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1. Introduction
Our min result gives sufficient conditions under which mp of boundcd

topological manifold is homotopic to a locally flat embedding. We also es-
tablish the analogous unknotting theorem.

THEOREM 1. Let M be a compact topological m-manifold with non-empty
boundary and let Q be a topological q-manifold, with or without boundary, such
that q >_ m - 3. Suppose that (M, OM) is (2m q 1)-connected. Then
any continuous map f M ---) Q is homotopic to a locally fiat embedding.
T.OaEM 2. Let f and g be two locally fiat embeddings of a compact topologi-

cal m-manifold M with non-empty boundary into the interior of a topological
q-manifold Q. Suppose that (M, OM) is (2m q)-connected and q >_ m + 3.
Iffand g are homotopic, then they are ambient isotopic.

COaOLLARY 1. If M is a compact topological m-manifold, m > 3, such that
each component of M has non-empty boundary, then there is a locally fiat em-
bedding of M in E2"-1 and any two locally fiat embeddings of M in Eq, q >_ 2m
are ambient isotopic.

COROLLAaY 2. If M is a compact topological m-manifold, then there is a lo-
cally fiat embedding of M in E’, and if m 3, then any two locally fiat
beddings of M into a q-plane in Eq+, q >_ 2m, are ambient isotopic in Eq+.

Proof. If m <_ 3, M is a combinatorial manifold, and the result is well
known.
For m > 3, we remove the interior of a locally fiat m-cell D from each

component Mi of M. We can then embed each component of the resulting
manifold with boundary in one of a set of parallel (2m 1)-planes in
using Corollary 1. Then we embed the interiors of the cells we removed as
cones over the ODi’s from points not in the (2m 1)-planes. By Theorem
1.2 of IDol, if there is an embedding of M in _h;m, m _> 3, then there is a lo-
cally fiat embedding.
The proof of the isotopy part of the corollary is similar. One begins by

moving the components of M into distinct parallel q-planes in Eq+i. Then
proceed as in the embedding part using "relative" versions of Miller’s taming
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theorem (Lcmma 1 in Section 2) and Zeeman’s codim 3 unknotting ball pair
theorem [Z].
The proof of the next corollary is similar to the proof of Corollary 2.

COROLLARY 3. Let M be a closed r-connected topological m-manifold
r

_
m 4. Then there is a locally fiat embedding ofM in E2,-r.

Lees [L] established Corollary 3 for M an orientable manifold. Other re-
sults on embedding compact topological manifolds have been obtained by
Weller.
The proof of Theorem 1 is contained in Sections 2 and 3. The proof of

Theorem 2 is in Section 4.

2. Peiminaries

In this section we list some definitions and lemmas which we will use in the
proof of Theorem 1.

DEFINITION. Let X be a compact subset of a metric space Q. An e-push
P on (Q, X) is an ambient isotopy

IHt’Q-+Q, [0,1] and Ho 1}

such that each H is an v-homeomorphism and

Ht(x) x when d(x,X) >_ e and t [0, 1].

Also we write P(x) Hi(x).

TAMING LEMMA 1 (Richard Miller [M]). Suppose M and Q are PL com-
binatorial m- and q-manifolds, respectively, with M compact, q >_ 5, and
m

_
q 3. Let f" M - Int Q be a locally fiat embedding, and let e 0 be

given. Then there is an e-push P of Q, f M) such that Pf is piecewise linear.

TEOREM 3 (Dancis [D1], Hudson, Tindell). Let M be a compact PL m-

manifold with non-empty boundary and let Q be a PL q-manifold. Suppose
that m

_
q- 2and M, OM) is 2m q- 1)-connected. Then any map

f" M Q is homotopic to a PL embedding.

Here we first prove a special version of this theorem (Lemma 2) which we
will later use inside the coordinate neighborhoods of a topological manifold.
A proof of Theorem 3 will follow the proof of Lemma 2. But first we need
two definitions.

I)EFINITION. Let g Y -- Z be a map where Y and Z are spaces. A sub-
set X of Y is a set of essential singularities of g if g embeds Y X in Z.

DEFINITION. A complex R is locally-tamely embedded in a topological
n-manifold M if for each point x e R there is a neighborhood N(x) in M and
an onto homeomorphism h N(x) -+ I [0, 1] such that h IR N(x) is
PL (with respect to R and I).
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LEMMA 2. Let M be a compact topological m-manifold, OM , such. that
(M, OM) is (2m q 1)-connected. Let R be a finite complex which is
locally-tamely embedded in M. Let C be an open collar of OM in M. Suppose
g R ---) Eq is a PL general position map with m

_
q 2. Then there is a

compact set X of essential singularities for g and a push on M such that
(C) x.

Furthermore ifD is a compact subset of C then we may obtain(C)

Note. g embeds R (C).

Proof. By removing from M an open collar containing D and properly con-
rained in C, and then adding it back on at the end of the proof, we make it
possible to ignore the set D during the proof.

Let K be a triangulation of R such that g is simplicial with respect to K
and some subdivision of E. Let S be the set of singularities of g. Since g
is in general position, dim S _< 2m q. Let Ks be the triangulation S in-
herits from K and let K be the (2m q 1)-skeleton of S. Then K con-
tains those points at which g is not locally a homeomorphism. Since K is a
locally tame subset of M, by Newman’s Engulfing Theorem [N] there is a
push 0 on M such that 0(C) K.
Now let us take care of Ks K. Let

lzi’li 1, ..-,n, j 1, ..-, s s(i)}

be the (2m q)-simplices of K, where if zi is a (2m q)-simplex in g(K),
then

For each i, choose s(i) open sets G. in z whose closures are pairwise disjoint
and disjoint from 0z. Let

F. g-l(i- G) .
Then there is a push - on each z., fixed on 0z-, such that 0(C) F-,
nd each i. may be extended to all of M in such wy that ech is the
identity outside St(, K). Let be the composition of M1 the ’s with

0. If welet
I1()X K u U= F,

then v(C) D X. Also g is an embedding on R X, since if g(zo’) g(a),
p # j, then

g(.- F.) n g(- F) G n G O.
This completes the proof of Lemma 2.

Proof of Theorem 3. LetR MandD 0 in the above lemma. Let
CI(C) be a compact PL collar of OM. Let i’M- M C be the PL

is the barycenter of z; K is the first barycentric subdivision of K.
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embedding obtained by pushing in the collar. (Thus i is homotopic to the
identity.) Assume that f has been homotoped to a PL general position map
fl. Then the engulfing process described in the above proof may be carried
out in such a way that is PL. Thus fl i is the desired embedding of M
into Q.

3. Proof of Theorem

Let f M - Q be as in the hypothesis of the theorem, and let C be the in-
terior of a locally flat closed collar of OM in M. The basic idea of the proof is
to construct an approximation h M -. Q to f and engulf from C a set X
of essential singularities for h (as defined in Section 2). If P is the engulfing
push, then h will embed M P(C), which is a copy of M. On a neighbor-
hood of M P(C), h will be locally PL, and hence locally flat by [Z].

In what follows, all neighborhood, interiors, and closures are understood to
be neighborhoods, interiors, and closures in M. Let {I3.}= be a cover of M
by m-cells such that each I. is piecewise-linearly embedded in the interior of a
triangulated coordinate patch on M whose image under f is contained in a
triangulated coordinate patch in Q. We will assume during the course of

U_- I,the proof that all approximations to f retain this property. Let Ni
forj 1, r.
The map h, the set X, and the push P will be constructed inductively.

This process will involve a double induction. In the main induction we will
construct an approximation h3. to f and engulf from C a set of essential singu-
larities for h3.1N3.. To do this it will be necessary to first engulf a set of
essential singularities for h3.tI and then, in a secondary induction, construct
and engulf a set of essential singularities that arise from intersections of
h3.(I3.) with h3.( (N3. I3.) n I) for each i < j.
The induction hypotheses are as follows.

Main Induction Hypothesis. For j 1, r, there is:
(1) a map hi M - Q approximating f;
(2) an open set Kj c M such that h3.1Ki is a locally flat embedding;
(3) a push P- on M such that Ni c K3. u P3.(C).

Secondary Induction Hypothesis. With j as above and i 0, 1, j 1,
there is:

(1) a map g3. M - Q approximating f;
(2) open sets L.i and L3._ in M such that g.i is a locally flat embedding

on each (L._ will be the same as K3._, except for some minor adjustments)
(3) a push Oi on M such that

(a) N u I3. c L- u
(b) N3’--1 ( L3’-I U (ii(C)

The proof will be in three steps" the initial step of the main induction, con-
struction of hi; the initial step of the secondary induction, construction of
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g’0 from hs-1; and the general step of the secondary induction, construction of
g- from gs.-l. The general step of the main induction is then completed by
letting hs gs,s-, Ks Ls,s-1, and Ps s,s-.

Construction of hi. Let h M -- Q be an approximation to f which is PL
and in general position on some compact triangulated neighborhood W of
11. Then by Lemma 2 there is a compact set X1 of essential singularities for
hi W and a push P on M such that P(C) X. Let Kr Int W1 X.
This completes the initial step of the main induction.

Construction of go from hs-1, j > 1. Choose compact PL submanifolds
Rs, W. of the triangulated neighborhood of Is such that

(a)
(b)
(c)

Rs c Ws n
Is c Int Wy, and
C1 (Ws- Rs) n N_I c Pj_l(C).

By Lemma 1 there is a short push T of Q such that Ths- Rs is PL. By (c)
we can find a closed neighborhood As of C1 (Ws Rs) in C1 (M Rs)
such that

As N_ Ps-(C).

Let g0 be a PL general position approximation to Ths- which agrees with
Ths-1 on Rs and off A s. As in Lemma 2, there is a compact set Xs of essential
singularities for gs01 Ws and a push s0 on M such that

s0(C) (Ns-1 Ls-1) u

The initial step of the secondary induction is then completed by letting

Ls0 Int Ws- Xs and Li-1
Construction of gs from g._,, 1 _< i _< j 1. Consider the compact set

N u Is (Ls,i-1 fl Li_I 4)s,i--.I(C).

it is contained in (N u Is) ((N- u Is) n Ns-1) and hence in

(N (Is u Ni-1) LI (Is Ns-).

Therefore it is the union of two disjoint compact subsets, one in I (N_I
Is) and the other in Is Ns-1. Let Z and Re be disjoint, compact PL
manifold neighborhoods of these sets, Z in the triangulated neighborhood of
I and Re in the triangulated neighborhood of Is, such that Z c L-_ and
Re Ls,s-. By applying Lemm 1 to the manifolds Z and Re and using
general position we may alter gs,-i (call the altered map gs) so that
and gs(R) are polyhedra in general position; i.e., gs(Z) n gsi(R) is a poly-
hedron of dimension 2m q. If the taming and general position pushes are
sufficiently short, no new singularities will be introduced in Ls,- n Ls-1 out-
side of Z Rs. As in the proof of Lemma 2, there is a compact set X Z
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of essential singularities for g. Z u R and a push .(C) such that- X.
Since ’.-1(C) contains both

N u It ((L’-l,- n L._l) u Int Z u Int R) and N-_I L._,

we may assume that O(C) also contains these sets. We complete the induc-
tion step by letting L. (L-,_ n L._) u Int R u Int Z X.

Finally, if we let i M --, M P,(C) be a homeomorphism homotopic to
the identity, then h,i is the desired embedding of M into Q.

4. Proof of Theorem 2
A corollary to the method of proof of Theorem 1 is the following.

LEMMA 3. Let fi g, M, and Q satisfy the hypotheses of Theorem 2. Then f
and g are concordant; i.e., there is a locally fiat embedding

F:MXI---,QXI

such that F(x, O) (f(x), O) and F(x, 1) (g(x), O) for all x e M and
F-(Q X i) M Xi, i 0,1.

Outline of Proof. Define

RIM X [0,1/10] =fX 1 and RIM X [9/10,1] g X 1.

Then copy the proof of Theorem 1, replacing M by M X [1/10, 9/10] and C
by C X [1/10, 9/10], and extending all pushes to M X I keeping M X {0, 1}
fixed.

].EMMA 4 (Dancis and Richard T. Miller [D-M]) (Topological concordance
implies ambient isotopy). Let M be a compact topological -anifold and let
Q be a topological q-manifold, with q >_ m 3. Let F M X I -- (Int Q) X I
be a locally fiat embedding, with F-(Q X i) M X i, i 0, 1, and let f,
g M Q be defined by F(x, O) (f(x), O) and F(x, 1) (g(x), 1) for all
x M. Then there is an ambient isotopy

{H:Q---,Q, tel, H0 1}

such that Hf g.

Theorem 2 is u direct consequence of Lemmas 3 and 4.
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