SUBSETS OF INFINITE DIMENSIONAL METRIC SPACES

BY
P. R. GoobEy

Let © be a complete, separable metric space of non-o-finite A*-measure,
where A" denotes the Hausdorff measure corresponding to some continuous,
increasing real function h(t), defined for ¢ = 0 with A(0) = 0 and k() > O
fort > 0. The following problem appears to offer some difficulty:

Does Q necessarily contain a system of ¢ disjoint closed subsets each of non-o-
finite A"-measure?

A. 8. Besicovitch [1], [2] and [3] and R. O. Davies [4], [5] and [6] have shown
that the answer is affirmative when Q is a subset of a Euclidean space. In
[8] D. G. Larman introduced the concept of a finite-dimensional compact
metric space and in [9] he showed that the answer to the problem was affirma-
tive in such spaces. Thus the problem has been solved in the case of “small”
metric spaces. It is the purpose of this paper to obtain results connected with
the problem, in the case of “large” metric spaces.

Let @ be a complete, separable metric space. Then, for z ¢ Q and positive
real numbers r, a(a < %), we shall denote by N(z, r, @) the maximal number
of closed spheres of radius ar whose corresponding open spheres are disjoint
and which meet the closed sphere S(z, r). € is said to be spherically uniform
if there exist positive constants &y = M(a) and A\, = N\(e) such that, for any
r>0,

A = Nz, r, a)/N(y) T, a) =M
for all z, y ¢ and
N(z,r,a@) 2 N(z,7, a)

forallzeQand r £ #. We use the convention
B/o =0 if B#
=1 if 8= =,

Larman’s notion of dimension [8] can be defined as follows: if @ is a complete,
separable metric space then Q is of finite dimension if and only if given « (< %)
there exists a positive number R and an integer N such that N(z,r,a) £ N
for all z €2 and for all r < B. Then we see that a complete, separable spher-
ically uniform metric space Q has infinite dimension if and only if there exists
a positive number a (< %) such that given any positive integer N, there exists
a real number R such that N(z, r, ) = N forallr < R and for all x € Q.

We shall now obtain results concerning “large” spherically uniform metric
spaces. It would be interesting to see to what extent the “spherically uni-
form” hypothesis can be dropped. Unfortunately, T have been unable to
solve this although, as will be seen, the restriction can be slackened somewhat
for the result in Theorem 2.

Received December 26, 1972.
436



SUBSETS OF INFINITE DIMENSIONAL METRIC SPACES 437

We shall need the following

LeMMA 1. Let Q be a spherically uniform metric space and let x ¢ Q@ be such
that N(x, r, @) = 2 for somer, a (< }). Thend(S(z, 1)) = ar (1 + 2a)7,
where d(C) denotes the diameter of the set C.

Proof. Since Q is spherically uniform, N(z, (1 + 2a), &) = 2. Let
¥, 2 be the centres of two closed spheres of radius ar(1 + 2a)~" which meet
S(z, (1 + 2a)™") and whose corresponding open spheres are disjoint. Then
¥,z eS(z, r) and p(y, 2) = ar(l + 2a)~", where p is the metric in Q.

Lemma 2. If Qs a finite dimensional, separable metric space then A"(Q) = 0
for some positive integer n, where A" denotes the Hausdorff measure corresponding
to the function h(z) = 2",

Proof. Since @ is finite dimensional there exist positive real numbers B
and o (a < %) and a positive integer N such that N(z, r, @) = N for all
r < R and for all x 2. Thus any closed sphere S(z, 7) in @ with r £ R
can be covered by N spheres of radius 2ar. Continuing this argument we see
that any such sphere S(x, r) can be covered by N’ spheres of radius (2a)’r.

Now choose a positive integer n such that N(2a)" < 1. Then, since (2a)’ —0
asj — o we have

A*(S(z, r)) £ limj,e N¥(2:(2a)’r)" = 0,

forr £ R. Now since  is separable it can be covered by a countable collec-
tion of spheres of the form S(x, r) with r < R and so A"(Q) = 0 as required.

TaEOREM 1. Let Q be a complete, separable, spherically uniform metric space
of infinite dimension. Then Q contains ¢ disjoint, compact sets of infinite di-
mension.

Proof. Let a (< %) be such that given any positive integer N, there exists
a real number R(N) such that N(z, r, «) = N for all r < R(N) and for all
z e

Put C = S(z, R) for some x ¢ and some R < R(2). Then let 2n; be the
largest even integer such that S(x, R(1 + 2«)™") meets 2n,; closed spheres of
radius aR(1 + 2a)~" and whose corresponding open spheres are disjoint. If
there is no such largest integer put n, = 1. We note that, in either case, since

Q is spherically uniform and B < R(2) we must haven, = 1. We now choose
2n, such spheres, say

S(2(i1), aR(1 + 2a)7"), 4 =1,2,---,2m
and for each 7 with 1 < 7; < 2n; put
C(i) = S(x(ir), (aR/4)(1 + 22)7").

We note that C(4,) < C for all 5. Now assume that forj =1,2,---,m — 1
we have defined integers n; = 1 and for any (m — 1)-tuple (31, %, ** *, tm-1)
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withl £ 4; £ 2n;forj = 1,2, ---, m — 1 a sphere

C('il, ’1:2, cry 'I«m-l)
of the form

S(@(d1, gy *+y tm-1), (@"R/A™T(1 + 20)7")
with the following properties: each of the 2n,_; spheres
C(%1, 12, <+ *y tms, k), k=12 -+, 2nm
is contained in the sphere C (4, %3, * -+, tm—2) and
p(C(iy, By« + 5 imes, k), C(Gs, B2y =+ +, Bms, @) 2 (20" R/A™ (1 + 22)™ "
if k % q. Now choose the largest even integer 2n., say, such that each
S(a(iy, B, «++, ima), (" TR/A"T)(1 + 20)7")

meets 2n. closed spheres of radius («”R/4™")(1 4+ 2a)™™ and whose cor-
responding open spheres are disjoint. If there is no such largest integer put
fim = 2Nm-3. Again, in either case, we must have nn = 1. For each
C (4, %3,°  *, tm-1) We now choose 2n., such spheres, say

S(x(ily 7;2; Tt im—-l, 1'”) (amR/4m—1)(1 + za)-m), Im = 1’ 2, Yy 2Nm
and for each 7, with 1 £ 7m < 2n., put

C(”;l, 7:2’ M ', im—-l, im) = S(x(ily ,i2: . .7 im—l’ im), (amR/4m)(1 + 2a)_m)‘

We note that C(i1, ’iz, ey, 7:,,._1, 'l:m) C C('l:l, 1:2, e, 1:";_1) for 1 = im = 2nm.
Alsoif k& # ¢

p(C(il, 'i2’ Y im—l, k)’ C(ily 7:2) Yy im—ly Q)) = (2amR/4m)(1 + 20‘)_m~

Hence we have defined, by induction, for each integer 7 an integer n; = 1 and
for each m-tuple (iy, 42, - -+, tm) With 1 < 4; < 2n;forj = 1,2, - - -, m a sphere
C(ty, 12, * - -, tm) Of radius

(«"R/A™)(1 + 2a)™™

and each of the 2n,, spheres C(4, %3, * +*, tm-1, j) is contained in the sphere
C(%1, %2y +*+, tm-1). We also have

p(C(4y, 41, + s imeay k), C(31y T2y * + *, tmey @) 2 (22"R/4™)(1 + 22)7"

if k5 q.
Now define

8(0) = Uil C(ir) and 8(1) = Ui, 1a C(a).

Assume that S(ky, k2, - - -, kw) has been defined for all m-tuples (ks, ks, « -+, km)
of zeros and ones and that for some finite collection A of m-tuples,

S(kh kg, - -, kn) = U("v*’a""ﬂ'm)m C(ih gy * e, im).
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Then we put
Sk, kzy + -+, kmy 0) = Udiysigsesimrea Ui a1 C(31, 32, + +, my Smar)
and
Skt bz, + 5 kmy 1) = Uipigreeorimpet Uinm icnn+1 C(i1, G2y ** +y my men) -
Thus we have defined, by induction, closed sets S(ki, kz, - - -, kw) for all
m-tuples of zeros and ones and form = 1,2, --- . We note that

S(kly k?y ) km} km+l) c S(kla ki) Tt km)
and

S(klf k2’ ) km) n S(jhj% ° ’,jm) =0 if (kl, k‘zf ] k"‘) # (jlrjﬁy o ‘,jm)-
Let {ka} be an infinite sequence of zeros and ones and define
S(kly k2) ° ') = n:-l S(kly k27 Tty km)'

Then we have ¢ disjoint, non-empty, compact subsets of Q.

We now turn our attention back to the integers n; defined in the construc-
tion of the spheres C(4, 42, - -+, im). We note that n; — « asj — « since,
otherwise, there would be an integer M and spheres S(xz, r) of arbitrarily
small radius r such that S(z, r) meets at most M closed spheres of radius ar
whose corresponding open spheres are disjoint. This is impossible because
of our choice of «.

Now let {k.} be an arbitrary sequence of zeros and ones and let p be an
arbitrary positive integer. We show that A” (S(ky, ks, +--)) > O.

Since n; — « asj — « we may choose N so large that forj = N,

n; > (32(1 + 2a)/a)”.
Let { U i=1.2.....: be an arbitrary finite open covering of S(k, kz, - - -) with
d(U;) < 26"R(1 + 2a)™/4" for i=1,2, ---,1I.

We may, and do, assume that each U; contains at least two points of S(k;,
ks, +++). Then for each 7,1 < 7 < I there is an integer m(7) > N such that
U, intersects only one sphere of S(ky, k2, - * *, kmc—1) but has points in common
with at least two different spheres of S(ky, ke, « - *, kmy). So we must have

d(Uy) = 2a™PR(1 + 2a)™™9/4™ =z d(V,),
where V; is any one of the spheres of S(ky, ks, « -+, km¢y) which U, intersects

Then _ ‘
YA (dU))? Z Tia (d(V))P.

Now let C(%1, %2, - - -, tx-1) be any sphere of S(ky, ke, -+, ky-1), we shall
show that

22 AV Vin Ciyy g, + -+, iwa) # B Z (d(C(in, G, -+, B-1)))”.
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For, assume otherwise; then using Lemma 1 and the fact that

N4+2 N~1 —N-+1
M( R(1 _i_za)..N.z) _<2a R(1 + 2a) )P’

4N +1 4N—1

we see that there must be a sphere
C(il, 7;21 Ct Y ”:N—ly 'L;;);
say, of S(ki, ke, - -+, kx) such that
2 (@) Vin Clin, da,y + <+, iwea, i) 0}
N+2 »
a R —N—2
<<_4TV'+_1_(1+2a) v ).
Thus if U; is such that U; n C(4y, %, « - -, tn_1, ) # @ then m(s) = N + 2.
Now assume that for some integer ¢ there is a sphere
C(t1, %, -+, Ty, 7’;;’ 7:;+1’ ] i;+q)
of S(ky, ks, - -+, kniq) such that
2 AV Vin Cliy gy =+ wety iy vy 05 ) # 0}
ot N—gt
< (% (1 + 207 )
and such that if
Usn Cis, da, -+ ety By vty © )y Gvba) = 0

then m(7) 2 N 4+ g + 2. Then, as above, we deduce that there must be a
sphere

. . . oK ok * ok
C (1, Tay ***, Iv—1y TNy INH1, ** * ) W4ay INa41)
say, of S(ky, ks, - -+, knyes1) such that

S AV Vin Cliy, day ++y Guety Iy Ity = * y Gbas Satgrr) 5 B}
N+q+3R
< ( 1+ 2@‘”‘“”)

4N+ atz
Thus if U; is such that
. . . K ok ok R 3
Uin C(i, dg, ** ) tv—1y I3, IN41, ** Ity IN4g41) # D

thenm(z) = N + q + 3. Hence we have shown by induction that for ¢ = 0,
1,2, - - - there exists a sphere

. . . Sk ok o
C("rl, T2y * 0y IN-1, IN, INHL, 00, 7'N+’1) of S(kl’ k27 Tty kN-l-Q)

such that if U; n C(dy, 4a, -+, in-1, Oy Gwe1, *- 5 imsq) ¥ © then
m(t) 2 N + g + 2. Now put

0 . . N I K3
T = ﬂq_o C(dy, 92y ** *, Tv—1, Ty IN41, ** * IN4q)
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then x ¢ S(ky, k2, ---). If z € U; for some ¢ then
Ui n C(’l:l, ’1:2, Ct 7:N-—1) 7’-;7) 1::;-5'17 Ty 1::‘”‘9) # g

forallqg = 0,1, 2, ---. Hence n(z) is not defined. This is impossible and so
we have shown that

2@V Vin Cliny 1o, -+ -y iwma) # B} Z (d(Ca, 5, -+, 5w1)))P
Hence by Lemma 1,

25 (d(U))? z2 ("R/A(1 + 22)7.

Now {U,} was an arbitrary open covering of S(ki, ks, - --) and so A(S(k,
ks, --+)) > 0. Using Lemma 2 and the fact that p was an arbitrary integer
we deduce that we have ¢ disjoint, infinite dimensional, compact sets as re-
quired.

We recall from [7] that a space S has finite generalized Hausdorff dimension
if and only if there is a measure function & such that A*(8) = 0. We say
that a sequence {U,} of sets is a fine repeated cover of S is S < UZ; U; for
1=1,2 -+ and d(U;) > 0as?— ». Inl[7]it was shown that S has finite
generalized Hausdorff dimension if and only if it has a fine repeated cover.
We shall now deduce a result similar to that of Theorem 1, this time in the
case of spaces of infinite generalized Hausdorff dimension.

A complete, metric space Q is said to be spherically monotonic if

N(x, 7, a) = N(y’ 7‘,, a)

whenever 3 > o > 0and S(z, r) < S(y, ).

Let © be a complete, spherically monotonic metric space of infinite general-
ized Hausdorff dimension. Then € does not have a fine repeated cover.
Assume that, for all positive numbers o (< 1) and r, each closed sphere of
radius r meets only finitely many closed spheres of radius ar whose correspond-
ing open spheres are disjoint. Let x ¢ 2 and put S(¢) = S(x, ?) forz = 1, 2,
«++,s0that @ < Ui, 8(3) and S(1) € 8(2) < ---. Put U, = S(1). 8(2)
can be covered by finitely many spheres of radius £, let these spheres be U, Us,
--+, Un,. Similarly, S(3) can be covered by finitely many spheres of radius %,
let these spheres be Un 41, Uny42, - -, Un,. Continuing in this manner we
see that the sequence { U} will form a fine repeated cover, which is impossible.
Thus there exists an z ¢ @ and positive numbers «a,  such that N(z, r, o) = <.
We can now use this fact to prove

TueoreM 2. Let @ be a complete, spherically monotonic metric space of
nfinite generalized Hausdorff dimension. Then Q@ contains ¢ disjoint, closed
subsets each of infinite generalized Hausdorff dimension.

Proof. Let x ¢ and r, « be such that N(z, r, @) = ©. Then since Q is
spherically monotonic we can define points ¢(4;) for ¢ = 1, 2, - - - such that
p(c(ir), c(G1)) = ar(l + 2a)™" for 4 # 71 and p(c(dy),z) < rfori; = 1,2, ---.
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Again, using the fact that Q is spherically monotonic, for each ©, = 1, 2, - --
define points c(%, %) for 72 = 1,2, - - - such that

p(c(iy, 2), (i, o)) Z a'r/4(1 + 20)* for 4 # ja
and
p(c('il, @2), C(’la)) = ar/4(1 -+ 2(1) for 4 = 1, 2, te.
It is easy to see that, in general, we can define points ¢(%, %2, - -+, %.) Where
1;,=1,2,..-forj= 1,2, -+, nsuch that
P(c(il: T2 °°°, iﬂ-l) 7'10): c(/’:lr ":2r T 7:»-1: .7»))
Z a"r/4"(1 + 2a)" for dn % fa

and
p(c(ily Tgy ***, Tnt i), C(’l:l, gy ***y tnt))

< " r/4VN (1 + 20)" for d. = 1,2, -0,
Thus the ¢(, %2, - - +, %) may be defined for all n with ¢z, = 1,2, --- forj = 1,
2, -, n.

Now let {7} be any sequence of positive integers; then
{c(d1, %, ** *) Tm)} matitseee
forms a Cauchy sequence. Denote the limit point by ¢(4, 42, -<+). Then
p(c(ih 'iz, Y 7:"’ in+1’ i ')y C(’l:1, 1:27 Tty 7:"7 jﬂ’l-l) i ')
"2 + 3a)r

4*(1 + 2a)""(4 + Ta)

an+1 r

Let {k.} be a sequence of zeros and ones and put
S(ky, ks, --+) = {c(d1, %2 *+ ) m = kmmod (2) for m = 1,2, ...},

Then the S(k, ke, - --) form ¢ disjoint, closed subsets of Q.

Assume that for some sequence {k,} of zeros and ones, S(ky, ks, ---) has a
fine repeated cover. That is, there exists a sequence {U;} of sets such that
S(ky, ks, +-+) € Ui=jUiforj = 1,2, --- and d(U;) - 0asi— o. For
eachj = 1,2, - - define I(j) to be an integer so that

d(U;) < o'r/&(1 + 2a)’ for i = I(j) and I(j+ 1) > I(j).

= for tut1 5 Jata

Then if 7 = I(1), U; cannot contain points c(%, %, - -+) and ¢(j1, J2, - *) of
S(ky, ks, -+ -) with 4, # j;. Hence we may choose ¢t = ky mod (2) such that
c(iy, 12, +-+) ¢ Usfor I(1) < ¢ < I(2) if 44 = 41. It is easy to see that, in
general, we may choose iy = k, mod (2) such that c(sy, 45, -+-) ¢ U; for
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I(n) £i<I(n+1)ifs; =1 forj=1,2,---,n. Butthen

C(’ir, 1:7 "') eS(kl) k2: "')
and

c(is, ig, ---) ¢U; forall ¢ = I(1).

Hence the sequence {U,} is not a fine repeated cover. Thus the S(ky, ks, -+ )
are of infinite generalized Hausdorff dimension. This completes the proof of
Theorem 2.

As we noted at the beginning of the work the problem has been solved in the
case of Lorman’s finite-dimensional spaces. In fact these spaces are essen-
tially those with a geometry which behaves in a similar fashion to the geom-
etry of Buclidean spaces. It is shown in [7] that in Banach spaces the notion
of finite generalised Hausdorfi dimension is exactly the same as the usual no-
tion of finite dimension. So we see from the results of this paper that although
the problem remains unsolved in “large” metric spaces, the difficulty is
probably not the size of the space but more its lack of uniformity in the general
case.
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