DERIVATIONS ON $\mathfrak{B}(\mathfrak{K})$: THE RANGE

BY

JOSEPH G. STAMPFLI¹

A derivation on a Banach algebra \mathfrak{A} is a linear map $\Delta : \mathfrak{A} \to \mathfrak{A}$ which satisfies $\Delta(ab) = a\Delta(b) + \Delta(a)b$ for all $a, b \in \mathfrak{A}$. Let $\mathfrak{B}(\mathfrak{K})$ denote the bounded linear operators on a Hilbert space \mathfrak{K} . It is known that every derivation Δ on $\mathfrak{B}(\mathfrak{K})$ is inner; that is, $\Delta = \Delta_A$ for some $A \in \mathfrak{B}(\mathfrak{K})$ where

$$\Delta_A: B \to AB - BA$$

for all $B \in \mathfrak{G}(\mathfrak{K})$. (In fact, every derivation on a von Neumann algebra is inner; see Kadison [8], Kaplansky [10], and Sakai [15].) Lumer and Rosenblum [12] have determined the spectrum of an inner derivation. They showed that

 $\sigma(\Delta_A) = \{\lambda_1 - \lambda_2 : \lambda_1, \lambda_2 \in \sigma(A)\}$

It is known [17] that

$$\|\Delta_A\| = 2\min\{\|A - \lambda I\| : \lambda \text{ complex}\}.$$

(For the norm of a derivation in a von Neumann algebra see [5] and [9].)

We now turn our attention to the range of the derivation Δ_A . Specific questions about the size of $\Delta_A(\mathfrak{B}(\mathfrak{K}))$, raised in [2], [18] and [21], will be answered. (For a not unrelated question from the algebraist's point of view see [11], question 12.)

The basic tool in the main theorems is the following simple lemma. The essential spectrum of A, denoted by $\sigma_{ess}(A)$ is the spectrum of A in the Calkin algebra $\mathfrak{B}(\mathfrak{K})/\mathfrak{K}$ where \mathfrak{K} is the two sided ideal of compact operators.

LEMMA 1. Let $A \in \mathfrak{B}(\mathfrak{K})$. Let $\lambda_0 \in \partial \sigma_{ess}(A)$. Then there exist mutually orthogonal sequences of unit vectors $\{f_n\}, \{g_n\}$ such that

$$\| (A - \lambda_0) f_n \| \to 0 \quad and \quad \| (A - \lambda_0)^* g_n \| \to 0.$$

Proof. If $\lambda_0 \epsilon \partial \sigma_{ess}(A)$, then λ_0 is in the left essential spectrum of A and hence by [4] there exists an orthonormal sequence $\{f_n\}$ such that $|| (A - \lambda_0)f_n || \to 0$. By the same reasoning there exists an orthonormal sequence $\{g_n\}$ such that $|| (A - \lambda_0)^*g_n || \to 0$. By replacing $\{f_n\}$ and $\{g_n\}$ by appropriate linear combinations we easily achieve the desired result.

THEOREM 1. Let $A \in \mathfrak{G}(\mathfrak{M})$. Then $\mathfrak{R}(\Delta_A)$, the range of Δ_A , is never norm dense in $\mathfrak{G}(\mathfrak{M})$.

Proof. Choose λ_0 , $\{f_n\}$, $\{g_n\}$ as in Lemma 1.

Received October 26, 1971.

¹ The author gratefully acknowledges the support of the National Science Foundation.

Define V as follows

$$V: f_n \to g_n$$

V: clm { f_n } \rightarrow clm { g_n } \rightarrow arbitrary but bounded.

Then for any $T \in \mathfrak{G}(\mathfrak{M})$,

$$|| V - (AT - TA) || \ge |([V - (AT - TA)]f_n, g_n)| = 1 + ((A - \lambda_0)f_n, T^*g_n) - (Tf_n, (A - \lambda_0)^*g_n) \rightarrow 1 \text{ as } n \to \infty.$$

The proof is complete.

Remark. This answers a question raised in [18]. It is easy to modify the definition of V to make it unitary, self-adjoint, nilpotent or almost what you will.

By $\Re(\Delta_A)^{-}$ we mean the norm closure of $\Re(\Delta_A)$.

COROLLARY. Let $A \in \mathfrak{B}(\mathfrak{K})$. Then $\mathfrak{B}(\mathfrak{K})/\mathfrak{R}(\Delta_A)$ is not separable.

Proof. As in the previous proof choose λ_0 , $\{f_n\}$ and $\{g_n\}$. Assume without loss of generality that $\lambda_0 = 0$ and that $\dim \{f_n\}^\perp = F$ and $\dim \{g_n\}^\perp = G$ are infinite dimensional. Let α be a subset of \mathbb{Z}^+ and define

$$U_{\alpha}f_{n} = \begin{cases} +g_{n} & \text{for } n \in \alpha, \\ -g_{n} & \text{for } n \notin \alpha. \end{cases}$$

Extend U_{α} to a map of F onto G so that U_{α} is unitary. Clearly $|| U_{\alpha} - U_{\beta} || = 2$ for $\alpha \neq \beta$. Define an equivalence relation on the set $\{U_{\alpha}\}$ as follows:

 $U_{\alpha} \sim U_{\beta}$ if they differ at only a finite number of the f_n 's. Clearly there are an uncountable number of distinct classes. Moreover

$$|| (AT - TA) + (U_{\alpha} - U_{\beta}) || \geq 2$$

for U_{α} , U_{β} in distinct equivalence classes by the argument in the previous theorem.

Since $\inf \{ \| L + (U_{\alpha} - U_{\beta}) \| : L \in \Re(\Delta_A)^{-} \} = 2$ for U_{α} , U_{β} in distinct equivalence classes, it follows that $\Re(\mathcal{K})/\Re(\Delta_A)^{-}$ can not be separable.

Remark. Note that $\mathfrak{R}(\Delta_A)$ can itself be non-separable. For example if A is the operator valued matrix

$$\begin{vmatrix} I & 0 \\ 0 & 2I \end{vmatrix},$$

on $\mathfrak{K} \oplus \mathfrak{K}$ then $\mathfrak{R}(\Delta_{\mathfrak{A}})$ is already norm closed and consists of all operators of the form

$$\begin{vmatrix} 0 & S \\ R & 0 \end{vmatrix}$$

where R, S are arbitrary operators in $\mathfrak{B}(\mathfrak{K})$. On the other hand for A compact, $\mathfrak{R}(\Delta_A)^{-1}$ is always separable.

In problem 49, page 479 of [21], J. Daleckii asks whether

$$\mathfrak{R}(\Delta_A)^{=} + \{A\}' = \mathfrak{R}(\mathfrak{K})$$

for all self-adjoint $A \in \mathfrak{B}(\mathfrak{K})$. (Here $\{A\}'$ denotes the commutant of A.) If we set $A\varphi_n = (1/n)\varphi_n$ where φ_n is an orthonormal basis for H, it is not hard to see we do not obtain equality. In fact $\mathfrak{B}(\mathfrak{K})/[\mathfrak{K}(\Delta_A)^- + \{A\}']$ is not even separable in this case.

If A is not self adjoint then even more striking behavior can occur. Let A be the Donoghue shift: $A\varphi_n = 2^{-n}\varphi_{n+1}$ where $\{\varphi_n\}_1^{\tilde{n}}$ is an orthonormal basis for 3C. Then by a result of Nordgren [22], $\{A\}'$ consists of compact operators (in fact, any operator in $\{A\}'$ is the norm limit of polynomials in A). Thus $\Re(\Delta_A)^{-} + \{A\}'$ is a subset of the compact operators and hence is separable.

THEOREM 2. Let A, G ϵ $\mathfrak{B}(\mathfrak{IC})$ be fixed where $G \neq 0$. Then there exists a unitary operator U such that $U^*GU \notin \mathfrak{R}(\Delta_A)$; that is $\mathfrak{R}(\Delta_A)$ contains no unitarily invariant subset of operators.

Proof. If $G = \lambda I$ then $G \notin \mathfrak{R}(\Delta_A)$ since I is not a commutator by a well known result of Wintner [20]. If $G \neq \lambda I$ then there exists a basis $\{\varphi_n\}$ for H such that

$$(G\varphi_n, \varphi_m) \neq 0 \text{ for } n, m = 1, 2, \cdots$$
 (see [13])

Let $(G\varphi_{3n}, \varphi_{3n+1}) = z_n$. Choose λ_0 , $\{f_n\}$, $\{g_n\}$ as in Theorem 1. We assume $\lambda_0 = 0$. By passing to a subsequence we can guarantee that

$$|| Af_n || \le n^{-1} z_n \text{ and } || A^* g_n || \le n^{-1} z_n.$$

We define U as follows

$$U: f_n \to \varphi_{3n}$$

$$U: g_n \to \varphi_{3n+1}$$

$$U: \operatorname{clm} \{f_n, g_n\}^{\perp} \to \operatorname{clm} \{\varphi_{3n+2}\} \quad 1\text{-}1, \text{ onto, and isometric.}$$

Clearly U is unitary. Assume $AT - TA = U^*GU$ for some $T \in \mathfrak{G}(\mathfrak{K})$. then

 $|z_n| = |(U^*GUf_n, g_n)| = |(AT - TA)f_n, g_n)| \le 2 ||T|| |z_n|/n.$

Hence $||T|| \ge n/2$ for all n which is absurd.

COROLLARY. For $A \in \mathfrak{B}(\mathfrak{K})$, $\mathfrak{R}(\Delta_A)$ does not contain all operators of rank one and hence does not contain any ideal in $\mathfrak{B}(\mathfrak{K})$.

This corollary answers a question raised in [2].

COROLLARY. Let A, $G_k \in \mathfrak{G}(\mathfrak{K})$ for $k = 1, 2, \cdots$. Then there exists a unitary operator U such that $U^*G_k U \notin \mathfrak{R}(\Delta_A)$ for $k = 1, 2, \cdots$.

Proof. Assume without loss of generality that each $G_k \neq \lambda I$. An easy modification of the argument in [13] enables us to choose an orthonormal basis $\{\varphi_n\}_1^{\infty}$ such that $(G_k \varphi_n, \varphi_m) \neq 0$ for $k, n, m = 1, 2, \cdots$. Set $\mathfrak{K} = \Sigma \oplus \mathfrak{K}_n$

520

where each \mathfrak{K}_n is infinite dimensional and has a subset of the φ_n 's as an orthonormal basis. For each G_k it is possible to repeat the argument in the theorem (on \mathfrak{K}_k) to attain the desired consequence.

Let K be compact and let $\lambda_1 \geq \lambda_2 \geq \cdots$ be the eigenvalues of $(K^*K)^{1/2}$. Then K $\epsilon \, \mathbb{C}_p$ (Schatten *p*-class) if $\Sigma \mid \lambda_n \mid^p < \infty$.

LEMMA 2. There exists a compact operator K which does not commute with any operator of Schatten p-class.

Proof. Let $\{\varphi_n\}_1^{\infty}$ be an orthonormal basis for 3C. Define $K\varphi_n = a_n \varphi_{n+1}$ where $a_n = 1/\log n$ for n > 2 and $a_1 = a_2 = 1$. Assume *B* commutes with *K*. Let $B\varphi_j = \sum_{1}^{\infty} b_{k,j} \varphi_k$. If $B \neq 0$ then $b_{k,1} \neq 0$ for some *k* since φ_1 is a cyclic vector for *K*. Let *m* be the smallest *k* for which $b_{k,1}$ does not vanish. Assume $b_{m,1} = 1$. A routine calculation shows that

 $b_{m+j,j+1} = \frac{a_m \cdots a_{m+j-1}}{a_1 \cdots a_j}$ for $j = 1, 2, \cdots$.

Hence $|b_{m+j,j+1}| \ge |a_{m+j-1}|^{m-1}$ for $j \ge m$. Thus for any $p \ge 1$

$$\sum_{j=1}^{\infty} \| B\varphi_j \|^p \ge \sum_{j=m}^{\infty} |a_{m+j-1}|^{p(m-1)} = \sum_{j=2m-1}^{\infty} (\log j)^{-p(m-1)} = \infty.$$

Hence B can not be of Schatten p-class since if $p \ge 2$ then $||B||_p^p \ge \Sigma ||B\psi_j||^p$ for any orthonormal basis $\{\psi_j\}$ (see Gohberg and Krein [6, page 95]).

THEOREM 3. There exists a (compact) operator K such that $\Re(\Delta_{\kappa})^{=} = \mathcal{K}$ the ideal of compact operators.

Proof. We choose K to be the operator constructed in the previous lemma. Since K is compact $KT - TK \in \mathfrak{K}$ for all $T \in \mathfrak{G}(\mathfrak{K})$ and hence $\mathfrak{R}(\Delta_{\mathfrak{K}}) \subset \mathfrak{K}$. On the other hand by Theorem 3 of [19], if A does not commute with an operator of trace class then $\mathfrak{R}(\Delta_A)^{-} \supset \mathfrak{K}$. Hence $\mathfrak{R}(\Delta_{\mathfrak{K}})^{-} = \mathfrak{K}$.

Remark. If $A \neq \lambda I$ + compact, then $\Re(\Delta_A)$ contains a non-compact operator. This result, which admits a variety of proofs, can be found in [3].

We now turn our attention to one of the major unsolved problems on the range of a derivation: Is $I \in \mathfrak{R}(\Delta_A)^{=}$ for any $A \in \mathfrak{B}(\mathfrak{K})$? The following statements are easily seen to be equivalent:

- (i) $I \in \Re(\Delta_A)^{=}$
- (ii) there exists an invertible operator B in $\{A\}'$ such that $B \in \mathfrak{R}(\Delta_A)^{=}$
- (iii) $\Re(\Delta_A)^{=}$ contains all the invertible operators in $\{A\}'$.

Our partial answer to the question indicates that it is no mean feat for $\Re(\Delta_A)^{-}$ to contain the identity. We begin with the following:

LEMMA 3. If
$$||A|| \le 1$$
 and $||(AT - TA) - I|| < \varepsilon$ then
 $||(A^{n+1}T - TA^{n+1}) - (n+1)A^n|| < 3^n \varepsilon.$

Proof. We proceed by induction. Assume $A^nT - TA^n = nA^{n-1} + 3^{n-1}\delta_n$ where $\|\delta_n\| < \varepsilon$. Multiplying fore, then aft by A and adding we obtain

$$(A^{n+1}T - TA^{n+1}) + (A^{n}TA - ATA^{n}) = 2nA^{n} + 2 \cdot 3^{n-1}\delta_{n+1}$$

where $\| \delta_{n+1} \| < \varepsilon$. But

$$(A^{n}TA - ATA^{n}) = A(A^{n-1}T - TA^{n-1})A = (n-1)A^{n} + 3^{n-2}\delta_{n-1}$$

where $\| \delta_{n-1} \| < \varepsilon$. Thus $A^{n+1}T - TA^{n+1} = (n+1)A^n + 2 \cdot 3^{n-1} \delta_{n+1} + 3^{n-2} \delta_{n-1}$ which completes the proof.

THEOREM 4. If $A^k = 0$, then $I \in \Re(\Delta_A)^{-}$.

Proof. We may and do assume $||A|| \leq 1$. Choose $T \in \mathfrak{B}(\mathfrak{K})$ such that $||(AT - TA) - I|| < \varepsilon$. Then by the lemma

$$|| (A^{k}T - TA^{k}) - kA^{k-1} || < 3^{k-1}\varepsilon.$$

Hence $||A^{k-1}|| < k^{-1}3^{k-1}\varepsilon$ and since ε was arbitrary it follows that $A^{k-1} = 0$. By repeating the argument we are led, inexorably, to the conclusion that A = 0, which is absurd.

COROLLARY. If A^k is compact, (that is, A is nilpotent in the Calkin algebra) then $I \notin \mathfrak{R}(\Delta_A)^{\frown}$.

Proof. The argument given above is valid in a C* algebra.

Because we will have occasion to appeal to the next lemma several times, we state it here explicitly. The proof is left to the reader.

LEMMA 4. Let $A \in \mathfrak{B}(\mathfrak{K})$ be similar to an operator of the form

$$\begin{bmatrix} S & 0 \\ 0 & T \end{bmatrix}$$

on $\mathfrak{K}_1 \oplus \mathfrak{K}_2 = \mathfrak{K}$. If $I_{\mathfrak{K}_1} \notin \mathfrak{K}(\Delta_s)^-$ then $I \notin \mathfrak{K}(\Delta_A)^-$.

THEOREM 5. Let $A \in \mathfrak{B}(\mathfrak{K})$. Let f(A) = N where N is normal and f is analytic on an open set containing $\sigma(T)$. Then $I \notin \mathfrak{R}(\Delta_A)^{\frown}$.

Proof. We must consider two cases. The first when $\sigma(A)$ has infinite cardinality; the second when it has not. Let $\sigma(A)$ be infinite and let z_1, \dots, z_n be the zeros of f'. Let $W = f^{-1}[f(\bigcup_1^n z_i)]$. Choose a closed disc γ such that $\gamma \cap W = \emptyset$ and $\gamma \cap \sigma(A) \neq \emptyset$. Thus f' never vanishes on γ . Let $N = \int \lambda \, dE(\lambda)$. Since A commutes with N and hence with $E(\cdot)$ we may write

$$A = \begin{vmatrix} A_1 & 0 \\ 0 & A_2 \end{vmatrix} \quad \text{on } E(f(\gamma)) \mathfrak{K} \oplus E(f(\gamma)') \mathfrak{K}$$

and

$$f(A) = \begin{vmatrix} f(A_1) & 0 \\ 0 & f(A_2) \end{vmatrix} = \begin{vmatrix} N_1 & 0 \\ 0 & N_2 \end{vmatrix}$$

(here ' denotes set complementation). Since $f(A_1)$ is normal and f' never vanishes on $\sigma(A_1) \subset f^{-1}[f(\delta)] \subset W'$, it follows from [1], that A_1 is scalar on $E(f(\gamma))$ 3C; that is, similar to a normal operator. Thus $\Re(\Delta_{A_1})^-$ does not contain the identity, and hence by the previous lemma, neither does $\Re(\Delta_A)^-$. (It is easy to see that $I \notin \Re(\Delta_B)^-$ for B normal [16]. This point will be discussed again shortly.)

Now let $\sigma(A)$ be finite. Choose $z_0 \in \sigma(A)$ and let $f(z_0) = \zeta_0$. Then A is similar to an operator of the form

$$\begin{array}{c|c} A_1 & 0 \\ 0 & A_2 \end{array} \quad \text{on } \mathfrak{K}_1 \oplus \mathfrak{K}_2 = \mathfrak{K}$$

where $\sigma(A_1) = \{z_0\}$ and $\sigma(A_2) = \sigma(A) \setminus \{z_0\}$ (see [14] Chapter XI). By the normality of N, the spectral mapping theorem, and any one of several arguments (one of which was used in the first case) $f(A_1) = \zeta_0 I$ where I here is the identity on $\Im C_1$. Hence $g(A_1) = f(A_1) - \zeta_0 I_{\Im C_1} = 0$. After factoring f as $(z - z_0)^n h(z)$ we conclude that $(A_1 - z_0)^n = 0$. Thus $I_{\Im C_1} \notin \Re(\Delta_{A_1})^-$ by Theorem 4 and hence $I \notin \Re(\Delta_A)^-$ by the previous lemma.

COROLLARY. If A is of the following form (or similar to an operator of the following form) then $I \notin \Re(\Delta_A)^-$:

- (1) f(A) = normal
- (2) A = hyponormal + compact
- (3) A = Toeplitz + compact

(4) $\| (A - \lambda) \| = \text{spectral radius of } (A - \lambda) \text{ for some } \lambda.$

Proof. Actually operators of the form (2), (3) or (4) are all in $\overline{\alpha}_1$, that is, they all possess an approximate reducing eigenvector. More precisely, given $\varepsilon > 0$, there exists a λ_0 and a unit vector f such that

$$\| (A - \lambda_0) f \| < \varepsilon \text{ and } \| (A - \lambda_0)^* f \| < \varepsilon$$

(see [16]). It is easy to see that the conclusion follows from this condition.

Remark. If \mathfrak{A} is a von Neumann algebra and $A \in \mathfrak{A}$ then $\Delta_A : \mathfrak{A} \to \mathfrak{A}$. We mention that Theorem 1 is valid in this context, that is, $\Delta_A(\mathfrak{A})$ is never norm dense in \mathfrak{A} . Since any von Neumann algebra can be written as the direct sum of algebras of the various types it suffices to consider the case when \mathfrak{A} itself is of fixed type. The algebras of type I_n or II, are easily handled by a trace argument. Using powerful results from his work on von Neumann algebras, Herbert Halpern has taken care of the remaining algebras (the properly infinite ones) thus completing the proof. (See [7] for details.)

Added in proof. Joel H. Anderson has recently shown that there exists a strange and wondrous operator A for which $I \in R(\Delta_A)^-$. His paper, "The identity and the range of a derivation", will appear in the Bulletin of the American Mathematical Society.

References

- 1. C. APOSTOL, On the roots of spectral operator valued analytic functions, Rev. Math. Pures. Appl., vol. 13 (1968), pp. 587-589.
- 2. A. BROWN AND C. PEARCY, Compact restrictions of operators, Acta Sci. Math., vol. 32 (1971), pp. 271–282.
- 3. CALKIN, Two sided ideals and congruences in the ring of bounded operators on Hilbert space, Ann. of Math., vol. 42 (1941), pp. 839–873.
- 4. P. A. FILLMORE, J. G. STAMPFLI AND J. P. WILLIAMS, On the essential spectrum, the essential numerical range and a problem of Halmos, Acta Sci. Math., vol. 33 (1972), pp. 179–192.
- 5. P. GAJENDRAGAKAR, The norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc., vol. 170 (1972), pp. 165–170.
- I. C. GOHBERG AND M. G. KREIN, Introduction to the theory of linear nonselfadjoint operators, Translations Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
- 7. H. HALPERN, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math., vol. 43 (1972), pp. 349–380.
- 8. R. V. KADISON, Derivations of operator algebras, Ann. of Math., vol. 83 (1966), pp. 280-293.
- 9. R. V. KADISON, E. C. LANCE AND J. R. RINGROSE, Derivations and automorphisms of operator algebras II, J. Functional Anal., vol. 1 (1967), pp. 204–221.
- 10. I. KAPLANSKY, Modules over operator algebras, Amer. J. Math., 75 (1953), pp. 839-859.
- 11. ——, Problems in the theory of rings, revisited, Amer. Math. Monthly, vol. 77 (1970), pp. 445–454.
- 12. G. LUMER AND M. ROSENBLUM, Linear operator equations, Proc. Amer. Math. Soc., vol. 10 (1959), pp. 32-41.
- 13. H. RADJAVI AND P. ROSENTHAL, Matrices for operators and generators of & (H), J. London Math. Soc., vol. 2 (1970), pp. 557-560.
- 14. F. RIESZ AND B. SZ-NAGY, Functional Analysis, Ungar, New York, 1955.
- 15. S. SAKAI, Derivations of W*-algebras, Ann. of Math., vol. 83 (1966), pp. 273-279.
- 16. J. G. STAMPFLI, On hyponormal and Toeplitz operators, Math. Ann, vol 183 (1969), pp. 328-336.
- 17. , The norm of a derivation, Pacific J. Math., vol. 33 (1970), pp. 737-747.
- 18. J. P. WILLIAMS, Finite operators, Proc. Amer. Math. Soc., vol. 26 (1970), pp. 129-136.
- 19. -----, On the range of a derivation, Pacific J. Math., vol. 38 (1971), pp. 273-279.
- 20. A. WINTER, The unboundedness of quantum mechanical matrices, Phys. Rev., vol. 71 (1947), pp. 738-739.
- Proceedings of the International Colloquium on Nuclear Spaces and Ideals in Operator Algebras, Warsaw, 18-25 June 1969, Studia Math., vol. 38 (1970).
- 22. E A. NORDGREN, Closed operators commuting with a weighted shift, Proc. Amer. Math. Soc., vol. 24 (1970), pp. 424-428.

INDIANA UNIVERSITY BLOOMINGTON, INDIANA