DERIVATIONS ON $\leftrightarrow(\mathfrak{\Re})$: THE RANGE

BY
Joseph G. Stampfli ${ }^{1}$
A derivation on a Banach algebra \mathfrak{N} is a linear map $\Delta: \mathfrak{Y} \rightarrow \mathfrak{N}$ which satisfies $\Delta(a b)=a \Delta(b)+\Delta(a) b$ for all $a, b \in \mathfrak{N}$. Let $B(\mathcal{H C})$ denote the bounded linear operators on a Hilbert space \mathfrak{H}. It is known that every derivation Δ on $\mathfrak{B}(\mathscr{H C})$ is inner; that is, $\Delta=\Delta_{A}$ for some $A \in \mathfrak{B}(\mathscr{H C})$ where

$$
\Delta_{A}: B \rightarrow A B-B A
$$

for all $B \in \mathbb{B}(\mathfrak{F})$. (In fact, every derivation on a von Neumann algebra is inner; see Kadison [8], Kaplansky [10], and Sakai [15].) Lumer and Rosenblum [12] have determined the spectrum of an inner derivation. They showed that

$$
\sigma\left(\Delta_{A}\right)=\left\{\lambda_{1}-\lambda_{2}: \lambda_{1}, \lambda_{2} \in \sigma(A)\right\}
$$

It is known [17] that

$$
\left\|\Delta_{A}\right\|=2 \min \{\|A-\lambda I\|: \lambda \text { complex }\}
$$

(For the norm of a derivation in a von Neumann algebra see [5] and [9].)
We now turn our attention to the range of the derivation Δ_{A}. Specific questions about the size of $\Delta_{A}(\mathscr{B}(\mathscr{H C}))$, raised in [2], [18] and [21], will be answered. (For a not unrelated question from the algebraist's point of view see [11], question 12.)

The basic tool in the main theorems is the following simple lemma. The essential spectrum of A, denoted by $\sigma_{\text {ess }}(A)$ is the spectrum of A in the Calkin algebra $\mathbb{B}(\mathfrak{K}) / \mathfrak{K}$ where \mathfrak{K} is the two sided ideal of compact operators.

Lemma 1. Let $A \in \mathbb{B}(\mathcal{H})$. Let $\lambda_{0} \in \partial \sigma_{\text {ess }}(A)$. Then there exist mutually orthogonal sequences of unit vectors $\left\{f_{n}\right\},\left\{g_{n}\right\}$ such that

$$
\left\|\left(A-\lambda_{0}\right) f_{n}\right\| \rightarrow 0 \text { and }\left\|\left(A-\lambda_{0}\right)^{*} g_{n}\right\| \rightarrow 0
$$

Proof. If $\lambda_{0} \in \partial \sigma_{\text {ess }}(A)$, then λ_{0} is in the left essential spectrum of A and hence by [4] there exists an orthonormal sequence $\left\{f_{n}\right\}$ such that $\left\|\left(A-\lambda_{0}\right) f_{n}\right\| \rightarrow 0$. By the same reasoning there exists an orthonormal sequence $\left\{g_{n}\right\}$ such that $\left\|\left(A-\lambda_{0}\right)^{*} g_{n}\right\| \rightarrow 0$. By replacing $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ by appropriate linear combinations we easily achieve the desired result.

Theorem 1. Let $A \in \mathbb{B}(\mathfrak{H})$. Then $\mathfrak{R}\left(\Delta_{A}\right)$, the range of Δ_{A}, is never norm dense in $\mathbb{B}(\mathfrak{H})$.

Proof. Choose $\lambda_{0},\left\{f_{n}\right\},\left\{g_{n}\right\}$ as in Lemma 1.

[^0]Define V as follows

$$
\begin{aligned}
& V: f_{n} \rightarrow g_{n} \\
& V: \operatorname{clm}\left\{f_{n}\right\}^{\perp} \rightarrow \operatorname{clm}\left\{g_{n}\right\}^{\perp} \text { arbitrary but bounded. }
\end{aligned}
$$

Then for any $T \in \mathbb{B}(\mathscr{H})$,

$$
\begin{aligned}
\|V-(A T-T A)\| \geq & \mid \\
& \left([V-(A T-T A)] f_{n}, g_{n}\right) \mid \\
& =1+\left(\left(A-\lambda_{0}\right) f_{n}, T^{*} g_{n}\right)-\left(T f_{n},\left(A-\lambda_{0}\right)^{*} g_{n}\right) \\
& \rightarrow 1 \text { as } n \rightarrow \infty
\end{aligned}
$$

The proof is complete.
Remark. This answers a question raised in [18]. It is easy to modify the definition of V to make it unitary, self-adjoint, nilpotent or almost what you will.

By $\mathcal{R}\left(\Delta_{A}\right)$ we mean the norm closure of $\mathcal{R}\left(\Delta_{A}\right)$.
Corollary. Let $A \in \mathbb{B}(\mathfrak{H})$. Then $\mathbb{B}(\mathscr{H}) / \Omega\left(\Delta_{A}\right)=$ is not separable.
Proof. As in the previous proof choose $\lambda_{0},\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$. Assume without loss of generality that $\lambda_{0}=0$ and that $\operatorname{clm}\left\{f_{n}\right\}^{\perp}=F$ and $\operatorname{clm}\left\{g_{n}\right\}^{\perp}=G$ are infinite dimensional. Let α be a subset of \mathbf{Z}^{+}and define

$$
\begin{aligned}
U_{\alpha} f_{n} & = \begin{cases}+g_{n} & \text { for } n \in \alpha \\
-g_{n} & \text { for } n \boxminus \alpha\end{cases} \\
& =\{
\end{aligned}
$$

Extend U_{α} to a map of F onto G so that U_{α} is unitary. Clearly $\left\|U_{\alpha}-U_{\beta}\right\|$ $=2$ for $\alpha \neq \beta$. Define an equivalence relation on the set $\left\{U_{\alpha}\right\}$ as follows:
$U_{\alpha} \sim U_{\beta}$ if they differ at only a finite number of the f_{n} 's. Clearly there are an uncountable number of distinct classes. Moreover

$$
\left\|(A T-T A)+\left(U_{\alpha}-U_{\beta}\right)\right\| \geq 2
$$

for U_{α}, U_{β} in distinct equivalence classes by the argument in the previous theorem.

Since $\inf \left\{\left\|L+\left(U_{\alpha}-U_{\beta}\right)\right\|: L \in \mathcal{R}\left(\Delta_{A}\right)^{-}\right\}=2$ for U_{α}, U_{β} in distinct equivalence classes, it follows that $B(\mathfrak{H}) / \mathcal{R}\left(\Delta_{A}\right)=$ can not be separable.

Remark. Note that $\mathfrak{R}\left(\Delta_{A}\right)$ can itself be non-separable. For example if A is the operator valued matrix

$$
\left|\begin{array}{rr}
I & 0 \\
0 & 2 I
\end{array}\right|
$$

on $\mathfrak{H} \oplus \mathfrak{H C}$ then $\mathscr{R}\left(\Delta_{A}\right)$ is already norm closed and consists of all operators of the form

$$
\left|\begin{array}{ll}
0 & S \\
R & 0
\end{array}\right|
$$

where R, S are arbitrary operators in $B(\mathscr{H})$. On the other hand for A compact, $\mathcal{R}\left(\Delta_{\mathbf{A}}\right)^{\text {º }}$ is always separable.

In problem 49, page 479 of [21], J. Daleckii asks whether

$$
\mathfrak{R}\left(\Delta_{A}\right)^{=}+\{A\}^{\prime}=\mathbb{B}(\mathscr{H})
$$

for all self-adjoint $A \in \mathbb{B}(\mathscr{H})$. (Here $\{A\}^{\prime}$ denotes the commutant of A.) If we set $A \varphi_{n}=(1 / n) \varphi_{n}$ where φ_{n} is an orthonormal basis for H, it is not hard to see we do not obtain equality. In fact $\mathbb{B}(\mathscr{H}) /\left[\mathscr{R}\left(\Delta_{A}\right)=+\{A\}^{\prime}\right]$ is not even separable in this case.

If A is not self adjoint then even more striking behavior can occur. Let A be the Donoghue shift: $A \varphi_{n}=2^{-n} \varphi_{n+1}$ where $\left\{\varphi_{n}\right\}_{1}^{\infty}$ is an orthonormal basis for \mathfrak{H}. Then by a result of Nordgren [22], $\{A\}^{\prime}$ consists of compact operators (in fact, any operator in $\{A\}^{\prime}$ is the norm limit of polynomials in A). Thus $\mathfrak{R}\left(\Delta_{A}\right)^{=}+\{A\}^{\prime}$ is a subset of the compact operators and hence is separable.

Theorem 2. Let $A, G \in \mathbb{B}(\mathfrak{H})$ be fixed where $G \neq 0$. Then there exists a unitary operator U such that $U^{*} G U \notin \mathbb{R}\left(\Delta_{A}\right)$; that is $\mathbb{R}\left(\Delta_{A}\right)$ contains no unitarily invariant subset of operators.

Proof. If $G=\lambda I$ then $G \notin R\left(\Delta_{A}\right)$ since I is not a commutator by a well known result of Wintner [20]. If $G \neq \lambda I$ then there exists a basis $\left\{\varphi_{n}\right\}$ for H such that

$$
\begin{equation*}
\left(G \varphi_{n}, \varphi_{m}\right) \neq 0 \quad \text { for } n, m=1,2, \cdots \tag{13}
\end{equation*}
$$

Let $\left(G \varphi_{3 n}, \varphi_{3 n+1}\right)=z_{n}$. Choose $\lambda_{0},\left\{f_{n}\right\},\left\{g_{n}\right\}$ as in Theorem 1. We assume $\lambda_{0}=0$. By passing to a subsequence we can guarantee that

$$
\left\|A f_{n}\right\| \leq n^{-1} z_{n} \quad \text { and } \quad\left\|A^{*} g_{n}\right\| \leq n^{-1} z_{n}
$$

We define U as follows

$$
\begin{aligned}
& U: f_{n} \rightarrow \varphi_{3 n} \\
& U: g_{n} \rightarrow \varphi_{3 n+1} \\
& U: \operatorname{clm}\left\{f_{n}, g_{n}\right\}^{\perp} \rightarrow \operatorname{clm}\left\{\varphi_{3 n+2}\right\} \quad 1-1, \text { onto, and isometric. }
\end{aligned}
$$

Clearly U is unitary. Assume $A T-T A=U^{*} G U$ for some $T \epsilon \mathscr{B}(\mathcal{H})$. then

$$
\left.\left|z_{n}\right|=\left|\left(U^{*} G U f_{n}, g_{n}\right)\right|=\mid(A T-T A) f_{n}, g_{n}\right)|\leq 2\|T\|| z_{n} \mid / n
$$

Hence $\|T\| \geq n / 2$ for all n which is absurd.
Corollary. For $A \in \mathbb{B}(\mathfrak{H}), \mathcal{A}\left(\Delta_{A}\right)$ does not contain all operators of rank one and hence does not contain any ideal in $\mathbb{B}(\mathfrak{H})$.

This corollary answers a question raised in [2].
Corollary. Let $A, G_{k} \in \mathbb{B}(\mathfrak{H})$ for $k=1,2, \cdots$. Then there exists a unitary operator U such that $U^{*} G_{k} U \notin \mathcal{R}\left(\Delta_{A}\right)$ for $k=1,2, \cdots$.

Proof. Assume without loss of generality that each $G_{k} \neq \lambda I$. An easy modification of the argument in [13] enables us to choose an orthonormal basis $\left\{\varphi_{n}\right\}_{1}^{\infty}$ such that $\left(G_{k} \varphi_{n}, \varphi_{m}\right) \neq 0$ for $k, n, m=1,2, \cdots$. Set $\mathfrak{H}=\Sigma \oplus \mathfrak{H}_{n}$
where each \mathfrak{K}_{n} is infinite dimensional and has a subset of the φ_{n} 's as an orthonormal basis. For each G_{k} it is possible to repeat the argument in the theorem (on $\mathfrak{H e}_{k}$) to attain the desired consequence.

Let K be compact and let $\lambda_{1} \geq \lambda_{2} \geq \cdots$ be the eigenvalues of $\left(K^{*} K\right)^{1 / 2}$. Then $K \in \mathfrak{C}_{p}$ (Schatten p-class) if $\Sigma\left|\lambda_{n}\right|^{p}<\infty$.

Lemma 2. There exists a compact operator K which does not commute with any operator of Schatten p-class.

Proof. Let $\left\{\varphi_{n}\right\}_{1}^{\infty}$ be an orthonormal basis for \mathfrak{H}. Define $K \varphi_{n}=a_{n} \varphi_{n+1}$ where $a_{n}=1 / \log n$ for $n>2$ and $a_{1}=a_{2}=1$. Assume B commutes with K. Let $B \varphi_{j}=\Sigma_{1}^{\infty} b_{k, j} \varphi_{k}$. If $B \neq 0$ then $b_{k, 1} \neq 0$ for some k since φ_{1} is a cyclic vector for K. Let m be the smallest k for which $b_{k, 1}$ does not vanish. Assume $b_{m, 1}=1$. A routine calculation shows that

$$
b_{m+j, j+1}=\frac{a_{m} \cdots a_{m+j-1}}{a_{1} \cdots a_{j}} \quad \text { for } j=1,2, \cdots
$$

Hence $\left|b_{m+j, j+1}\right| \geq\left|a_{m+j-1}\right|^{m-1}$ for $j \geq m$.
Thus for any $p \geq 1$

$$
\sum_{j=1}^{\infty}\left\|B \varphi_{j}\right\|^{p} \geq \sum_{j=m}^{\infty}\left|a_{m+j-1}\right|^{p(m-1)}=\sum_{j=2 m-1}^{\infty}(\log j)^{-p(m-1)}=\infty
$$

Hence B can not be of Schatten p-class since if $p \geq 2$ then $\|B\|_{p}^{p} \geq \Sigma\left\|B \psi_{j}\right\|^{p}$ for any orthonormal basis $\left\{\psi_{j}\right\}$ (see Gohberg and Krein [6, page 95]).

Theorem 3. There exists a (compact) operator K such that $\mathcal{A}\left(\Delta_{K}\right)=\ldots$ the ideal of compact operators.

Proof. We choose K to be the operator constructed in the previous lemma. Since K is compact $K T-T K \in \mathscr{K}$ for all $T \in \mathbb{B}(\mathscr{H})$ and hence $\mathbb{R}\left(\Delta_{K}\right) \subset \mathscr{K}$. On the other hand by Theorem 3 of [19], if A does not commute with an operator of trace class then $\mathbb{R}\left(\Delta_{A}\right)^{=} \supset \mathfrak{K}$. Hence $\mathbb{R}\left(\Delta_{K}\right)^{=}=\mathfrak{K}$.

Remark. If $A \neq \lambda I+$ compact, then $\mathfrak{R}\left(\Delta_{A}\right)$ contains a non-compact operator. This result, which admits a variety of proofs, can be found in [3].

We now turn our attention to one of the major unsolved problems on the range of a derivation: Is $I \in \mathscr{R}\left(\Delta_{A}\right)^{=}$for any $A \in \mathbb{B}(\mathscr{H})$? The following statements are casily seen to be equivalent:
(i) $I \in \mathbb{R}\left(\Delta_{A}\right)=$
(ii) there exists an invertible operator B in $\{A\}^{\prime}$ such that $B \in \mathscr{R}\left(\Delta_{A}\right)=$
(iii) $\mathscr{A}\left(\Delta_{A}\right)^{=}$contains all the invertible operators in $\{A\}^{\prime}$.

Our partial answer to the question indicates that it is no mean feat for $\mathfrak{a}\left(\Delta_{A}\right)^{=}$to contain the identity. We begin with the following:

Lemma 3. If $\|A\| \leq 1$ and $\|(A T-T A)-I\|<\varepsilon$ then

$$
\left\|\left(A^{n+1} T-T A^{n+1}\right)-(n+1) A^{n}\right\|<3^{n} \varepsilon
$$

Proof. We proceed by induction. Assume $A^{n} T-T A^{n}=n A^{n-1}+$ $3^{n-1} \delta_{n}$ where $\left\|\delta_{n}\right\|<\varepsilon$. Multiplying fore, then aft by A and adding we obtain

$$
\left(A^{n+1} T-T A^{n+1}\right)+\left(A^{n} T A-A T A^{n}\right)=2 n A^{n}+2 \cdot 3^{n-1} \delta_{n+1}
$$

where $\left\|\delta_{n+1}\right\|<\varepsilon$. But

$$
\left(A^{n} T A-A T A^{n}\right)=A\left(A^{n-1} T-T A^{n-1}\right) A=(n-1) A^{n}+3^{n-2} \delta_{n-1}
$$

where $\left\|\delta_{n-1}\right\|<\varepsilon$. Thus $A^{n+1} T-T A^{n+1}=(n+1) A^{n}+2 \cdot 3^{n-1} \delta_{n+1}+$ $3^{n-2} \delta_{n-1}$ which completes the proof.

Theorem 4. If $A^{k}=0$, then $I \epsilon R\left(\Delta_{A}\right)^{\text {m }}$.
Proof. We may and do assume $\|A\| \leq 1$. Choose $T \in \mathscr{B}(\mathscr{H})$ such that $\|(A T-T A)-I\|<\varepsilon$. Then by the lemma

$$
\left\|\left(A^{k} T-T A^{k}\right)-k A^{k-1}\right\|<3^{k-1} \varepsilon .
$$

Hence $\left\|A^{k-1}\right\|<k^{-1} 3^{k-1} \varepsilon$ and since ε was arbitrary it follows that $A^{k-1}=0$. By repeating the argument we are led, inexorably, to the conclusion that $A=0$, which is absurd.

Corollary. If A^{k} is compact, (that is, A is nilpotent in the Calkin algebra) then $I \notin \mathfrak{R}\left(\Delta_{A}\right)=$.

Proof. The argument given above is valid in a \mathfrak{C}^{*} algebra.
Because we will have occasion to appeal to the next lemma several times, we state it here explicitly. The proof is left to the reader.

Lemma 4. Let $A \in \mathbb{B (H)}$ be similar to an operator of the form

$$
\left|\begin{array}{cc}
S & 0 \\
0 & T
\end{array}\right|
$$

on $\mathfrak{H C}_{1} \oplus \mathfrak{H}_{2}=\mathfrak{H}$. If $I_{\mathfrak{C e}_{1}} \notin \mathfrak{R}\left(\Delta_{S}\right)=$ then $I \notin \mathfrak{R}\left(\Delta_{A}\right)=$
Theorem 5. Let $A \in \mathbb{B}(\mathfrak{F})$. Let $f(A)=N$ where N is normal and f is analytic on an open set containing $\sigma(T)$. Then $I \notin R\left(\Delta_{A}\right)^{-m}$.

Proof. We must consider two cases. The first when $\sigma(A)$ has infinite cardinality; the second when it has not. Let $\sigma(A)$ be infinite and let z_{1}, \cdots, z_{n} be the zeros of f^{\prime}. Let $W=f^{-1}\left[f\left(\cup_{1}^{n} z_{i}\right)\right]$. Choose a closed disc γ such that $\gamma \cap W=\emptyset$ and $\gamma \cap \sigma(A) \neq \emptyset$. Thus f^{\prime} never vanishes on γ. Let $N=\int \lambda d E(\lambda)$. Since A commutes with N and hence with $E(\cdot)$ we may write

$$
A=\left|\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right| \quad \text { on } E(f(\gamma)) \mathfrak{H} \oplus E\left(f(\gamma)^{\prime}\right) \mathfrak{H}
$$

and

$$
f(A)=\left|\begin{array}{cc}
f\left(A_{1}\right) & 0 \\
0 & f\left(A_{2}\right)
\end{array}\right|=\left|\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right|
$$

(here ' denotes set complementation). Since $f\left(A_{1}\right)$ is normal and f^{\prime} never vanishes on $\sigma\left(A_{1}\right) \subset f^{-1}[f(\delta)] \subset W^{\prime}$, it follows from [1], that A_{1} is scalar on $E(f(\gamma)) \mathscr{H}$; that is, similar to a normal operator. Thus $\mathcal{R}\left(\Delta_{A_{1}}\right)^{\text {n }}$ does not contain the identity, and hence by the previous lemma, neither does $\Omega\left(\Delta_{A}\right)^{-}$. (It is easy to see that $I \notin \Omega\left(\Delta_{B}\right)^{\text {m }}$ for B normal [16]. This point will be discussed again shortly.)

Now let $\sigma(A)$ be finite. Choose $z_{0} \in \sigma(A)$ and let $f\left(z_{0}\right)=\zeta_{0}$. Then A is similar to an operator of the form

$$
\left|\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right| \quad \text { on } \mathfrak{H}_{1} \oplus \mathfrak{K}_{2}=\mathfrak{H}
$$

where $\sigma\left(A_{1}\right)=\left\{z_{0}\right\}$ and $\sigma\left(A_{2}\right)=\sigma(A) \backslash\left\{z_{0}\right\}$ (see [14] Chapter XI). By the normality of N, the spectral mapping theorem, and any one of several arguments (one of which was used in the first case) $f\left(A_{1}\right)=\zeta_{0} I$ where I here is the identity on \mathfrak{C}_{1}. Hence $g\left(A_{1}\right)=f\left(A_{1}\right)-\zeta_{0} I_{\mathfrak{C}_{1}}=0$. After factoring f as $\left(z-z_{0}\right)^{n} h(z)$ we conclude that $\left(A_{1}-z_{0}\right)^{n}=0$. Thus $I_{\mathfrak{H}_{1}} ₫ \Omega\left(\Delta_{A_{1}}\right)=$ by Theorem 4 and hence $I \notin \mathcal{R}\left(\Delta_{A}\right)$ - by the previous lemma.

Corollary. If A is of the following form (or similar to an operator of the following form) then $I \Leftrightarrow \mathcal{R}\left(\Delta_{A}\right)^{\text {a }}$:
(1) $f(A)=$ normal
(2) $A=$ hyponormal + compact
(3) $A=$ Toeplitz + compact
(4) $\|(A-\lambda)\|=$ spectral radius of $(A-\lambda)$ for some λ.

Proof. Actually operators of the form (2), (3) or (4) are all in $\overline{\mathcal{R}}_{1}$, that is, they all possess an approximate reducing eigenvector. More precisely, given $\varepsilon>0$, there exists a λ_{0} and a unit vector f such that

$$
\left\|\left(A-\lambda_{0}\right) f\right\|<\varepsilon \quad \text { and } \quad\left\|\left(A-\lambda_{0}\right)^{*} f\right\|<\varepsilon
$$

(see [16]). It is easy to see that the conclusion follows from this condition.
Remark. If \mathfrak{N} is a von Neumann algebra and $A \in \mathfrak{Y}$ then $\Delta_{\Delta}: \mathfrak{N} \rightarrow \mathfrak{N}$. We mention that Theorem 1 is valid in this context, that is, $\Delta_{\Delta}(\mathfrak{H})$ is never norm dense in \mathfrak{N}. Since any von Neumann algebra can be written as the direct sum of algebras of the various types it suffices to consider the case when \mathfrak{A} itself is of fixed type. The algebras of type I_{n} or II, are easily handled by a trace argument. Using powerful results from his work on von Neumann algebras, Herbert Halpern has taken care of the remaining algebras (the properly infinite ones) thus completing the proof. (See [7] for details.)

Added in proof. Joel H. Anderson has recently shown that there exists a strange and wondrous operator A for which $I \epsilon R\left(\Delta_{A}\right)^{-}$. His paper, "The identity and the range of a derivation", will appear in the Bulletin of the American Mathematical Society.

References

1. C. Apostol, On the roots of spectral operator valued analytic functions, Rev. Math. Pures. Appl., vol. 13 (1968), pp. 587-589.
2. A. Brown and C. Pearcy, Compact restrictions of operators, Acta Sci. Math., vol. 32 (1971), pp. 271-282.
3. Calkin, Two sided ideals and congruences in the ring of bounded operators on Hilbert space, Ann. of Math., vol. 42 (1941), pp. 839-873.
4. P. A. Fillmore, J. G. Stampfli and J. P. Williams, On the essential spectrum, the essential numerical range and a problem of Halmos, Acta Sci. Math., vol. 33 (1972), pp. 179-192.
5. P. Gajendragakar, The norm of a derivation on a von Neumann algebra, Trans. Amer. Math. Soc., vol. 170 (1972), pp. 165-170.
6. I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations Math. Monographs, vol. 18, Amer. Math. Soc., Providence, R. I., 1969.
7. H. Halpern, Essential central spectrum and range for elements of a von Neumann algebra, Pacific J. Math., vol. 43 (1972), pp. 349-380.
8. R. V. Kadison, Derivations of operator algebras, Ann. of Math., vol. 83 (1966), pp. 280-293.
9. R. V. Kadison, E. C. Lance and J. R. Ringrose, Derivations and automorphisms of operator algebras II, J. Functional Anal., vol. 1 (1967), pp. 204-221.
10. I. Kaplansky, Modules over operator algebras, Amer. J. Math., 75 (1953), pp. 839-859.
11. - Problems in the theory of rings, revisited, Amer. Math. Monthly, vol. 77 (1970), pp. 445-454.
12. G. Lumer and M. Rosenblum, Linear operator equations, Proc. Amer. Math. Soc., vol. 10 (1959), pp. 32-41.
13. H. Radjavi and P. Rosenthal, Matrices for operators and generators of (B (H), J. London Math. Soc., vol. 2 (1970), pp. 557-560.
14. F. Riesz and B. Sz-Nagy, Functional Analysis, Ungar, New York, 1955.
15. S. Sakai, Derivations of W^{*}-algebras, Ann. of Math., vol. 83 (1966), pp. 273-279.
16. J. G. Stampfli, On hyponormal and Toeplitz operators, Math. Ann, vol 183 (1969), pp. 328-336.
17. --, The norm of a derivation, Pacific J. Math., vol. 33 (1970), pp. 737-747.
18. J. P. Williams, Finite operators, Proc. Amer. Math. Soc., vol. 26 (1970), pp. 129-136.
19. - On the range of a derivation, Pacific J. Math., vol. 38 (1971), pp. 273-279.
20. A. Winter, The unboundedness of quantum mechanical matrices, Phys. Rev., vol. 71 (1947), pp. 738-739.
21. Proceedings of the International Colloquium on Nuclear Spaces and Ideals in Operator Algebras, Warsaw, 18-25 June 1969, Studia Math., vol. 38 (1970).
22. E A. Nordgren, Closed operators commuting with a weighted shift, Proc. Amer. Math. Soc., vol. 24 (1970), pp. 424-428.

Indiana University
Bloomington, Indiana

[^0]: Received October 26, 1971.
 ${ }^{1}$ The author gratefully acknowledges the support of the National Science Foundation.

