The E,-invariance
of c and (5.5b) give (ce) ce., for all e G[B], r e E,. Hence C( in
centralizes ce, for any e G[B], and

where T is family of representatives for the E.-orbits in G[B].
If the image ye of ce is non-zero, then any p-Sylow subgroup P of C(z in E.)

lies in A(y) and hence is contained in an E.-conjugate of D. Evidently we
can choose the fmily T so that D contains a p-Sylow subgroup P of C(a in E.)
whenever a e T and ye 0. Then the index [C(z in E.) :C(z in D)] is not
divisible by p. By (5.1a) its image is a unit in . So we cn form the ele-
ment

be [C(z in E.):C(z in D)]-ce [B]e(C(z in E.)).
Then

where ae tr c(e . .).(be) e [B](D). It follows that y is the image of

er, 0 trc(e in EB).->B(Ce) EeeT, yO tr(ae) e [B](E [D).
Therefore y e [B](EB ID)z, and the lemma is proved.
The above lemma leads to the following method for computing defect groups.
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PROPOSITION 5.10. Any ideal e Max ([B](EB)) is the inverse image of
its image JJ in [B](E.) J. So 2-- )iJ sends Max ([B](E.)) one to one
onto Max ([B](E.)Z). If j e Max ([B](E.)) and d is any primitive
idempotent of the algebra [B](E.) J corresponding to 2 (i.e., satisfying
d Jz), then the defect groups in E. of the non-zero element d of [G[B]*] coin-
cide with the defect groups in E. of ). In particular, these defect groups of d
form a single E.-conjugacy class.

Proof. Propositions 2.5 and 2.10 tell us that [B]J([B]I) J([B]).
In view of Proposition 1.9, this implies that the kernel

of the epimorphism
([B](E.) n [B]J([B]I)

[B](E.) --> [B](E.)

is contained in J([B](E.) ). The first two statements of the proposition
follow directly from this.
For the third and fourth statements, let D be any defect group of F in E.

Then the primitive idempotent d lies in

[B](E,) ) -k [B](E, D) J.
Since both and [B](EB D) are two-sided ideals of the finite-dimensional
-algebra [B](E.), we conclude (see Lemma 3.3a of [6]), that d lies in at
least one of them. But d !F. Hence d e [B](E,[D). By Lemma 5.9,
every group P e A(d) is contained in some E,-conjugate of D. So we can
complete the proof by showing that every E.-conjugate of D lies in A(d).
Writed B d, where d e [G[B]*], for all a e G[B]. We know that

d is the image of an element y e [B](E.), which we can write as
y ,j y, where y e [B], for all e G[B]. In view of (5.5b), the
E.-invariance of y implies that of y ,s y, for every E.-orbit S of
G[B]. Hence the image ds d, of y also lies in [B](EB). Because
the sum d of the various d does not lie in O)J we can fix an E.-orbit S of
G[B] such that d . Evidently d 0. The E.-invariance of ds and
(5.8b) imply that d 0 for all a e S. So A(d) consists of the E.-conjugates
of a p-Sytow subgroup P of C(a in E.), for some a e S. Applying Lemma 5.9,
we see that d e [B](EB P) J . Hence P contains an E.-conjugate
D of the defect group D of !Ft. On the other hand P e A(d) A(d) is con-
tained in an E.-conjugate of D. We conclude that P D, and hence that
A(d) contains the set A(d) of all E.-conjugates of D. As remarked above,
this completes the proof of the proposition.

6. Defect groups in G
We shall use Proposition 5.10 in conjunction with Lemma 3.1 to compute

defect groups of blocks. To do so, we must assume, in addition to the hy-
potheses of 1, 2 and 5, that"

6.1) G is a normal subgroup of E.
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(6.1b) The action of E on G is by conjugation in E: a r-lz’, for all
eG, - eE.
(6.1c) The restriction to G of the action of E on is the action (2.15) of G

on .
Condition (6.1c) implies that (G) is simply the center Z((C)) of (C). Hence

it and its suborder (E) are both commutative. Because the order (E) is
commutative, there is, in view of Proposition 1.12, a natural one-to-one cor-
respondence between primitive idempotents d of (E) and maximal ideals

Mx ((E) in which

(6.2) t corresponds to d if and only if ) (1 d) (E) @ J(d (E) ).

By (6.1a) and (5.1b) the group E permutes among themselves the primitive
idempotents of (G) Z((C)), which correspond to the blocks of . Evi-
dently this defines an action of E on the blocks of (C). The primitive idempo-
tents of the suborder (E) of the commutative order (G) are clearly the
sums of the elements of the E-orbits of primitive idempotents of (G). In-
view of the one-to-one correspondence (6.2), we obtain a natural one-to-one
correspondence between E-orbits S of blocks of and ideals !Ft e Max ((E) ).
We define the defect groups in E of such an E-orbit S to be those of the corre-
sponding ideul F. If S has only one element/, we also call these the defect
groups of/ in E. In general, we denote byE the subgroup of all elements of
E fixing a block / e S. Then E E, where d is the primitive central
idempotent of (C) (and hence central idempotent of ) corresponding to /.
Evidently (4.7) holds with in place of . So Proposition 4.9 and the corre-
spondence (6.2) give"

(6.3) If is a block of (C), then any defect group in E of is also a defect
group in E of the E-orbit of B.

It follows easily from (6.1c), (2.14b), and (2.15) that the induced action of
G[B] on [G[B]*] is the ordinary conjugation action

--1(6.4) y y" p yp, for all y [G[B]*], z eG[B], p e pr-(a).

This implies that [G[B]*](G[B]) is the center Z([G[B]*]) of [G[B]*]. Since
G[B] is normal subgroup of E,, by (5.5) md (6.1n, b), we cun repet
the above analysis, obtaining ntural one-to-one correspondences between
E,-orbits of blocks of [G[B]*], primitive idempotents of [G[B]*](E,), and
ideals in Max ([G[B]*](E,)). As above, we define the defect groups in E.
of an E,-orbit T of blocks of [G[B]*] to be those of the corresponding ideal
9e Max ([G[B]*](E,)).
The subgroup G. is normal in E, by (6.1, c). So the E,-orbits of blocks

of [G[B]*] are simply the unions of the E,-orbits of G,-conjugcy classes of
blocks of [G[B]*]. Theorem 3.7 gives one-to-one correspondence between
these G.-conjugacy classes and the blocks of lying over B. This corre-
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spondence is clearly E.-invariant, and hence defines a one-to-one correspond-
ence between E.-orbits of blocks of [G[B]*] and E.-orbits of blocks of
lying over B.
We shall say that an E-orbit S of blocks of (C) lies over B if some/ e S lies

over B. Since (/) lies over B, for all e E, it is clear that the members of S
lying over B form an E.-orbit R, and that S - R is a one-to-one correspond-
ence between E-orbits S lying over B of blocks of and E.-orbits R of blocks
of (C) lying over B. Combined with the results of the preceding paragraph,
this gives us a natural one-to-one correspondence between E-orbits of blocks
of [G[B]*] and E-orbits lying over B of blocks of .
THEOREM 6.5. Let T be an E,-orbit of blocks of [G[B]*] and S be the corre-

sponding E-orbit lying over B of blocks of . Then the defect groups of T in E,
are precisely the defect groups in E, of the corresponding primitive central idem-
potent d of [G[B]*](E,) considered as an element of [G[B]*]. Furthermore,
they are among the defect groups of S in E.

Proof. Notice that conditions (2.1) are satisfied with , [G[B]*], G[B],
and the [G[B]*] in place of 9, , G, and the (C), respectively. In this case 1
is the only primitive idempotent of [G[B]*]I . It follows that the suborders
corresponding to , e, and [B] all coincide with [G[B]*]. Furthermore
J([G[B]*]I) [0}, which implies that the algebra corresponding to [G[B]*]
is

[G[B]*]/{0} [G[B]*].
In view of (5.8), conditions (5.1) are also satisfied in this case, with E. in
place of E. Now Proposition 5.10 gives the first statement of the theorem.
The one-to-one correspondence of Lemma 3.1 between central idempotents

of [G[B]*] and those of [B] obviously preserves the actions of E,. It fol-
lows that any idempotent

de [G[B]*](E,) Z( [G[B]*])
is the image of an idempotent d* [B](E.). We conclude that [G[B]*](E,)
and its subalgebra [B](E.) J have the same idempotents. In particular, any
primitive idempotent d of [G[B]*](E,) is also a primitive idempotent of
[B](E.) J. The ideal 9 e Max ([B](E.)) corresponding to such a d in
Proposition 5.10 obviously corresponds to d* via (6.2). Furthermore, the
ideal

+ J(e(E)) e Max (e(E))

corresponding to in Proposition 5.6 corresponds to the primitive idempotent
d* of e(E,) via (6.2). Finally, the ideal

trE,-E() @ (1 trE,(e)) (E) e Max ((E))

corresponding to in (5.3) corresponds to the primitive idempotent
tr.E(d*) of (E) via (6.2). From Theorem 3.7 we see that tr,(d*),
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and hence , correspond to S. Now (5.3) and Propositions 5.6 and 5.10 tell
us that the defect groups in EB of d considered as an element of [G[B]*] are
among the defect groups of S in E. This completes the proof of the theorem.

COOLLAY 6.6. Any defect group in G of a G-conjugacy class of blocks of
[G[B]*] is also a defect group in G of the corresponding block of .

Proof. This is the special case E G of the theorem.

As a consequence of the above theorem, we have:

PROPOSiTiON 6.7. Assume that E fixes a bloc] B of (C). If D is a defect
group in E of , then D n G is a defect group of in G, while DG/G ---D/(D n G) is a p-Sylow subgroup of E/G.

Proof. We can choose B so that/ lies over B. Then S {/} is an E-
orbit lying over B. Let T be the corresponding EB-orbit of blocks of [G[B]*].
Since E fixes B, it leaves invariant the family of all blocks of (C)1 lying under B,
which is just the G-orbit of B. Hence E EG. The last statement of The-
orem 6.5 implies that D is E-conjugate to a defect group Do inE of T. Hence
D is G-conjugate to an E-conjugate D0 of Do. Since we can replace D by
G-conjugate without changing the results of this proposition, and since D0 is
also a defect group in E, of T, we can assume that D Do.

Let d be the primitive idempotent of [G[B]*](G) corresponding to / in
Theorem 3.7. Then d is also the primitive idempotent of [G[B]*](EB) corre-
sponding to T. Theorem 6.5 now tells us that D is a defect group in EB of d,
i.e., a maximal member of the family zX(d) of all p-Sylow subgroups P of all
centralizers C( in E) of all elements e G[B] such that the ,,h component"
d of d is non-zero. For any such a and P, the intersection P n G. P G
is a p-Sylow subgroup of the normal subgroup

C(zinG,) C(zinE.) G

of C(z in E,). So the corresponding family A’(d), defined with G in place of
E, is {P G IP e A(d)}. The above analysis shows that any maximal ele-
ment D1 of A’(d) is a defect group in G of/. Since D a G e A(d), we can
choose D1 to contain D a G. But D1 P a G, for some P e A(d), and P is
contained in some maximal element of A(d), which must be an E.-conjugate
DofD. HenceDG_ DI_ DnG (DG). Comparing orders, we
see that D1 D a G. So D G is a defect group of B in G.

Let c be the primitive idempotent of Z((C)) (G) corresponding to B.
Then c is also the primitive idempotent of (E) corresponding to S
Applying Proposition 4.6, we see that DG/G is a defect group of c defined with
respect to the induced action of E/G on (G). Because c is an E-invariant
central idempotent of (G), this order is the ring direct sum of its E-invriant
suborders c(G) and (1 c) (G). It follows that DG/G is a defect group
in E/G for the unique maximal ideal J(c(E)) of c(E) c(G)(E/G).
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The order c(G), being local, satisfies c(G) c -k J(c(G)). It fol-
lows that

c(C) c + [c(C) n J(c(G))],

for any group C such that G _< C

_
E. If y ec(C)n J(c(G)), then

yP e J(c(G)), for all p e E. Hence

trcE(y) e c(E) J(c(G) J(c(E) ),

by Proposition 1.9. Therefore

c(E C) 9 trc(c) - [c(E C) J(c(E) ].

It follows that c(EIC) J(c(E)) if and only if trc(c) [E’C]c
J(c(E) ). In view of (1.2) and (5.1a), this occurs if and only if p does not
divide [E: C] [E/G’C/G]. We conclude that the defect groups in E/G of
J(c(E) are precisely the p-Sylow subgroups of that group. Since DG/G is
among these defect groups, this completes the proof of the proposition.

7. Defect groups in H
If we return to the situation 9H of the beginning of 2, we see that the

above results are inadequate. Using them, we can only compute the defect
groups in G H/K of blocks of 9H, while what we really want are their
defect groups in H. So we must go a bit deeper into the structure. Instead
of just studying H, we shall consider the more general situation in which-

(7.1a) , H, and the satisfy (2.1) in place of , G, and the respec-
tively.

(7.1b) 1 is a local ring contained in the center Z() of .
(7.1c) The residue class field has prime characteristic p.

Of course, we obtain the special case H by taking 9ill and , a,
for all e H.

Evidently (7.1b) implies that C(1 in ). Therefore H acts natu-
rally as -automorphisms of via (2.15). So we can introduce groups K
and E satisfying-

(7.2a) H is a normal subgroup of the finite group E.
(7.2b) The action (2.15) of H on C(1 in ) extends to an action of

E as -automorphisms of the order .
(7.2c) () r -1 ,for all e H, r e E.
(7.2d) K is an E-invariant normal subgroup of H.

Notice that conditions (5.1) and (6.1) are now satisfied with E, , H, and the
in place of E, , G, and the , respectively. So we can define as usual

the defect groups in E of E-conjugacy classes of blocks of .
As at the beginning of 2, we set G H/K, (C) , and (C)r (R) ,r ,,

for each coset r e G H/K. Evidently (C), G, and the satisfy (2.1).
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From (2.15) for it is clear that C(I in (C)) C(K in ) (K).
Since K is a normal subgroup of E (by (7.2d)), there is an induced action of
ElK on (K). Of course, G H/K is normal subgroup of E/K.
Using (2.15) for both and (C), one verifies easily that (5.1) and (6.1) are
satisfied with ElK in place of E. So we can talk about the defect groups in
ElK of E/K-conjugacy classes of blocks of (which are the same as the
E-conjugacy classes of blocks of ).

Finally, conditions (5.1) and (6.1) hold with E, (C)1, K, and the (for
e K) in place of E, , G, and the , respectively. So we can consider de-

fect groups in E of E-conjugacy classes of blocks of (C)1. In particular, we
can consider the defect groups in E. of the block B of (C)1

THEOREM 7.3. Let S be an ElK-orbit lying over B of blocks of , and T be
the corresponding E,/K-orbit of blocks of [G[B]*]. Choose a defect group D of
T in E,/K and a p-Syiow subgroup P of E,/K containing f). Then P is the
image of a defect group C of B in E, For any such C, the inverse image D of
D in C is a defect group in E of S considered as an E-orbit of blocks of

Proof. Let C be any defect group of B in E. We can apply Proposition
6.7 with E,, B, (C)1, and K in place of E,/, (C), and G, respectively. It tells
us that C n K is a defect group of B in K while CK/K is a p-Sylow subgroup of
E,/K. By E.-conjugation, we can choose C so that CK/K P, which is the
first conclusion of the theorem.

Next we show that"

(7.4) C is a defect group in CK of B.
Since C is a defect group of B in E. and e is a primitive central idempotent of
1, there exists an element y e el(C) such that e trc,(y). In view
of (4.1), we can write this as

a’ on

where runs over a family of representatives for the double cosets CaCK in
E,. The idempotent e is primitive in I(CK) which is contained in the
commutative order (C)I(K) Z((C)I). Hence e(C)I(CK) is a local ring. Since
each trace tr cn cc(y) lies in eI(CK), we conclude from the above equa-
tion that

trcnc_c(y) J(eI(CK) ),

for some z e E.. So the ideal eI(CKI Cn CK) is equal to the locul ring
eI(CK). Therefore e trcncc(z), for some element z el(Cn CK).
We know that CK/K P is a p-Sylow subgroup of E,/K. Hence the

index [E," CK] is not divisible by p. In view of (7.1c), the image of this index
is a unit of 9. Therefore

e trc. [E." CK]-le) tr c.nc, [E," CK]-z).
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it follows that Cn CK contains a defect group of B in E. Since C" is such
s, rmala defec group, his implies thaL C

sul,group of E, ,-,c have [C, K] ](C n K)"[ C n l(],,tC ]C ].
--1But then e eO,(C) and

q--1

Therefore C contains a defect group C1 of B in CK. But e tr el-.c(w), for
some w e e(C1), implies e trcI+B([EB’CK]-w). Hence C contains a
defect group for B in EB. This forces C1 C, and proves (7.4).
The E-orbit S of blocks of , corresponds, as usual, to a primitive idempo-

tent d of tr+(e)(E). Since e centralizes ,(E) __c g and satisfies (4.7a),
we can apply Proposition 4.9. This tells us that any defect group D of the
corresponding primitive idempotent ed of ee(E), defined by the action of
EB on ee e(C)e, is also a defect group of S in E. So the theorem will be
proved if we can show that D can be chosen equal to D.

Proposition 4.6 tells us that DK/K is a defect group in E/K for the primi-
tive central idempotent ed of ee(E) ee(K)(E/K). Since e is a een-
tral idempotent of (K), wehave ee(K) e[(K)] e(. So DK/K
is a defect group of the primitive idempotent ed of eg(EB/K) defined by the
action of E/K on e g.
We know from (2.18) that (2.1) holds for e(C)e ee, G, and the
e (C)e, for e G. Furthermore, e g C(e in e(C)e). We see easily
that conditions (5.1) and (6.1) are now satisfied with. ee, G, eg, E/K, the
e, and the eg in place of (C), G, g, E, the (C), and the , respectively.
If B’ is the unique block of e, corresponding o the primitive central idem-
potent e, then it is dear from the definitions that e g[B’] g[B] and that
G[B’]* G[B]* a,s extensions of/ by G[B’] G[B] operated on by EB/K.
If S’ is the E/K-orbit of blocks of e(C)e corresponding to ed, then Theorem
3.7 says that the corresponding E,/K-orbit of blocks of [G[B’]*] [G[B]*]
is defined by the image of ed e g[B’] g[B]. But this EB/K-orbit is T by
Theorem 3.7. So Theorem 6.5 says that the defect group DK/K in E/K of
S’ is E/K-conjugate to the defect group/) of T in I/K. Since D is only de-
fined to within E-conjugacy, we may choose it so that

(7.5) DK/K .
Now D is a subgroup of the inverse image CK of P >_ /3 in E. Since D

is a defect group for ed in E, there exists an element x ee(D) such that
ed tr+(,). Because ex x and e is E-invariant, we have

tr.+c(x) tr,+c(ex) e tr.+c(x).

By (7.4), th(; idempotent e lies in ee(CK C). Therefore (4.4) gives

tr.+c(x) eee(CK C)ee(CK D) c__ ,,cee(eK C nD).
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c ee(E. C D).

We conclude that there is some element e CK such that C n D contains a
defect group in EB of ed. Since C n D is contained in D, which is such a de-
fectgroup, wehaveD CnD_< C. Writing rp, wherereK, peC,
we see that D" _< Cp-1 C satisfies D’K DK. In view of (7.5), this ira-
plies that D" is contained in the inverse image/3 of/) in C.

Replacing D by D", we have now chosen D to be contained in/ as well as
to satisfy (7.5). Since DK/K DK/K /), the subgroup D will be equal
to D if and only if D n K D n K. By construction D n K is C n K, which
is a defect group of B in K (see the first paragraph of this proof). So the
theorem will be proved once we show that D n K contains a defect group of B
in K.
As above, ed trD_ss(), for some x eeOc(D). The element

u trD(x) lies in ee(K) e. The ideal , of Lemma 3.3 is E-in-
variant by (5.5a). If u lies in ,, then so do all of its E.-conjugates. Hence

ed tr,_B (u) e

which is impossible since ed is a non-zero idempotent and

_
J(e) by

|emma 3.3. Therefore u .. Writing u ,u, where u ee for
all a G., we conclude that there is an element p G[B] such that
up e [B]pJ([B]). By (2.14b) the image gp of up is a non-zero element of
[G[B]*]p, i.e., gp G[B]*. Hence no power of , is zero. In particular, if
n > 0 is an integer such that p 1, then up is a non-zero element of
[G[B]*]I. Therefore u2 e el J(e).
By (2.18) we have a unique decomposition of x e ee ee in the form

x --, x, where x e, for each G,. Since eache is K-invariant,
and x is D-invariant, each x is D n K-invariant. Furthermore

It follows that u trvn_.(x), for all G,. In particular,

u, tr.n(

Since U;-1 e is K-invariant, this implies that u,= tr.n+(xpu,n-1).
n--1xu, e, e g,-,

_
e, eSS

Therefore
uee,(KIDnK) J(e(K)).

But

We conclude that D n K contains a defect group in K of B, which, as noted
above, completes the proof of the theorem.

COROLLARY 7.6. The intersection D r K is a defect group of B in K.
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Proof. In the first paragraph of the above proof it was shown that C n K
is aJ defect group of B in K. Since/3 n K C n K by definition, this implies
the corollary.

Since we have operated at several levels of generality in the last three sec-
tions, it is perhaps wise to specify what happens when Theorem 7.3 is applied
to a, finite group H and normal subgroup K, as at the beginning of 2. We
assume, of course, that the characteristic of the residue class field is a prime
p. We fix a block B of 92K, and set G H/K. Then 2 gives us the normal
subgroup G[B] of GB HB/K and the Clifford extension G[B]* of/ by G[B],
together with the conjugation action of G on G[B]*. Theorem 3.7 gives a
one-to-one correspondence between blocks of 9H lying over B and G-
conjugacy classes T of blocks of [G[B]*]. Fix such a block/ and a block J
in the corresponding class T. Green’s theory gives us defect goups/) of/
in G, G n G and C of B in HB.
THEOREM 7.7. In the above situation, CK/K is a p-Sylow subgroup of

H/K G. We can choose C so that this p-Sylow subgroup contains the p-
group D. Then the inverse image of D in C is a defect group of in H.
Furthermore, D n K C n K is a defect group of B in K.

Proof. The first statement is a consequence of Proposition 6.7 with HB,
B, 9K, K, and the 9, K, in place of E, /, , G, and the (C), e G, re-
spectively. The second and third statements are the result of Theorem 7.3
with E H, H, ira, for a e H, and S l} together with (6.3)
with GB in place of E, [G[B]*] in place of , and/ in place of/. The last
statement follows from Corollary 7.6.

8. Brauer’s First Main Theorem
Curiously enough, Brauer’s First Main Theorem (Theorem (10B) of [1])

is valid even in the general setting (5.1). To show this, we shall use the
notation and assumptions of 5.

Fix a p-subgroup D of E. The centralizer C (D in G[B]) is then the sub-
group of all z e G[B] satisfying z" zforall reD SinceC(DinG[B]) isa
subgroup of G[B], Proposition 2.10 implies that (2.1) holds with

[B](o) (R) _,,0c(o i arm)[B],,

C(D in G[B]), and the fS[B], in place of (C), G, and the (C),, respectively.
Notice that

[B](D) n [B]J ([B]).

So we can naturally identify the -algebra [B](z/[B]() J ([B]_) with the
image

[G[B]*](o) @ ,,.,cco r ot)[G[B]*]
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of [B]()in [G[B]*]. Equation (5.5b) implies that [B]()is invariant
under the normalizer N (D) N (D in E) of D in E. We conclude easily
that the results (5.8)-(5.10) are also valid with [B](), [G[B]*](), N (D),
and C (D in G[B]) in place of [B], [G[B]*], E, and G[B], respectively.

POOSWON 8.1. The restriction S to [B] (E) z of the natural projection of
[G[B]*] ,E] [G[B]*]

onto
[G[B]*J(m cCv i.o [G[B]*]

is an identity-preserving -homomorphism of this subalgebra inlo the image

[B](

in [G[B]*] of [B](m (N (D)).

Proof. Suppose that z oz e [B](E), where z [B] for all
e G[B]. Equation (5.5b) and the E-inwrince of z imply (z)" z,,

for ll e G[B], r E. It follows that N (D) centralizes

X

i.e., that x lies in [B]()(N (D)). By definition S sends the image zz of z in
[G[B]*] into the image x of x. We conclude that S is n -linear map of
[B] (E) into [B](m (N (D))Z. Evidently 1 e [G[B]*] implies that
S(1) 1. So it only remains to be shown that S(yw) S(y)S(w), for all
y, w e [B] (E).

This is just repetition of the original proof of Bruer (see pge 426 of
[1]). Write y y and w w, where y, we [G[B]*],
for ll e G[B]. Fix v e C (D in G[B]). Set

T {p X e G[B] X G[B]p },

T’ {p X a e C(D in G[B]) C(D in G[B]) pz }.

The group D fixes v, and hence cts naturally on T, th
for ll p e T, r D. Denote the D-orbits of T by T, T,, and choose
o a T, for i 1, n. Evidently T’ is precisely the subset of all
p X e T centralized by D, i.e., the set of all p X , i 1, n, for which

For ny i 1, ..., n nd ny reD, theEs-inwrince of y nd ofw
implies that

(y) y and (w) w.
Hence

y.w. (yo) (w (yo w).
The finite p-group D acts as linear transformations of the one-dimensional
subspace [G[B]*], over the field of characteristic p. Hence D centralizes
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[G[B]*]. In particular, r D fixes yp w, which lies in [G[B]*] since
pi zi . We conclude that

Since D is a p-group, Til is a power of p. In view of (5.1a), the above
expression is zero unless Til 1. Hence

But the first sum is the rh component of yw while the last is the rth component
of S (y) S (w) (in the decomposition [G[B]*] @ at,] [G[B]*]). Their
equality for any e C (D in G[B]) is precisely the desired equation S (yw)
S (y)S (w). So the proposition is proved.
The above homomorphism S is called the Brauer homomorphism defined by

D.
We next define a subset G[B] (E, D) of G[B] and a subspace [B] (E, D) J

of [B] (EB) J by"

(8.2a) G[B] (EB D) I e G[B] D is EB -conjugate to a p-Sylow sub-
group of C ( in EB)}.

(8.25) [B](E. D) [B](E-) zn (@ 0-](,II-) [G[B]*]).
Evidently the non-zero elements of [B] (E. D) z are precisely those non-
zero elements y of [B](E.) for which A (y) consists of the EB-conjugates
of D.

PROPOSITION 8.3. Choose subgroups D D, D Dn of D so that any
subgroup ofD is E, -conjugate to exactly one ofD D, Then

(8.4) [B](E. D) J (R) n__ [B](E, D) (as -vector spaces).

Proof. It follows from Lemma 5.9 that

[B] (E. D) z [B] (E.) z n (@ r [G[B]*]),

where T [Ji G[B] (EB D). Hence each [B] (E, Di) is contained in
[B] (E, ID). Since the subsets G[B] (E, D) are pairwise disjoint, the
sum of the subspaces [B](E. D) J is direct. Therefore the left side of
(8.4) contains the right side.
Now let y be any element of [B] (E, D)Z. We can write y ry,

where y e [G[B]*], for each e T. Furthermore y is the image of an ele-
ment z e [B] (EB), which we can write as z .] z, where z e [B]
for all e G[B]. Because z is E-invariant, we have (z) z, for all

e G[B], r e E.. All the subsets G[B] (E II Di), i l, n, are clearly
E.-invariant. It follows that z .](BI.-)z lies in [B](E.), for
each i 1, ..., n. By (8.2b) its image y :,](,II-) Y lies
in [B](E.I]D),fori 1, ...,n. Hencey y+ -t- y lies in the
right side of (8.4). This completes the proof of the proposition.
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Since D is also a p-subgroup of N (D) we can similarly define

C (D in G[B]) (N (D) D) and [B](D) (N (D) D).
The critical property of the map S is then given by"

LEMMA 8.5. The Brauer homomorphism S defined by D sends [B] (EB D) J

one-to-one onto [B](,) (N (D) D) J.

Proof. If e G[B] (EB II D) n C (D in G[B]), then C C( in E.) con-
tains D and has an E. -conjugate D as a p-Sylow subgroup. It follows that
D is a p-Sylow subgroup of C. HenceD is a p-Sylow subgroup of C n N (D)
C( in N (D)). Therefore

a e C (D in G[B]) (N (D) D).

In view of (8.2b) and Proposition 8.1 we conclude that S maps

[B] (E. II D) z into [B](,) (N (D) D)
Let

y ZaeG[B](EB[ID) Y
be a non-zero element of [B](E D) J, where
The E-inwriance of y gives y,T (y,)*, for all
It follows from this and (8.2a) that some e G[B] (E, D) satisfies simul-
taneously y, : 0 and D < C (z in E,), i.e., z e C (D in G[B]). We conclude
from the definition of S that S(y) O. So S is a one-to-one map
of [B] (E. D) into [B](,) (N (D) II D) J.
Now let

W Zo’C(D in G[B])(N(D)[1D) Wa

be any element of [B](o)(N(D)II D), where w, e [G[B]*],, for each
To complete the proof of the lemma, we must construct an element

y e [B](E, D) J

such that S (y) w.
If z is any element of C (D in G[B]) (N (D) D), then D is clearly the unique

p-Sylow subgroup of C(a in N (D)). Hence D is contained in a p-Sylow
subgroup P of C C( in E,). If D is properly contained in P, then it is
properly contained in its normalizer N (D in P) in P. But then N (D in P)
is a p-subgroup of C n N (D) C (z in N (D)) strictly containing the p-Sylow
subgroup D of that group. This is impossible. Hence D P is a p-Sylow
subgroup of C and e G[B] (E, IID).
When w 0, the subgroup C centralizes w. We use an argument of

Reynolds [9] to show that C also centralizes w when w 0. In that case
the one-dimensional subspace [G[B]*] of [G[B]*] is equal to w. From
(5.8b) it is clear that C C( in E.) leaves this subspace invariant. Hence
there is a function ) from C to the multiplicative group F of such that
(w) ) (r)w, for all r e C. Because the action of C on [G[B]*] is -
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linear, the map }, is a homomorphism of the finite group C into/. In particu-
lar, its image }, (C) is a finite subgroup of , and hence is cyclic of order not
divisible by the characteristic p of . We conclude that the kernel K of X is a
normal subgroup of C containing every p-Sylow subgroup of C. In particu-
lar, the p-Sylow subgroup D of C is a p-Sylow subgroup of K. Now the
Frattini argument tells us that C N (D in C)K. But the N (D)-invariance
of w implies that w, is centralized by N (D in C) C n N (D). Therefore
N (D in C)

_
K and C K centralizes w.

We know that w is the image of an element z e [B]()(N (D)), which we
can write as z pc(D in oEBI)Zp, where zp [B]o for each p. Clearly w,
is the image of z,. The N (D)-invariance of z implies that C n N (D)
C (a in N (D)) centralizes z. Hence trcn(.)-c (z,) is defined. This is a
sum of various C-conjugates of z, by (4.1). Since C C(a in EB) leaves
invariant [B],, which contains z, the above trace is an element of that
submodule.
The intersection C n N (D) contains the p-Sylow subgroup D of C. Hence

the index [C’C n N (D)] is not divisible by p. In view of (5.1a), we can, now
define a C-invariant element x [B] by

x [C’C N (n)]- trc(,)c (z).

Since C centralizes the image w of z,, the image of x in [G[B]*] is

[C’C n N (D)]-- trcn()c (w) [C’C n N (D)]-’[C’C n N (D)]w w,.

We must prove"

(8.6) /f a" C(D in G[B]) (N (D) IID), for some re E, then x. (x).
Since both D and D are p-Sylow subgroups of C C( in E,), there exists
an element p e C suctt that D D. Because p centralizes x, it suffices
to prove (8.6) with rp in place of , i.e., we can assume that lies in N (D).
The N (D)-invariance of z now gives z (z). Therefore

x,,, [C"C N (D)]- tre(.)c, ((z,))

([C’C n N (D)]- trc() c (z)) (x).
This proves (8.6).
Now we define x, for any r e G[B] (E, II D) to be (x) -,forany teE,

such that r e C (D in G[B]) (N (D) IID). We know from the first two para-
graphs of this proof that such a r exists, and from (8.6) that x is a well-
defined element of [B]. Clearly (x) x, for any e G[B](E IID),
r E. It follows that x ,EI(,II)x lies in [B](E) and that its
image y lies in [B] (E D)z. Because w is the image of x, for any

( G[B] (E. D) C (D in G[B]) C (D in G[B]) (N (D) D),
this element y satisfies S (y) w. So the lemma is proved.
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We denote by Max ([B](E,,)ID) the family of all maximal ideals
e Max ([B] (E.)) having D as a defect group with respect to the action

of E. on [B]. We define Max ([B](.) (N (D)) D) similarly, using the
’ction of N (D) on [B](.)

THEOREM 8.7 (Brauer’s First Main Theorem). For any p-subgroup D of
E,, the Brauer homomorphism

S [B] (E,) [B](.)(N (D))z
induces a one-to-one correspondence between ideals e Max (g[B] (E) D)
and ideals e Max ([B](o)(N (D))] D). Two such and correspond if
and ly ff the image z of in [B] (E.) z is the inverse image S- (z) of the
image of in g[B](.)(N (D ). In that case S induces an -isomorphism
of the algebra

[B] (E,)/ [B] (E,)/"
onto

[B](o) (N (D))/
_

[B]()(N (D)):/,
and is the only maximal two-sided ideal o of [B](o)(N (D) such that
s-() .

Proof. We denote by the sum of the ideals [B] (E C)z, where C runs
over ll subgroups satisfying C < D (if D [1}, then 0}). Then
Proposition 8.3 implies immediately that

(8.8) [B](E. [D) z [B](E, D) (as -spaces).

Evidently D is contained in p-Sylow subgroup of C ( in N (D)), for all
e C(D in G[B]). It follows that C(D in G[B])(N(D)[] C) is empty, nd

that [B](.)(N(D)[ C) z {0}, for all C D. So (8.4) gives"

(8.9) [B](.) (N (D) [C) {0},forallC D,
(8.95) [B]( (N (D) D) [B](,) (N (D) D)’.

The sme rgument shows that no C(D in G[B]) cn be contained in
G[B] (E, C), for any C < D. This nd Proposition 8.3 tell us that lies
in the kernel of S. So (8.8), (8.9b), and Lemm 8.5 give us n exact sequence"

o- -[](

Max ([B]() (N (D) D ).

In view of (8.9a) nd Proposition 5.10, their images , , re the
distinct mximl two-sided ideals of g[B]() (N (D)) z not containing the two-
sided ideal [B]() (N (D) D) z. Since J (g[B]() (N (D)) z) is the
intersection of all the mximal two-sided ideals of this algebra, we conclude
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that inclusion induces an exact sequence"

0 [B]()(N (D) ]D) z n ( [B](.) (N (D) ID) z

(8.11)
[B](.) (N(D))/ n n - - 0.

In particular, the intersections

i n [B](o) (N (D) D) , n [B](,) (N (D) D)

are all distinct. It follows from this and the exactness of (8.10) that the
inverse images S-(), ..., S-() are distinct two-sided ideals of
[B] (E,) z, and hence that their respective inverse images J, n are
distinct two-sided ideals of [B] (E,).

Since + [B](o) (N (D) D) z [B](o) (N (D)) z, for any i 1, n,
the exactness of (8.10) implies that

’ -t- S([B](E,) ") [B]<,)(N(D)) .
We conclude that S induces an algebra isomorphism of

[B] (E,)/ [B] (E)/S-1

onto
[B]()) (N (D))/ [B]()(N (D)

Since 9 is a maximal two-sided ideal of [B](.) (N (D)), this implies that
is a maximal two-sided ideal of [B] (E,). Because

[B](,) (N (D) D),
the exactness ot (8.10) implies that

OY S-() [B] (E. D).
On the other hand,

(E. [C)

for all C D. Therefore D is a defect group of !F. So 9i - !ffti is a one-
to-one map of Max ([B]() (N (D)) D) into Max ([B] (E,) D).

If 0 is any member of Max ([B](.) (N (D)) different from 1, ,
then (8.9) and Proposition 5.10 imply that contains [B](.)(N(D)ID) ".
The exactness of (8.10) tells us that S-1 () contains [B] (E. D) J, which is
contained in none of ), O)’, since each J has D as a defect group.
Hence S-1 (9) !fitS, for i 1, ..., n, which completes the proof of the
last statement of the theorem.
Now let be any member of Max ([B] (E,)ID). Then J contains, while

[B] (E ]D)’/([B] (E D) J)
__

([B] (E D) -t- OYJ)/J
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aS algebras. It follows from the exactness of (8.10) that

S([B](E [D) n gY’r)
is two-sided ideal of the subMgebra (without identity!) [B](D) (N (D) D) J

such that the corresponding factor algebra is isomorphic to the simple Mgebrt
(with identity) [B](E,)J/J. Evidently such an ideal must contain the
nilpotent ideal [B](D) (N (D) D)Jn . Because (8.11) is exact, there must
be an i 1, n such that

S ([B] (E. D) J a 3) n [B]() (N (D) D) J.
Now is another ideal in Max ([B](E)[D) such that sJJct S-()
and )z have the same intersection with the two-sided ideal [B] (Eel D) z

If 1) ), then multiplying the equations

J + 3 [B](E) ttnd [B](E [D) d -- C[B](Es)

gives

($[B] (Ea) __c t [B] (E D) + I _c (J n ([B] (E D) z) + .RJ

which is impossible. Hence ) I). Therefore -+ {1)i is onto, and the
theorem is proved.

9. The Brauer analysis
We continue to use the notation and assumptions of 8. The remaining

parts of the Brauer analysis (in 11 of [1]) of the blocks of a finite group Go
having a fixed defect group Do take us from such blocks of the normalizer

NOo (Do) to certain N (D0)-conjugacy classes of irreducible characters of the
centralizer Coo (Do). In our generalization of his analysis, the role of the
group algebra of Coo (Do) will be played by the image [B]()(D) z in [G[B]*]
of the suborder ([B]()(D) of [B](). To describe this image, we define

(9.1) G[B](D) { eC(Din G[B]) [B](D) [B]J([B]t)},

where, as usual, [B] (D) is the -sublattice of all elements of [B], fixed by
D.

PROPOSITION 9.2. The subset G[B] (D) is an N (D)-invariant normal sub-
group of C (D in G[B]). The factor group C (D in G[B])/G[B] (D) is a p-group.
Furthermore

(9.3) [B]() (D) z (R) ,I() [G[B]*],.

Hence [B](D)(D) z is a twisted group algebra of G[B] (D ).

Proof. Since [G[B]*] is a twisted group algebra, each [G[B]*], for
r C(D in G[B]), is one-dimensional over . In view of (2.14b) and (9.1),
this implies that such a z lies in G[B] (D) if and only if [G[B]*] is the image
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[B] (D) J in [G[B]*] of [B] (D).

[B] (D) J [G[B]*]
If o-, r e G[B] (D), then

and [B]r (D) [G[B]*]r
imply that the image of [B], (D) [B], (D) [B], (D) is

[G[B]*] [G[B]*] [G[B]*].
Therefore zr also lies in G[B] (D). Evidently

e e [B]I (D) J ([B]1).

So 1 e G[B] (D). Since G[B] is a finite group, its subset G[B] (D) is therefore
a subgroup.
The subgroup C (D in G[B]) is clearly N (D)-invariant, as is the suborder

[B] (D). If z e G[B] (D) and r e N (D), we conclude that " e C (D in G[B])
and that the image of (S[B] (D) ([B] (D)) is

[G[B]*] ([G[B]*]).
Hence a e G[B] (D) and G[B] (D) is N (D)-invariant.
Suppose that z e C (D in G[B]) and y, [B] [B] J ([B]). Since

(S[B] efS is a local ring, we know from [ICE, 1.16] that y is a unit of [B]
whose inverse y- lies in [B]- [B]-J([B]). Furthermore,
y (g[B]- [B], by [ICE, 1.14]. Multiplying this last equation on the
right by (S[B], we obtain

If p e D, then zo z. So the above equation and (5.1e) give us an element
z e [B] sueh that (y,)O y, zl. Clearly z is also a unit of [B] and
(y:-l)o z
Now let r be any element of G[B] (D). Choose

x,e [B], (D) (S[B], J ([B]).

Then y-; x, y [B].. Since zt ([B]t is central in g[B] (by (2.8b) and
(2.9)), we have

--1 --1 --1z y x y z y-;x y.
Hence y-lx y [B],, (D). Evidently the image of y y in [G[B]*], is
conjugate to that of x, and hence is non-zero. Therefore r G[B](D) and
G[B](D) is a normal subgroup of C(D in G[B]). This completes the proof
of the first statement of the proposition.
For the second statement, it suffices to show that any element

z e C (D in G[B]) having order n not divisible by p is an element of G[B] (D).
Let y be, as above, any element of [B] having a non-zero image 7 in
[G[B]*]. Then ()" is a non-zero element of

[G[B]*], [G[B]*] _- .
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Because is algebraically closed, it contains an element ] such that

Replacing y byfy, wherefis any element of having] 8s image in /,
we see that y, can be chosen so that (y) --= 1 (rood J ([B])). Now
Proposition 1.16 gives us an element z. e [B] such that (z) (y,).
Since [B] is central ia [B], we can replace y by z-y to obtain (y) 1.
We know that every element of [B] has a unique expression in the form

sincey,w, where wle g[B]l. Furthermore, (y,w,)n y2w wl
g[B]l is central in g[B]. Therefore (y wl) 1 if and only if w, is an nth-

root of 1 in g[B]. Because has characteristic p which does not divide n,
the valuation ring 9 contains precisely n th roots of 1, of the form , 2,
"n 1, whose images in are the distinct tth roots of 1 in that field. In
view of (2.11), the image of wl in g[B]/J (g[B]l) must coincide with that of
",forauniquei 1, ...,n. Hence

’-w, - 1 (mod J ([B]))

is another nth-root of 1 in g[B],. Now Proposition 1.16 tells us that -w=li.i.e., that wl We conclude that y,, y, " y y are the only
nth roots of 1 in [B],. Evidently these elements must be permuted among
themselves by any p e D. Therefore (y) y,, for some unique i 1,

n. Since p centralizes " e 9, we have (y,): y, y,. But n is
relatively prime to the order of p e D, since D is a p-group. Therefore p

centralizes y,, and
y,e [B](D) g[B]/J ([B]I).

So a G[B] (D), which completes the proof of the second statement of the
proposition.

If y o(D i o) y [B]() where y [B] for all , then clearly
y [B](.) (D) if and only if (y) y y for all p e D, a e C (D in G[BI).
We conclude that

([B],.)(D) @ c(. o.)[B](D).

Equation (9.3) follows directly from this, (9.1), and the one-dimensionality
of the -spaces [G[B]*]. Since G[B] (D) is a subgroup of G[B] and [G[B]*]
is a twisted group algebra of G[B], this implies that [B](.)(D) is a twisted
group algebra of G[B] (D). So the proposition is proved.
We shall need an additional hypothesis to carry out the rest of the Brauer

analysis. Of course, everything would work under the conditions (6.1).
But we can get away with the weaker assumption that

(9.4) [B](.) (N (D)) z Z ([B]() (D) ),

where, as usual, tim right term denotes the center of the algebra [B]() (D).
We should remark that (9.4) certainly holds when (6.1) is satisfied, since
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C (D in G[B]) is then a normal subgroup of N (D) N (D in Es) (by (5.5a)
and (6.1)), which implies that

[B](s) (N (D))

_
[B](s) (C (D in G[B]) Z ([B](s),

by the definition (2.15) of the action of G[B] on [B].
It follows from Proposition 9.2 that the subalgebra [B](s) (D) J of [G[B]*]

is N(D)-invariant. So N(D) permutes among themselves the ideals
Max ([B]() (D) +). For any such 92, its stabilizer N (D) in N (D) acts

naturally as algebra automorphisms of the simple factor algebra
[B](v) (D) +/. Obviously D, which centralizes [B](> (D) +, is a subgroup
of N (D). So the -subspace

[B](.) (D) "/R] (N (D) D)

of [B](.)(D)J/R is defined.
The Brauer analysis can now be completed by"

THEOREM 9.5. When (9.4) holds there is a one-to-one correspondence between
the ideals l e Max ([B](z)) (N (D D) and the N (D )-orbits of ideals
R e Max ([B](.) (D) J) satisfying

(9.6) [[B]() (D)J/] (N (D) D) [0}.
Such an j corresponds to the orbit of such an if and only if

n (5[B](.) (N (D)) J.
In that case the N (D )-conjugates of are the only ideals

0 e Max ([B]() (D))
satisfying

0 n [B](.) (N (D)) J

___ .
Proof. For any Max ([B](.) (D) ), we denote by [] the factor

algebra [B]()(D)z/. This is a finite-dimensional simple algebra over the
algebraically closed field . Hence its center Z([R]) is just . 1. Since
[B](.) (N (D)) z contains the identity of [B](,) (D) J, condition (9.4) implies
that its image in ?l[t] is precisely . 1. So

[B](.) (N (D))z/( n [B](,)(N (n))z) _--e_ (as -algebras),
and

n [B](,) (N (D))e Max ([B](D) (N (D)) ).

Hence the inverse image l !lJ(9}) of n ([B](,))(N(D))" is a maximal
two-sided ideal of g[B](D) (N (D)) satisfying !I)J n g[B](.) (N (D))z.

Suppose that R satisfies (9.6). Since D centralizes

there exists an x 9g[9] such that w tr.(.) (x) # 0. Because the algebra
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[B]() (D) is finite dimensional, it contains an element y having x as image
in [] such that y e 90 for all 90 9 in Max ([B](.)(D)). This implies
that y e (-), for all N (D) N (D). So the image in 2[] of

tr() (y) ()/, y
Xis just ()/, w 0. We concludo that tr,_.(,) (y) . If z

is any dement of [B]()(D) hving y as image, then this implies
that tr,() (z) e [B](,)(N (D) D) . Therefore D contains a defect
group C of .

If C < D, then [B](,)(N (D) C) {0} by (S.9a). Since is theinverse
image of , it therefore contains [B](,)(N (D) C). This is impossible
for the defect group C of . Hence C D and

e Max (g[B](,) (N (n)) D).

Since N (D) centralizes , it is clear that () () , for all
a e N (D). Suppose that 0 e Max (g[B]() (D)) is not N (D)-conjugate to. Then, by construction, y 0 for all a e N (D). Hencetr,() (y) e 0.
We conclude that tr,+(,)(z) lies in the inverse image (0) of
0 n [B](.)(N (D))a. Since this dement does not lie in , we must have

(90) . This proves the last statement of the theorem, and shows that
we have a one-to-one correspondence between all the N (D)-orbits of ideals

e Max ([B]() (D)

satisfying (9.6) and some of the ideals

e Max ([B](.) (N (D)) D).

It remains to be shown that we obtain every such in this way. First
notice that certainly has the form t () for some ideal

Max ([B]() (D)

Indeed, if this is false, then , which lies in Max ([B](,)(N (D))) by
Proposition 5.10 (for N (D) and C(D in G[B]) in place of E, and G[B]),
contains none of the maximal two-sided ideals

n [B](

for e Max ([B])(D)). Hence s does not contain their product.
But this product is contained in their intersection, which is

[B](.) (N (D)) s n J ([B](.) (D)) J ([B](.) (N (D)) s) s,
by Proposition 1.9. The contradiction proves the above statement.
Now we fix an ideal e Max ([B](.) (D)) such that (). We

must show that satisfies (9.6). If 1 , :, , form the N (D)-
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conjugacy class of 9, then the natural map of [B](,)(D) J into

(as algebras) is an epimorphism with kernel 1 n n n. Hence N (D)
acts naturally on I[91] @ @ I[92] so that this map is N (D)-invariant.
Because !g has D as a defect group, there is an element z e [B]()(D) such
that tr() (z) t ![. It follows that the image x of z in I[] @ @ I[]
satisfies tr() (x) 0. Write x xl @ @ xn, where x e I[] for
i 1, ...,n. Then

0 trv_() (x) trv() (xx) -t- -t- tr(D) (xn).

So there exists an i 1, n such that tr() (x) 0. It follows that
tr(u) (x) is a non-zero element of I[9t]. If z e N (D) satisfies ,
then x0 x will be an element of [[] ?I[9] such that

tr.() (x0) trD((.),), (x.) [tr..(),, (x)] 0.

Therefore satisfies (9.6). This completes the proof of the theorem.
Condition (9.6) does not look very much like Brauer’s conditions in The-

orem (llB) of [1]. However, we shall show that it is equivalent to them under
the hypothesis (6.1).

PROPOSITION 9.7. Suppose that (6.1) holds. Then an ideal

e Max ([B](.) (D) J)

satisfies (9.6) if and only if it satisfies the two conditions"

(9.8a) [N (D)u’D. G[B] (D)] 0 (mod p),

(9.8b) [B](,) (D)/] (G[B] (D) D G[B] (D)) /0}.

Proof. It follows from (6.1c) that the action on [B](.) (D)Z of any element
G[B] (D) is that of conjugation by any non-zero element of [G[B]*].

In view of (9.3), this implies that

[B]() (D)] (G[B] (D))
is the center Z ([B](.)(D)). As in the proof of Theorem 9.5, the image of
this subalgebra in I[] [B](.)(D)/9 is the center . 1 of that algebra,
which is centralized by N (D). By Proposition 9.2 and (6.1b), G[B] (D)
is a normal subgroup of N (D). From tte above description of its action on
[B]()(D) J and (9.3), it is clear that G[B](D)

_
N(D). Hence

D.G[B] (D) is a subgroup of N (D),. If x e I[], then

lies in the image . 1 of [B](,) (D) z] (G[B] (D)) in ?I[9]. So we have
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It follows that

[] (N (D) D) [N (D) :D. G[B] (D)][] (G[B] (D) D n G[B] (D) ).

Because has characteristic p, the equivalence of (9.6) and (9.8), which is
the proposition, is a direct consequence of this equation.

Condition (9.8a) is obviously comparable to Brauer’s index condition on the
inertial subgroup in (llB) of [1], to which it reduces in his special case. To
bring (9.8b) into the form of Brauer’s statement we need only apply Theorem
9.5 once more.

PROIOSIWION 9.9. The ideals e Max ([B], (D J) satisfying (9.8b)
correspond one-to-one to the blocks [ of the twisted group algebra [B](,)(D) J

having defect group D n G[B] (D) in G[B] (D). Two such and correspond
if and only if e . In that case is the only ideal in Max ([B](,)(D))
lying in [.

Proof. In view of Proposition 9.2, the axioms (2.1), (5.1), and (6.1) are
all satisfied if 9, (C), G, the (C), z e G, and E are replaced by , g[B](, (D)J,
G[B](D), the [G[B]*], z e G[B] (D), and G[B](D), respectively. In this
case the orders and algebras corresponding to g, eg, g[B], and [G[B]*] all
coincide with g[B](,)(D) , while the groups corresponding to E, G, and
G[B] all coincide with G[B] (D ).
We use D n G[B] (D) in place of D. By Proposition 9.2 the group corre-

sponding to C (D in G[B]) is now G[B] (D). Hence the order corresponding
to [B]() is g[B](.) (D) . Since D n G[B] (D)

_
D centralizes g[B](. (D),

the order and algebra corresponding to g[B](,) (D) and g[B](,) (D) J also coin-
cide with g[B](.) (D) :.
The group corresponding to N (D) N (D in E) is now G[B] (D), which

operates on the twisted group algebra [B](, (D) J of G[B] (D) in the usual
manner by conjugation. It follows that the order [g[B](,)(D) J] (G[B] (D))
corresponding to [B](,) (N (D)) is now the center Z ([B](,) (D) ). Hence
its maximal ideals correspond one-to-one to the blocks/ of g[B](,)(D):.
By definition the defect groups of are those of the corresponding block B.
Since G[B] (D) (which corresponds to N (D)) acts as inner automorphisms of
[B]() (D) J, it leaves invariant all ideals e Max ([B](,) (D)). Now
Theorem 9.5, applied to the new situation, gives the present proposition.

10. First half of the analysis of G[B]*
We can use the Brauer analysis to compute the Clifford extension of a block

in terms of those of its corresponding characters. We shall do this under the
assumption that (7.1) holds. So we can apply the above theories to , H,
and the , z e H, in place of (C), G, and the (C), z e G. Condition (7.1b)
tells us that is a local ring which is central in . It follows that the sub-
orders corresponding to , e, and [B] all coincide with , while the sub-
groups corresponding to G and G[B] both coincide with H. We denote by
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H* the central extension of/ by H corresponding to G[B]*. In view of (2.14),
its twisted group algebra [H*] is given by"

(10.1b) [H*] /J(1), for all (re H.

We shall use the superscript I to denote the images of objects in [H*], re-
serving the superscript J, as usual, for their images in [G[B]*] (as defined
below).
We fix a normal subgroup K of H. In view of (2.16) and (7.1c), conditions

(5.1) are satisfied with K, , H, and the in place of E, , G, and the ,
respectively, using the operation (2.15) of K <_ H on ) and the conjugation
action of K on H. The subgroup corresponding to E is now K. For any
p-subgroup D of K, we define, as in 8, 9"

(10.2a) (D) @ c(D in ),

(10.2c) N (D N (D in K),
(10.2d) g(D) {(reC(DinH) I(D) J(l)}.

We denote by S the Brauer homomorphism of (K) x into ,)(N(D))r
defined (in Proposition 8.1) by the subgroup D.

Let G be the factor group H/K. As in Theorem 7.3, we define"

(10.3a)
(10.3b) @ for all cosets r G H/K.

Then , G, and the also satisfy (2.1). It is clear from (2.15) that:

(10.4a) C(lin) C(Kin) (K) (C)(K),
(10.4b) r C(lin) C(Kin(C)r) (C)(K),forallreG.
As usual, we fix a block B of 1, and define e, e, G[B], [B], and G[B]* as

in 2. Since K acts as utomorphisms of the order (C)1 (R) , we can
choose the above p-group D to satisfy"

(10.5) D is a defect group in K of B.

The hypotheses of Brauer’s First Main Theorem 8.7 are now satisfied with
K, (C)1, K, and the , (r e K, in place of E., [B], G[B], and the [B],
(r e G[B], respectively. In view of Proposition 8.1, the Brauer homomorphism
used in that theorem is simply the restriction to (C)1 (K) x of the above
homomorphism S. Since 1 is a commutative order, its primitive idempotent
e corresponds to the unique maximal ideal

(10.6) J(el) @ (1 e)l,
in which it doesn’t lie. Condition (10.5) says that !F lies in Max ((C)1 (K) D).
So Theorem 8.7 gives us a unique ideal e Max ((C)I.(D) (N (D)) D) such that

where, of course, 1,(.) 1 n (.) @c( in 5) .
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More generMly, we define"

(10.Sa) ( ( (R)( ),
(10.8b) ,() ’ n D() @ ,c( i, )

, ,:[or all cosets r G H/K.
Evidently (2.16) nd the N (D) -invariance of C (D in H) imply th
N (D)-inwrint suborder of (C). Hence (C)) (N (D)) is a well-defined subor-
der of (C)(). Since N (D) N (D in K) is subgroup of the normal subgroup
K of H, it leaves inwriant each coset r of K in H. Therefore
re N (D)-invariant 9-sublattices of (C), and .() (N (D)) C (N (D) in
(C),(.)) is a well-defined 9-sublattice of

PROeOSIroN 10.9. (a) The suborder () (N (D) of (C) is invariant under
N (D in H) and centralized by N (D) N (D in K),

(b) .() (N (D) is a central suborder of () (N (D) containing the
identity of ),

(c) () (N (D) (R)o (C),() (N (D) (as 9-modules),
(d) (C),() (N (D))(C),,) (N (D) (C)o,,(,) (N (D) ), for all p, re G,
(e) ,()) (N (D) )’ (C),,,()) (N (D) ), for all r e G, r e N (D in tI).

Proof. Since C (D in H) is a normal subgroup of N (D in H), it is clear
from (10.8a) and (2.16) that the suborder (C)()is N(D in H)-invariant.
Since N (D) N (D in K) is also a normal subgroup of N (D in H), the sub-
order (C)()(N (D)) C(N (D) in (C)(.)) satisfies (a).

Clearly (C),() (C) n () is an N (D)-invariant suborder of (C) containing
le e . Hence so is (C),() (N (D)). By (2.15) each element of

(C) (C (D in g) (C (D in K)
centralizes

Since C (D in K) is a (normal) subgroup otN (D), we conclude that

(C)()) (N (D)) , (N (D)) __c (C) (C (D in K)
centralizes

,() (N (D)) (C).()
Therefore (b) holds.

Evidently (10.8) implies (C)() @ ,() Since 11 these 9-lttices
are N (D)-invrint, equation (c) is n immediate consequence of this.
The definition (10.8) lso gives (C),(.) (C)() (C).(), for all p, r e G. The

inclusion (d) follows directly from this.
FinMly, (e) is consequence of (10.Sb) and (2.16). So the proposition is

proved.
From (10.1) and (10.3) it is clear that the image (C) [H*] is the direct

sum of the images (C) @, [H*], for all r e G. It follows from this
and Proposition 10.9 (c) that the -algebra (.)(N (D)) is the direct sum of
the images (C).() (N (D)), for r G, of the (C),(m (N (D)). So Proposition
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10.9 implies"

(10.10) (C)(1) (N (D) ) is a N (D in ll)-invariant ,-subalgebra of ’lI/*.l,
and is centralized by N (D ).

(10.10b) Each (C),()) (N (D) ), for - e G, is an -subspace of (C)()) (N (D) ).
(10 10c) (C),()) (N (D is a central subalgebra of, and contains the identity

of, (C),) (N (D .
(D))" (as  -s aces).

(10.10e) (C).() (N (D) ) .(z)) (N (D) ) .()) (N (D) ), for all p, re G.
(10.10f) [. (N (D) )] .()) (N (D) ), for all r eG, r e N (D in H).

From (10.10c, e) it is clear that the mximl ideal of (C),(,) (N(D))
stisfies

(C),(.) (N (D))r (N (D))9 ,())

_
(C),())(N (D)) for all r e G.

In view of (10.10d), this implies that it generates a graded two-sided ideal.

of (,) (N (D)). We note by the corresponding factor algebra. For each
r e G, we identify

in the usual way with its image in , and call the resulting -subspace .
Notice that % .(,)(N (D))/ by (10.10c), since is a maximal
ideal in the commutative subalgebra ,(.) (N (D)) of (,) (N (D))’. Hence
(10.10) gives"

(10.11) is an -order.
(10.11b) Each r e G, is an -subspace of .
(10.11c) .1.
(10.11d) a (as -spaces).
(10.11e) o for all p, r e G.

By (10.10f) the group N(D in H) leaves invariant the subalgebra
.(,)(N(D)), and hence permutes its maximal ideals mong themselves.
Let N (D in H) be the subgroup of all e N (D in H) fixing . Evidently
N (D in H) leaves invariant the ideM () (N (D))*, and hence acts natu-
rally as automorphisms of the factor algebra . From (10.10a, f) we have"

(10.12) N (D) N (D in H) and N (D) centralizes ,
(10.12b) () ,for all r e G, e N (D in H)n.

In view of (10.11c, e) and (10.10e) we can define a subset G [] of G by



IhOPStTmN 10.14. The ubet G[] i an N(D i ll)-invariant normat
,ubgroup of H (D)K/K (where II (D) H (D) a N (D in H)). There is a

(,[tl oj’l? by G[] whoe twisted group algebra is givenunique cenlral extension *

by"

(o.sa) [G[]*] ,o[] ,
(10.155) [G[]*] , for all re G[].

Proof. Suppose that r G[]. Then (10.13) gives us elements

y e .() (N (D)) and z -.() (N (D))

such that y%r r. In particular, yr O. By (10.8b) there is a unique de-
composition y e( i,,) y, where y for each C (D in r). Since
D fixes y and also fixes each C (D in r), it follows from (2.16) that D fixes
each y, i.e., that y e (D), for all e C (D in r). Obviously there is some
eC(Dinr) suehthaty 0. By (10.2d),this liesinH(D). Sot
K e H (D)K/K, and G[] is a subset of H (D)K/K.

Since C (D in r) N (D in H) is a eoset of C (D in K) N (D), Proposi-
tion 10.9 (a, e) tells us that each C (D in r) induces the same automorphism
{}f the order ,()(N (D)). In particular, there is a fixed ideal, { Max (,(.) (N (D))

such tlmt for all C (D in r). Equation (2.15) gives

y y y for all e C (D in r).

Since y e(v i, ,) y, this implies that ya y. If 1 , then there
is an element w e suclt that w 1 (rood ). By construction theproduet
yz lies in .(v)(N(D)) . HeneeyzweN- . Butze()(N(D))
centralizes w .(v) (N (D)) by Proposition 10.9 (b). Hence

yzw ywz y z yz ,()(N (D) .
This contradicts the fact hat yzw . Therefore , for all
g C (D in r). Since some such can be chosen in H (D) (by the preceding
paragraph), we conclude that G[] is a subset of H (D) K/K.

If o is also an element of G[], then (10.11e) and (10.13) give

o -, (" 1),-1 o - ,,--,
From (10.11e) we get o o, and ,- o- ,-o-1 (o,)-. Hence

So , o)- a and or G[]. Since 1 lies in G[] by (10.lie), we con-
elude that G[] is 8 subgroup of the finite group G.
The above argument also shows that , (,)- a. Since (pr)-
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lso lies in the subgroup G[], we hve ()- . In view of (10.11c),
this implies

This and (10.11a, b, c, d) tell us that (R) o[m,{ r e G[]} is a graded
Clifford system over satisfying [CCT, 14.1]. Then [CCT, 14] gives us the
unique central extension G[]* of/ by G[] satisfying (10.15).

It is clear from (10.12b) and (10.13) that the subgroup G[] is N (D in H)-
invariant. Since H (D) is a subgroup of C (D in H) _< N (D in H)e (by
Proposition 9.2), we conclude that G[] is a normal subgroup of H (D) K/K.
So the proposition is proved.

COnOLLAY 10.16. The action of N (D in H) on leaves invariant the sub-
algebra [G[]*]. Hence N (D in H)u acts as automorphisms of G[]* so that
the extension maps pr G[]* -+ G[] and in f -- G[]* satisfy:

(10.17a) pr (o) pr (p) e G[], for all p e G[]*, r e N (D in H),
(10.17b) N(D in H) centralizes Ker (pr) in ().

Furthermore, the normal subgroup N (D of N (D in H) centralizes G[]*.
Proof. This is an immediate consequence of the proposition and (10.12).
Propositions 8.1 and (10.4) tell us that the Brauer homomorphism S is an

identity-preserving -homomorphism of the algebra (K) into

(C)(,) (N (n)) (,)(N (D)).
Composing it with the natural maps of onto and (,) (N (D)) onto

(,)(N (D ’/(C)(,) (N (D)
we obtain an identity-preserving -homomorphism S’ of the order into the
-algebra . Equation (10.7) implies that

Hence S’() 0. In view of (10.6), this says that S’(1 e) 0 and
S’(J(el)) O. So S’(e) S’(1) 1, and the restriction of S’ is an
identity-preserving -homomorphism of the suborder [B]

___
e into .

Furthermore,
S’([B]J([B]I)) S’ ([B])S’ (J(el)) {0}.

By (2.14a), this implies that S’ induces a unique identity-preserving -homomorphism of the algebra [G[B]*] into !8 so that the following diagram

[B] ----* (m(N(D))"

(10.18) l [
Here all the unlabelled maps are either inclusions or natural projections.

commutes"
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The definition of S in Proposition 8.1 tells us that it carries

___
[H*]

into (C).(.) (N (D)) (C)(.) (N (D)) n *[H ], for any r e G. It follows that
S’ sends [B] into , for all r e G[B]. In ew of (2.14b), this im-
plies that

(10.19) S([G[B]*]) , for all r G[B].

Now we can give the first half of the analysis of G[B]*.
THEOREM 10.20. The homomorphism sds the algebra [G[B]*] iso-

morphically to [G[]*]. Hence G[B] G[], and the restricti of is an
isomorphism of G[B]* to G[]* as extensions of by G[B] G[]. Further-
more, G. is equal to N (D in H) K/K, and the isomorphism preserves the ac-
tis of N (D in H)/N (D) G. in the sense that

(10.21) (y) (y), for all y e [G[B]*], eN(DinH).

Proof. Since our operator groups D, N (D), and K are all subgroups of the
normal subgroup K of H, the ideals and submodules corresponding to those of
8 are all graded with respect to G H/K. Thus, in addition to (10.10d)
and Proposition 10.9 (c), we easily verify that"

(10.22a)
(10.22 b) (.)(N(D)
(10.22 c)
(10.22 d) (K D)

where, in each case, the rt term on the right is the intersection of the left side
with .
We shall use these gradings to show that G[] is a subgroup of G[B]. Let

r be any element of G[]. Then (10.10e) and (10.13) imply that
.(v)(N(D))-.(.)(N(D))Z is a two-sided ideal of .(.)(N(D))’ which
is not contained in the maximal two-sided ideal. Hence

+ .(.)(N(D))-.(.)(N(D)) .(v)(N(D))’.
Since D is a defect group of , we also have

+ I.(.)(N(D) D)= .(.)(N(D)) .
Multiplying the former equation on the right and left by the latter, we obtain

+ .(v)(N(D) ]D)’.(.)(N(D))
.(.)(N(D)) .

Because (.)(N(D) ]D) is a two-sided ideal of (.)(N(D)) , the inclu-
sions (10.10e) and the decomposition (10.22a) give

.(v)(N(D) ]D).(.)(N(D)) .(.)(N(D) D) ,
-.(.)(N(D))x.(.)(N(D) ]D) -I.(.)(N(D)]D) r.
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This and the preceding equation imply

+ ,(,)(N(D)[D).-1,(D,(N(D)ID) I, (D) (N(D) .
From the definitions (10.8a) of() ()and (8.2) of (m(N(D) C)

it is clear that (m(N(D) C) 0, for all subgroups C < D. Therefore

(C)(D)(N(D) D)’= (C)(m(N(D)11
by (8.4). In view of the decompositions (10.22a, b), the preceding equation
now becomes

Tz --[- ,.(m(N(D)11D)X(C),-l.(,)(N(D) IID)’ I.(m(N(D)) .
By Lemma 8.5, the homomorphism S sends (C)(K 11 D) x one-to-one onto

(C)(,)(N(D) [] D) z. Since it also carries (C)(K) into ,(m(N(D)) , it must,
in view of (10.22b, d), send (C)(K D) onto (C),a))(N(D) D) . Similarly,
it sends (C)-(K D) onto .-I.(D)(N(D)]] D) . Therefore the preceding
equation and (10.7) imply that

ffff + (C)T(K n)(C)T-(K D) (C)I(K) .
Since (C)(K D) ----- (K) and (C)-,(K D) s<(K) , this gives

Taking inverse images in (K) 1, (K) and <I(K) -1,
we obtain

+ <1 .
Multiplying this by the central idempotent e of and using (10.6), we get

J(el) -t- (e)(e<) el.
But (e)(e-,) is a two-sided ideal of e by (2.8e). Hence

(e) (e,-,) el
and r e G[B] by (2.9a). Therefore G[] is a subgroup of G[B].
By (10.19), the homomorphism carries [G[B]*] . 1 into 1. Since

S is identity-preserving and -linear, this and (10.11c) imply that it induces
an isomorphism of [G[B]*h onto . If r is now any element of G[B], then
(10.11e), (10.19), and the equation

[G[B]*]I [G[B]*][G[B]*],-I
yield

([G[B]*]I) ([G[B]*])q([G[B]*],-1)
__
I-,

__
Therefore 3, 3,-1 3 and r e G[9], by (10.13). Hence G[B] a[]. In
view of (10.15) and (10.19), this implies that is an -homomorphism of
[G[B]*] into carrying [G[B]*] into for all re
and sending [G[B]*h isomorphieally onto [G[9t]*h. The first two state-
ments of the theorem follow direetly from this and [CCT, 13.10].
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The inverse image HB of GB in H fixes B and K, and hence permutes among
themselves the defect groups of B in K. But these groups are just the K-con-
jugates of D. We conclude that H. N(D in H).. K, where N(D in H) .
is the subgroup of N(D in H) fixing B. Evidently N(D in H) is also the
subgroup of N(D in H) fixing the maximal ideal lying in B. From the
definition of S in Proposition 8.1, it is clear that

(10.23) S(y’) S(y) ’, for all y e (C)(K) and r e N(D in H).

In view of the unicity of the relation between 9Yt and 9 in Brauer’s First Main
Theorem 8.7, this implies that N(D in H). is also the subgroup N(D in H)
of N(D in H) fixing 9. So G, H,/K N(D in H) K/K.

Finally, (10.21) follows directly from (10.23) and the definition of S. So
the theorem is proved.

11. Second half of the analysis of G[B]*
We continue to use the notation and hypotheses of the preceding section.
Conditions (5.1) and (6.1) are clearly satisfied with K, (C)1, K, and the, e K, in place of E, , G, and the , e G, respectively. So (9.4) holds

(see the remarks immediately fter it) nd Theorem 9.5 gives us a unique
N (D)-orbit in Max ((C)I.(D)(D) t) corresponding to

9I e Mx ((C)I.(,,(N(D))

Fix an ideal in this N(D)-orbit. Then (9.6) becomes

(11.1) [l,(m(D) z/](N(D) D) {01.

By Proposition 9.2, the image (C)(.)(D) is the twisted group algebra

(ll.2a) ,()(D) [H(D)*] @ () [g-*],
of the inverse image H(D)* in H* of the subgroup H(D) of C(D in H). It
follows that

(C),-,(re(D) q[H(D)*],.n.(m @ arflH()[H*],
(11.2b)

for all cosets r e G H/K.
Notice here that r n H(D) is either empty (in which case [H(D)*],n(m
0} or else is a coset of the normal subgroup K(D) K n H(D) in H(D).
Furthermore, r -- r n H(D) is the natural isomorphism of H(D)K/K onto
H(D)/K(D).

Equation (ll.2b) tells us in particular that (C)I.(.)(D) r is the twisted group
algebra [K(D)*] of the inverse image K(D)* of K(D) in H*. So
9 e Max ((C)I,(D)(D) ) corresponds to a unique irreducible -character q, of
the algebra [K(D) *].
We recall from [CCT] the construction of the Clifford extension H(D)*().

Since K(D) is a normal subgroup of H(D), the natural conjugation action
[CCT, 15.4] of H(D) on [H(D) *] leaves invariant the subalgebra [K(D) *].
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So H(D) permutes among themselves the ideals in Max ([K(D)*]). The
intersection C).(D) is an H(D)-invariant two-sided ideal of [K(D)*]. It
follows (see [CCT, 2.4] and [CCT, 13.2]) that

[H(D) *]( I.(D)) fl,(.)) [H(D) *]
is a graded two-sided ideal of [H(D)*], with"

(ll.3a) [H(D)*](.())
(ll.3b) [H(D)*]o(I.(D) (IH(D)) [H(D)*], [H(D)*]o,

for all p e H(D) /K(D).

As usual, we identify each factor space [H(D) *]o/[H(D) *]p( I.(D)9) with
its image in the factor ring, setting:

(ll.4a) I [H(D)*]/[H(D)*](I.(D)),
(ll.4b) ?I [H(D)*]/[H(D)*]p([’I.()), for all p e H(D)/K(D).

Then, by [CCT, 13.3], conditions (2.1) are satisfied with {, I, H(D)/K(D),
and the I in place of 9, (C), G, and the (C), respectively.
The subalgebra 9.I1 [K(D) *]/(.(.)) is finite-dimensional and semi-

simple. Let d be the unique primitive central idempotent of ?I1 corresponding
to its maximal two-sided ideal /((.)), so that

(11.5) (1 d)

We denote by H(D) the subgroup of H(D) fixing 9 (or, equivalently, or d)
under conjugation. Then, by [CCT, 13.9], conditions (2.1) are also sutisfied
with , d.Id, H(D)/K(D), and the d / d, for p H(D)/K(D), in
place of , , G, and the , a G, respectively. Finally, by [CCT, 8.7 and
15.14], H(D) *(} is the unique central extension of f by H(D)/K(D) whose
twisted group algebra is given by"

(11.6a) [H(D)*(q}] C(d?I in dd),
(11.6b) [H(D)*(q}]p C(d?I in d?ip) for all p H(D) /K(D).

From the definition (10.2d) of H(D) it is clear that it is a normal subgroup
of N(D in H). Hence so is its intersection K(D) with K. It follows that
N(D in H) acts by conjugution on H(D)/K(D), and that the natural conjuga-
tion action of N(D in H) on [H*] leaves invariant the subalgebra [H(D)*]
and satisfies

([H(D)*]) [H(D)*],, for all
(11.7)

p H(D)/K(D), r N(D in H).

In particular, N(D in H) leaves [K(D) *] invrint. So it permutes among
themselves the members of Max ([K(D)*]). Let N(D in H), be the sub-
group of N(D in H) fixing 9 Max ([K(D)*]) (or, equivalently, fixing ).
Since N(D in H), leaves invriant both H(D) and , it follows from (11.4)
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and (11.7) that there is an induced action of N(D in H), as {-automorphisms
of the factor algebra l satisfying

p) 9Ap for all p H(D) /K(D), " e N(D in H).

Because N(D in H) fixes 9, it fixes the corresponding primitive central
idempotent d of ll. From this, (11.8), and (11.6) we conclude that
[H(D) *(o}] is a N(D in H)-invariant subalgebra of g[, that H(D)/K(D)
is a N(D in H) -invariant subgroup of H(D)/K(D), and that

(11.9)
([H(D)*(}]) [H(D)*()],

for all p e H(D), /K(D), r e N(D in H).

Evidently the subgroup N(D) N(D in H) n K centralizes
H(D)/K(D). Because each [H(D)*(o}], is one dimensional over , this
and (11.9) imply the existence of a unique map

satisfying

(11.10)

o N(D) , X [H(D),/K(D)] ---+

y’ oo(r, p)y,

for all r N(D)

Since N(D) acts as algebra automorphisms of [H(D)*(o)], this map is
bilinear in the sense that"

(ll.lla)

(ll.llb)

for all

(, ) (, 1)(, ),

q ’2 N(D) p e H(D) /K(D)

for all r e N(D) p p,. e H(D) /K(D).

So we can define normal subgroups N(D) of N(D), and H(D) of H(D), by"

(ll.12a) N(D), {r eN(D), oa(r, p) 1, for all p eH(D), /K(D)},
(ll.12b) H(D), {peH(D), Io(rr, pg(D)) 1, for all " eN(D),}.

Because/ is the multiplicative group of a field of characteristic p, we hve"

(11.13) Both N(D)/N(D)o, and H(D),/H(D)o, are abelian p’-groups.
The map oa induces a non-singular bilinear pairing of these groups into the cyclic
subgroup of IN(D), th roots of unity in . Hence they are naturally dual to
each other.

We denote by H(D) *(} the inverse image of H(D)
Then (11.10) implies that the twisted group algebra of the extension
H(D) *{9} satisfies

[H(D)*{o}] @ _.p()/() [H(D)
(11.14)

[H(D)*(o}](N(D),).
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Any element a E K(D) acts on [H*] as conjugation by any non-zero ele-
mentyof *[H ]. Hence a acts on as conjugation by the image $ of y
in ?11. By (11.2b) and (11.4b) these images , for a e K(D), span ?I1.
It follows that

(11.15) ?I(K(D)) C(?II in ?I).

Since d is a central idempotent of ?l, this and (11.6a) imply that

[H(D)*(}] dC(9.I in ?l)d d?id(K(D)).

Combined with (11.6) and (11.14), this gives"

(11.16a) [H(D)*(q}] d.id(N(D)),
(ll.16b) i[H(D)*(}]p d?Ip(N(D)), for all p U(D)/K(D).

We have just seen that the normal subgroup K(D) of N(D in H) centralizes
[H(D)*(}]. Since D centralizes (,)(D) x [H(D)*], it is also a normal
subgroup of N(D in H) centralizing [H(D)*(}]. By (11.10), this implies
that

(11.17) K(D)D

_
N(D in H) and K(D)D

_
N(D)

The natural projection y -- of (C)(D)(D) [H(D)*] onto its factor al-
gebra l clearly sends the subalgebra [H(D) *](N(D) [H(D) *](N(D))
into ?I(N (D) ). In view of (11.15), the N(D) -invariant central idempotent
d of l centralizes ?I(N(D)) .I(K(D)). It follows that the map
y ---+ dy yd is an algebra homomorphism of I(N(D)) into dd(N(D))
[H(D) *()]. Hence

T" y---+d d

is an identity-preserving homomorphism of the algebra [H(D) *] (N(D))
into [H(D) *(}].
Theorem 9.5 tells us that

Hence the image of in tl is contained in that of , which is (1 d)I by
(11.5). Since

d(1 d) d-- d 0,

we conclude that T(9) {0}. So the restriction of T is a homomorphism of
the subalgebra ())(N(D)) [H(D)*](N(D)) into [H(D)*(}] sending
the two-sided ideal (C)(.) (N (D) into zero. Hence it induces a unique
identity-preserving homomorphism of the factor algebra

! (C)())(N(D) )/(C)())(N(D))
into

[H(D) *(q}]



so that the following diagram commutes"

(C)())(N(D))r [H(D)*](N(D)) I(N(D),)

(11.18) y

/’ [H(D)*()].
Here the unlbelled maps are either inclusions or (restrictions of) natural
projections.

In view of (ll.2b) and (ll.4b), the natural projection sends.(N(D))
into Lnn<o(N(D)), for 11 r e G H/K. Because d lies in .I, multipli-
cation by it sends the image of (C).o(N(D))* into

[H(D

By (11.6) and (11.14), this intersection is [H(D)
H(D)o (i.e., if r e H(D)o K/K), and {0} otherwise. Since 3, is the image
of ,.(o)(N(D))2 in B, we conclude that

/’(!3,) [H(D)*(9)]nn(), if re n(h)o, K/K,
(11.19)

-{0} if - G- (H(D),oK/K).

Now we can complete the analysis of G[B]*.
TIEOREM 11.20. Group G[9] is equal to H(D) K/K. The homomorph-

ism sends the subalgebra [G[9]*] of !3 isomorphically onto [H(D)*(9)].
Hence its restriction is an isomorphism of G[9]* onto H(D)*(9), as exten-
sions of F, which is compatible with the natural isomorphism - r n H(D)o, of
G[9] onto H(D),/K(D).

Furthermore, the group N(D in H) is equal to N(D in H),N(D), and the
above isomorphism preserves the actions of

N(D in H)/N(D) --- N(D in H),/N(D)

in the sense that

(11.21) (y’)

Proof. The semi-simple algebra I1 is the direct sum of its sub-algebras
dl and (1 d)/, both of which are N(D) N(D)-invariant. In view
of (11.2b), (11.4b), and (11.5), this implies that (11.1) is equivalent to

dI(N(D), D) # {0}.

By (ll.16b) the space d(N(D)) [H(D)*(}] .1 is one dimen-
sional over . Hence its non-zero subspace dI(N(D) D) is equal to
itself. In particular, the identity i lies in the two-sided ideal dd(N(D), D)
of dd(N(D),). So dd(N(n),) d.Id(N(D) D). In view of (11.16),
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this implies that

[H(D)*(q)]p dPlp(N(D), D), for all H(D),o/K(D).

Now fix an element p H(D)/K(D). Choose any non-zero element

y e [H(D) *(}]p.
Then y e H(D)*(} is a unit of [H(D)*(}], and its inverse x y-1 lies in
[H(D)*(}]-I. So the above equation gives us two elements z e d0Ip ?Ifl
and w d[-i [.-1 d such that

(11.22) y tr,(D)(z), x y-1 tr,-(,),(w).
By (11.2b) and (11.4b) we can choose elements z0 e (C),,(m(D) and

woe (C)-IK,())(D) having z and w, respectively, as images in ?/. Since both
,(D)(D) and p-IK,(D)(D) are N(D)-invariant, the product zwo lies in
I,(D)(D), for any a,r e N(D). Evidently we can choose an element
do (C)x,()(D) so that its image d in (C),(,)(D) [K(D)*] satisfies

d--= 1 (mode)- 0 (rood ’), for all ’ in Max([K(D)*]).
Then d, d also lie in (C),()(D), for any , r N(D). Furthermore, the
above conditions on dg imply that

(ZoWo)(do) ==- 0 (rood 9),aozowoao do .....

We conclude that

and

unless , r N(D) N(D)

Y0 tr(m(d0z0) e (C),(m(N(D))

x0 tr()(w0do) e (C),-,(m(N(D)
satisfy

0" I (mod )

trD+(.)(d0zo) tr,+(.)(w0d0) (mod ).

By construction, the image in ?/ of do is the identity d of [H(D)*(}]
(see (11.6u)). Hence the image of d0z0 is dz z, and that of wodo is wd w.
Now (11.22) and the above congruences tell us that the image in of the
product of y e o,()(N(D)) and xo e p-i,(D)((n)) is congruent to d
modulo the image of 9. Hence yo xto c (C)x,(m(N(D)), which is T by
Theorem 9.5. From (10.13) we conclude that oK e G[T]. Therefore
H(D) K/K <_ G[T].

Since the algebr homomorphism T is identity-preserving, it sends ! . 1
isomorphically onto [H(n)*(q}] .1. Now let r be any element of
G[]. By (10.13) we have !,!-i . Hence

(il) (!l-) P(!l) .1 {0/.
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In particular, 5P(3,) # {0}. So (11.19) tells us that r e H(D)oK/K.
Therefore G[!It] H(D) K/K, which is the first statement of the theorem.
Because 2P sends [G(9)*]1 1 isomorphically onto [H(D)*(9}], the
second and third statements of the theorem follow directly from this, (11.19),
and [CCT, 13.10].
The unicity of the correspondence in Theorem 9.5 between 9l and the

N(D)-conjugacy class of tells us that

N(D in H) N(D in H) N(D) N(D in H)N(D).

Finally, (11.21) is an immediate consequence of the definition (11.18) of T.
So the theorem is proved.

12. Computing Clifford extensions for blocks
Before putting together the two halves of the above analysis to obtain

the final result, we recall what all the notation means. We assume that
(7.1) holds, and denote by H* the central extension of / by H satisfying
(10.1). We choose a normal subgroup K of H, denoting the factor group
H/K by G. We also choose a block B of (R) ,K. We fix a
defect group D of B in K.

Define the normal subgroup H(D) of N(D in H) by (10.2d). Then the
image of (D)(D) in [H*] is (by (9.3)) the twisted group algebra [H(D)*]
of the inverse image H(D) * of H(D) in H*. Let K(D) * be the inverse
image in H(D)* of the normal subgroup K(D) K n H(D) of N(D in H).
Then the Brauer analysis of Theorems 8.7 and 9.5 gives us a unique N(D in K)-
orbit of irreducible characters of [K(D) *] corresponding to the block B.
Choose such a character . Since K(D)* is a normal subextension of

H(D) *, [CCT] gives us a Clifford extension H(D)*(} of i0 by H(D)/K(D),
where H(D) is the subgroup of H(D) fixing under conjugation (see (11.4)
and (11.6) ). The similar subgroup N(D in H) of 2V(D in H) acts naturally
by conjugation on H(D)*(), centralizing the image of /? and leaving in-
variant the projection onto H(D)/K(D). Its normal subgroup N(D in K)
centralizes H(D) /K(D). Hence there is a unique bilinear map

o N(D in K) X [H(D) /K(D) F
such that

(12.1) p 0(r, pr(p))p, for all p e H(D)*.(q), r e N(D in K).

We define the normal subgroup H(D) of H(D) to be the inverse image
of the "right kernel" of o (see (ll.12b)). Then the inverse image H(D)
in H(D)*(q,) of H(D)/K(D) is precisely the centralizer of N(D in K)
in H(D)*{). So it is acted upon naturally by N(D in H)/N(D in K)
We apply the analysis of 2 to , G, B, and the , @ ,

for r e G H/K. The suborder is now just (K) (by (10.4a)). So the
Brauer homomorphism S defined in Proposition 8.1 sends the image
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z (K) of in [H*] into the subalgebra

[H(D)*] (N(D in K)

of [H(D)*](K(D)). The natural map of [H(D)*](K(D)) into
[H(D) *(}] defines a homomorphism T of the subalgebra

[H(D)*](N(D in K))

into [H(D) *@}] (see diagram (11.18)). Combining these maps with
the inclusion [B] , we obtain an -homomorphism of [B] into
[H(D)*(}]. By (10.18) and (11.18) this map induces a unique homo-
morphism/ of the factor algebra [G[B]*] of [B] into [H(D)*(}] so that
the following diagram is commutative"

(12.2)

[BI ’ S, [H(D)*I(N(D in K))

1 !
[G[B]*l- R [H(D) *(v)1.

Now we hve"

THEOREM 12.3. The group G[B] is equal to H(D) K/K. The map is
an isomorphism of the algebra [G[B]*] onto [H(D)*@}] which preserves the
gradings in the sense that

(12.4) R([G[B]*],) [H(D)*(o}]m(D), for all re G[B].

Hence its restriction is an isomorphism of G[B]* onto H(D)*(o}, as extensions

of F which is compatible with the natural isomorphism

r -+ r n H(D) r n H(D)

of G[B] H(D), K/K onto H(D)/K(D).
Furthermore, the group G is equal to N(D in H), K/K, and the above iso-

morphism preserves the actions of G, - N(D in H),/N(D in K) in the sense
that

(12.5) /(y,K) /(y),, for all y e [G[B]*], r e N(D in H),/N(D in K).
Proof. This is just the logical union of Theorems 10.20 and 11.20, plus

the grading conditions (10.19) and (11.19).
Perhaps we should note a few of the special properties of the case of blocks

of groups, i.e., the case in which is the group ring {RH of the finite group H.
and {R, for all e H. It is evident from (10.1) that [H*] is, in this
case, the modular group algebra H, with [H*] , for all e H. The
group D is now an ordinary defect group of the p-block B of the normal
subgroup K of H. By (10.2d), the subgroup H(D) coincides with C(D in H),
and K(D) with C(D in K). The irreducible character o of C(D in K)
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[K(D)*] is just one of the modular irreducible characters in the blocks of
C(D in K) corresponding to the block B in 11 of [1]. Its Clifford extension
H(D)*(q} is that, C(D in H){q}, of in C(D in H), a,nd the bilinear map
of (12.1) sends

N(D in K) X [C(D in H)/C(D in K)]

into f. Its "right kernel" H(D)/K(D)is now C(D in H)/C(D in
K), whose inverse image

C(D in H)
in C(D in H)(,) is canonically isomorphic to the Clifford extension

C(D in H)()
of in C(D in H) (see [CCT, 16.1]).

Setting G H/K, and defining G, G[B], and G[B]* as in 2, we obtain
the following special case of the above theorem for blocks of groups"

CogoAv 12.6. The group G[B] equals C(D in H), K/K, while the map
1 of the theorem defines an isomorphism of G[B]* onto C(D in H) (,) as ex-
tensions of F which is compatible with the natural isomorphism

-+ - C(D in H)

of G[B] onto C(D in H),/C(D in K). Furthermore, G, equals
N(D in H), K/K, and the above isomorphism preserves the conjugacy actions of
G, N(D in H)/N(D in K) on the two extensions.

13. Miscellanea

In the situation of 2, the group G acts on the fmily Id((C)) of two-sided
ideals of by (2.3). We shall say that such an ideal , lies in the block
B if

(13.1) e----- 1 (mode).

Since e is a central idempotent of (C), this occurs if and only if

(13.2) e @ (1 e)i.

Furthermore -- e, is u one-to-one correspondence between two-sided
ideals of (C) lying in B and two-sided ideals e ,e of the suborder e.
PROeOSTON 13.3. The subgroup G[B] of G fixes every two-sided ideal

of lying in B.

Proof. If a e G[B], then Proposition 2.7(b), (2.9), the inclusions e--, ( , and (2.1e) give

e
_

e(C), (e)(e-)

_
(e)-(C) (e)

_
e e.

Hencee (e)1 Since a- also lies in the subgroup G[B], a symmetric
argument shows that e (C)(e ).
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Because e is a central idempotent of (C)1, the product e (e is also a
two-sided ideal of (C)1. Using (2.3) and the above formulas (for the elements
a, 1, and a-1 of G[B]), we compute

Here we used the fact that e, C((C)1 in (C)) centralizes (C)1,
and the definition (2.9) of G[B].
We know from Proposition 2.17 that -1 e G[B]

_
G, centralizes e, and

hence i e. In view of (2.15), thisimplies that -(1 e) (1 e)),-.
Hence the two-sided ideal (1 e)(C)1 satisfies

[(1

By (13.2) we have (e) + [(1 e)(C)l] e(-[- (1 e);i:)l .
So the proposition is proved.
To each maximal two-sided ideal of (C)1 lying in the block B we can now

assign a Clifford extension G[B]() of f by G[B] as follows" the G[B]-in-
variance of implies that (C)ifft iDI(C), for all a e G[B], and hence that

is a graded wo-sided ideal of he suborder m (R) Y’,,,os (C), of (C).
We identify each ./(C). F, o- , G[B], naturally wih is image in. he factor
algebra (C)om/(C)orm ). Then conditions (2.1) are satisfied wih , (C)ots/
(C)rm ), G[B], and he ./., in place of , (C), G, and he (C),,, respec-
tively. In addition, (C)(C)x (C),/) is a finite-dimensional simple algebra
over he algebraically closed field . I follows (see [CCT, S, 1]) ha
here is a unique central extension G[B]<Y> of by G[B] whose wisted group
algebra is given by"

(13.45) [G[B](!ff)] C(1/ in /(C)), for all e G[B].

This Clifford extension for ff is related to the Clifford extension G[B]* for
B by:

PROPOSITION 13.5. For any maximal two-sided ideal 9 of 1 lying in
the block B, the natural map of [B] o] into [B]/om induces an
isomorphism q of the algebra [G[B]*] onto [G[B](!fft)] sending [G[B]*],
onto [G[B]()I)], for all a G[B]. Hence the restriction of q is an isomorphism
of G[B]* onto G[B]()) as extensions of by G[B].

Proof. Evidently the natural map is an 9-homomorphism of

into
[B] ((C)1 in
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Since the identity e of [B] is congruent to 1 modulo , it is mapped onto
the identity of [G[B](Ft}]. Furthermore sends [B] (C) into

[G[B](F}] C((C)1/) in (C)/(C)F),

for all a e G[B]. Hence ([B]I) [G[B](9)}]I --- . In view of (2.11),
this implies that J([B]I), and therefore [B]J([B]I), are contained in the
kernel of . This and (2.14) tell us that induces an -homomorphism

of the algebra [G[B]*] into [G[B](g}] sending [G[B]*] into [G[B](}],
for all a e G[B]. Since maps [G[B]*]I .1 isomorphically onto
[G[B](}] . 1, the proposition follows from this and [CCT, 13.10].

Besides the above "modular" maximal two-sided ideals g, the block B
also contains some "ordinary" maximal two-sided ideals , which also have
Clifford extensions. The -order (C) defines the finite-dimensional algebra

(R) (C) (R)u (C) over the field of fractions of . Conditions (2.1) imply
the same conditions for (R) (C) and its -subspaces (R) (C) (R) ,
for e G. We say that a two-sided ideal of (R) (C)1 lies in the block B
if the image 1 (R) e of e is congruent to 1 modulo . Since is a valuation
ring and is an -subspace of (R) 1, we have (R), where

Evidently is a two-sided ideal of (C)1 lying in B. Because

for all e G, Proposition 13.3 implies that

(13.6) G[B] fixes every two-sided ideal of (R) 1 lying in B.

As in (13.4), the Clifford extension G[B](9) for a maximal two-sided ideal
of (R) (C)1 lying in B is the central extension of the multiplicative group F

of by G[B] whose twisted group algebra is given by"

(13.7a) [G[B](}] C(( (R) 1)/ in ( (R) (C)j)/( (R) (C)j)),
(13.7b) [G[B](}] C(( (R) 1)/9 in ( (R) (C))/( (R) (C))9), for

all e G[B].

The Clifford extension G[B](} of F is not directly comparable with the
Clifford extension G[B]* of/. However, the former extension determines a
"residue class extension" G[B] (}- (see [ICE, 4.8-4.13]) of by G[B] which
turns out to be naturally isomorphic to G[B]*. We recall the construction of
this new extension.

Since is an algebraically closed field, the subset tor(G[B](9)) of all tor-
sion elements of G[B](9} is ctually subgroup, nd G[B](9} is the product
of this subgroup and the image of F (see lICE, 4.8]). Hence

tor(G[B](9}) tor(G[B](}) 1 pr-l()

is a coset of tor(G[B](9})1 U. 1, for any e G[B], where U is the subgroup
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of all roots of unity in . Evidently U is contained in the unit group of the
integrally closed subring {R, from which we conclude that the {R-submodule
{R[G[B]{9}] of [G[B]()] generated by tor(G[B](9}) is an {R-lattice of rank
one generated by any element of tor(G[B](9}). Clearly

tor(G[B]<})tor(G[B]<}) tor(G[B]<}),

for all a, r e G[B], which implies that [G[B]<>] (R) o.. [G[B]<9>],
G[B], and the [G[B](9>] satisfy (2.1) in place of (C), G, and the (C), respec-
tively.
The suborder [G[B](>] . 1 is a local ring whose radical J([G[B]()])

is just . 1. As in (2.12-2.14), this determines a unique central extension
G[B]()- of R by G[B] whose twisted group algebra is given by"

(13.8a) [G[B](9)-] 9[G[B](O)]/OO[G[B](9)],
(13.8b) [G[B](91)-] {R[G[B]()]/OiR[G[B]()] for all a e G[B].

(Compare [ICE, 4.12].)

Before describing the isomorphism of G[B]* onto G[B](?R)-, we note the
following useful result"

LEMMA 13.9. Let ?1

_
{[G[B](9>], for (r e G[B], be any 9-sublattices

such that (2.1) holds with [ @ aB] %, G[B], and the t in place of
(C), G, and the respectively. Then {R[G[B](9)] and
for all (r e G[B].

Proof. Fix elements reG[B] and y etor(G[B](R)),. Then the one-
dimensional subspace [G[B](9)], is equal to y. In particular, any element
z e ?1 has the form z fy, with f e .

If f {R, then f" {R, for all n > 0, since {R is a valuation ring. There
exists an n > 0 such that a" 1 (by Proposition 2.2(d) !). Then

y e tor(G[B](91>) U- 1

is a generator for {R[G[B](R)]I {R. 1. Since {R is a valuation ring, it is the
only {R-order in . Hence 711 {R.1 {Ry". But 711 ?I, con-
tains z" f,yn which does not lie in 9y". This contradiction proves that f
always lies in {R, and hence that % is an {R-sublattice of [G[B](9)]

If g[ 9y, then we must have 9J

___
Oy. But then

%-, [G[B]<)]-, {)y-1

and 9. 1 % ?1I-1 pyO?y-1 p-1, which is impossible. Therefore
?I {Ry, and the lemma is proved.
Now we have:

PROPOSITION 13.10. For any maximal two-sided ideal 9 of (R) 1 lying
in B, the natural map of o[B] into
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sends [B] onto 9?[G[B]()], and induces an algebra isomorphism b of [G[B]*]
onto [G[B](91)-] sending [G[B]*] onto [G[B](9)-], for all r e G[B]. Hence
the restriction of b is an isomorphism of G[B]* onto G[B]()-as extensions of
by G[B].

Proof. From (13.7) it is clear that the restriction of the natural map of
om into ( @ o,)/( @ om) sends [B] C( in om) into
[G[B](}] and [B] into [G[B]()], for all a e G[B]. Because the image
1 e of the identity e of [B] is congruent to 1 modulo , the map is
identity-preserving. It follows from this and Proposition 2.10 that (2.1)
holds with ([B]), G[B], and the

([B]) [GfB]()]

in place of , G, and the , respectively. So Lemmu 13.9 tells us that
([B]) [G[B]()] and ([B]) [G[B]()], for all a e G[B]. In
view of (2.11), the composition of with the natural epimorphism (in (13.8a)
of [G[B]()] onto [G[B]()-] is an -epimorphism having

[B]J([B])

in its kernel. By (2.14) it induces an -epimorphism of [G[B]*] onto
[G[B]()-] sending [G[B]*] into [G[B]()-], for all a e G[B]. Since the
restriction of is an isomorphism of [G[B]*] . 1 onto [G[B]()-] . 1,
the proposition follows directly from this and [CCT, 13.10].
Even in the situation where both (5.1) and (6.1) hold, the image [B](E,)

of 5 can be strictly smaller than [G[B]*](E,), while the group G[B](D) of
Proposition 9.2 can be strictly smaller than C(D in G[B]). Both these
phenomena are illustrated by the following example:

Example 13.11. Let H (p) X () be the direct product of two cyclic
groups (p), () of prime order p. Assume that has characteristic zero,
while has characteristic p. Let H* be the unique central extension of F
by H generated over F by two elements p satisfying:

(13.12a) pr (p*) p, pr (*) ,
(13.125) (p*)= (*)’= 1,
(13.12c) p *p*,

where is a primitive pt root of unit in . Then, as above, [H*], H, and
the [H*], a e H, satisfy (2.1) in place of , G, and the , respectively.

Evidently [H*h . 1 has only one block B0. Since [H*] is central
in [H*], the suborders corresponding to , e, and [B] all coincide with
[H*], while H,o H[B0] H.

Since J() contains 1, it is clear from (13.12) and (2.14) that
[H[B0]*] [H*]/o[H*] is just the group algebra H, and hence that
H[B0]* is the split extension H X of .
We set E H, operating on [H*] as usual via (2.15). Then (5.1) and
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(6.1) hold, while EB0 E. From (13.12) we see that

[H*](EB0) Z([H*]) 9[H*]1.
Because [H[B0]*] H is abelian, this gives

(13.13) [H*](EB0) J " 1 c H [H[Bo]*](EBo).
Like its residue class algebra H, the order [H*] has but one block B,

whose defect group (in E or in H) is D E H. Since D cen-
tralizes H[B0] H, equations (9.1) and (13.12) give

(13.14) H[B0](D) 1} C(D in H[B0]) H.

When (2.1) holds, the residue class algebra (C)/p(C), the group G, and
the subspaces (C)/ (identified with their images in ) also satisfy
(2.1) with in place of 9. Proposition 1.12 gives us a unique block B of (C)1
corresponding to the block B of (C)1, the primitive central idempotent g in B
being the image of e. So we can define Clifford extensions G[B]* and G[/]*
of f by subgroups G[B] and G[/] of G. The order 9[H*] of Example 13.11
can be used again to show that G[/]* need not be isomorphic to G[B]*.

Example 13.15. Evidently (C) 9[H*], G H/(r), and
@ ’,[H*], for r e G, satisfy (2.1). Condition (13.12b) implies that
(C)1 [*] is isomorphic to the group ring 9(). Hence (C)1 has only one
blockBande 1. From(13.12c) we get C((C)lin(C)) 1. Hence
[B] e (C)1, G[B] 1, and G[B]* is the split extension (1) X f
of F.
On the other hand

_
H is commutative. Hence

which implies that [/] , that G[/] G, and that G[/]* is
the split extension G X / of f. Evidently G[[]* is not isomorphic to G[B]*

In general, the relations between G[B], G[B]* and G[/], G[J]* are given by

PROPOSITION 13.16. The group G[B] is a normal subgroup of G[B], and
G[[]/G[B] is a p-group, if has prime characteristic p, and is {1} otherwise.
The natural map of onto induces a monomorphism of G[B]* into G[/]*
as extensions of compatible with the inclusion map of G[B] into G[/].

The group GB is equal to G and the above monomorphism is G-invariant.
If (C), G, and the (C) come from a finite group H and its normal subgroup K as

at the beginning of 2, then G[B] G[/] and is an isomorphism of G[B]* onto
G[]*.

Proof. The natural map of (C) onto sends C((C)1 in (C)) into
C(lin) and into n,forallaeG. By (2.15) itpre-

serves the actions of G on and on . This and the uniqueness of the rela-
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tion between e nd in Proposition 1.12 imply that G G. Proposition
2.17 tells us that both G[B] nd G[B] re normal subgroups of G G.
Hence G[/] normalizes G[B].

If e G[B], then (e)(e-) e by (2.9). Since the images of
e, e,- re contained in , -, respectively, this implies that

e () (-). In view of (2.8 e, f), we conclude that ()(-) ,
i.e., that e G[/]. Hence G[B] is a normal subgroup of G[/].
By (2.14) the nturl mps of (C) onto nd [/] onto [G[/]*] induce n

9-homomorphism of [B] into [G[/]*] sending [B] into [G[/]*], for all
o- G[B] <_ G[/]. Since is the image of e, this 9-homomorphism is identity-
preserving. From (2.11) nd the fct that [G[/]*] . 1, we conclude
that J([B]) is in its kernel, nd hence that it induces n identity-preserving
homomorphism * of the lgebr [G[B]*] into [G[/]*] sending [G[B]*] into
[G[/]*], for ll e G[B], nd sending [G[B]*] . 1 isomorphiclly onto
[G[/]*] . 1. An ppliction of [CCT, 13.10] now gives the second state-
ment of the proposition with the restriction of * s .
We hve lredy seen that G G. From its definition is clearly G-

invrint. So the third statement holds.
When , G, nd the come from H nd K, then (2.6) implies that is

the image of , for ll e G. If e G[/], then this nd

()(-)

imply that (e) (e-) is two-sided ideal ofe generating that ring modulo
the kernel e a p(C) of the epimorphism onto . But this kernel is con-
tined in e a J() J(e) by (1.2) nd Proposition 1.9. Hence
(e) (e-) e nd e G[B]. This is enough to prove the lst statement
of the proposition.

It remains to be shown that G[B]/G[B] is either p-group or trivial, depend-
ing on the characteristic of . For this it suffices to prove that ny element
a e G[/] whose order n is not divisible by the characteristic of is lso n
element of G[B].
We cn choose n element e [B] whose image is non-zero

element of [G[/]*]. Then is non-zero element of [G[/]*], . 1.
Since the field is lgebriclly closed, it contains n element f so
thatf 1. Replacing by f, we cn ssume that " 1, i.e., that

+ J([$],).

By Proposition 1.16 there exists n element z e - J([B]) such
that ’z . Since [/] centralizes (by (2.8b)), we have
(z) z" . So we cn replace by z nd assume that .
Choose n element y e (C) hving s its image. Since , we

cn replace y by eye and ssume that y e e(C) (C) e. The power yee
hs g s image, nd hence lies in e -t- e

___
e + J(e). In view of

(1.7) nd Proposition 1.9, this implies that y e e J([y’]). Now Proposi-
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tion 1.16 gives us an element w e -- J([y]) such that y’w e. Since w
is a polynomial in y (with eoeifieients in ), it commutes with y and its image
in 1 is contained in [] . . It follows that we may replace y by yw
to obtain an element y of e(C) satisfying y" e whose image lies in

Clearly y is a unit of e(C)e whose inverse y-1 y.-1 lies in e(C)-i e(C)-i.
From (2.1e) we see that y-(e(C))y e. This gives el the structure of
lattice over the group ring (y} of the cyclic subgroup (y} of order n generated
by y. Because n is not divisible by the characteristic of , this group ring is
the direct sum

9(y} @-.. @

of n copies of , with the projection onto the ith copy sending y onto i, for a
fixed primitive nth root of unity in . It follows that e1 has a decomposi-
tion

e @ @ (as 9(y)-lattices

where y acts on the ith sublattice i by

(13.17) y-xy ix, for all x e i i 1, n.

Taking residues, we see that is the direct sum of the images 9/9
of the . But the image 9 g centralizes 1. So conjugation by y is
trivial on each . Since the image of is a primitive nt root of unity in
this and (13.17) imply that 9 -1 {0}. By the Nakayama
Lemma this forces 91 ._ {0}. Hence e(C) 9. Therefore y
centralizes e(C), i.e., y e C(e(C) in e(C)) e.
Now it is clear that y- e- and e yy-e (e) (e-). In

view of (2.8e, f) this implies that (e)(e-) e. Therefore e G[B],
and the proof of the proposition is complete.

Index of notation

We list here certain symbols and definitions used throughout the paper
followed by the number of the statement in which they are defined, or the
number of the statement next following their definition. The reader should
notice that certain symbols which have general meaning in one section may
have a more restricted one in others. Thus (C), which denotes gen-
eral -order in 1, is fixed from (2.1) on as a specific 9-order. In 7 and
10-12 it has even more restricted meanings, while in the intervening 8
and 9 it reverts to its definition in (2.1). In these cases the notation used in
a given section is indicated at or near the beginning of that section. Further-
more, we list in this index the places t which the meaning of the symbol in
question changes s well as that at which it was originally fixed.

Finally, there are certain notational conventions used repeatedly in the
paper which are summarized at the end of this index.

B (2.8)
block of an order (1.13)
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Brauer homomorphism S (8.2), (10.3), (2.6)
[B], [B] (2.9)
[B](EB [I D) J (8.2)
[B] (D) 8.1

[B]()) (N(D) D) J (8.5)
D (8.1), (10.5)
) (4.1), (7.1), eH (7.1)
() (10.2)
A(y) (5.9)
defect group of blocks of (C) (6.3)

of elements of [G[B]*] (5.9)
of maximal ideals (4.5)
of orbits of blocks of (C) (6.3)
of orbits of blocks of [G[B]*] (6.5)

E (4.1), (5.1), (6.1), (7.2)
e (2.8)
E/D (4.1)
Endz() (1.13)
F (13.7)

(1.1)
(2.13)
(1.1)

[G[B]*] (2.14)
[G[B]*] () 8.1

[e[]*] (10.J5)
[U*] (10.1)
[H*](,) (10.2)
G (2.1), (7.3), (10.3)
G. (2.17)
G[B] (2.9)
G[B]* (2.13)
G[B](D) (9.1)
G[B](EB D) (8.2)
G[B](!PA) (13.4)
G[B]() (13.7)
G[B]()-. (13.8)
G[] (10.13)
G[]* (10.14)
U (2.1), (7.1), (10.1)
H* (10.1)
H(D) (10.2)
u(n)* (11.2)
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H(D) *(q) (11.6)
H(D) (11.12), (12.2)
H(D) *(q), (11.14)
Id((C)) (2.3)
J((C)), J() (1.2)
g (2.1), (7.2), (10.2)
lattice over (C) (1.13)

over R (1.2)
Max () (1.3)
Max ([B](EB) D) (8.7)
Max ([B](D) (N(D) D) (8.7)
N’(D) (8.1), (10.2)
N(D), (11.12)

(1.2), (2.1), (7.3), (10.3)
(C) (2.1), (7.3), (10.3)
(C) (1.2)
(C)() (C),() (10.8)

(11.10), (12.1)
order (1.2)

(1.1)
pure {R-submodules (1.2)

(1.1)
R (12.2)
residue class modules, algebras (1.2)
S (8.1), (10.3)

(10.18)
T, T (11.18)
tr (4.1)
U() (1.16)
z() (.4)

In general the centralizer of X in Y, however defined, is denoted by
C(X in Y). Similarly the normalizer of X in Y is denoted by 2V(X in Y),
except in a few special cases noted above when it is just called N(X). There
is one exception to this notation when X is a group acting on a ring Y. In
that case the centralizer C(X in Y) is usually denoted by Y(X), a notation
introduced in 4. In this situation the expression Y(XIZ stands for the
image of the trace map trzx Y(Z) Y(X), where Z is some subgroup of X
(see 4, particularly (4.1)-(4.4)). The same notation is often used for the
centralizer of X and the image of the trace map when Y is just some X-invar-
iant submodule of a ring on which X acts.
When a group X acts on a set Y the stabilizer in X of a point y Y is usua.lly

denoted by X. This should not be confused with the special notation
H(D), N(D) and H(D) *(} concerning the bilinear form w of 11. Nor
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should it be confused with the notation Xy for the yth component, y Y, of the
grading of a ring X with respect to a group Y.

In general the expression X* is reserved for a central extension of ] by a
.group X. In that case [X*] denotes the corresponding twisted group algebra
of X over .
Throughout the paper the superscript J is used to denote the images in the

factor ring [G[B]*] [B]/[B]J([B]I) of elements or subsets of [B].
In 10-12 the superscript I is similarly used to denote the images in [H*]
/J() of elements or subsets of . One should note that the super-
script J enters into certain expressions, such as [B](E, IID) J and
[B](D) (N(D) D) J listed above, which are defined directly in [G[B]*] and
not as images (although, of course, they could have been so defined).
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