
SUBSETS OF INFINITE DIMENSIONAL METRIC SPACES

BY
P. R. Goo.

Let f be a complete, separable metric space of non--finite Ah-measure,
where hh denotes the Hausdorff measure corresponding to some continuous,
increasing real function h(t), defined for

_
0 with h(0) 0 and h(t) > 0

for > 0. The following problem appears to offer some difficulty:
Does necessarily contain a system of c disjoint closed subsets each of non-r-

finite A-measure?
A. S. Besicovitch [1], [2] and [3] and R. O. Davies [4], [5] and [6] have shown

that the answer is affirmative when f is a subset of a Euclidean space. In
[8] D. G. Larman introduced the concept of a finite-dimensional compact
metric space and in [9] he showed that the answer to the problem was affirma-
tive in such spaces. Thus the problem has been solved in the case of "small."
metric spaces. It is the purpose of this paper to obtain results connected with
the problem, in the case of "large" metric spaces.

Let f be a complete, separable metric space. Then, for x f and positive
real numbers r, a(a < 1/2), we shall denote by N(x, r, a) the maximal number
of closed spheres of radius ar whose corresponding open spheres are disjoint
and which meet the closed sphere S(x, r). f is said to be spherically uniform
if there exist positive constants k (a) and ), k(a) such that, for any
r>O,

X,

_
N(x, r, a)/N(y, r, a)

_
h

for all x, y e f and
N(x, r, a)

_
N(x, r’, a)

for all x a and r <- r’. We use the convention

/o =0 if

=1 if #=.

Larman’s notion of dimension [8] can be defined as follows: if f is a complete,
separable metric space then 12 is offinite dimension if and only if given a < 1/2)
there exists a positive number R and an integer N such that N(x, r, a)

_
N

for all x e f and for all r < R. Then we see that a complete, separable spher-
ically uniform metric space f has infinite dimension if and only if there exists
a positive number a < 1/2) such that given any positive integer N, there exists
a real number R such that N(x, r, a) >- N for all r -< R and for all x
We shall now obtain results concerning "large" spherically uniform metric

spaces. It would be interesting to see to what extent the "spherically uni-
form" hypothesis can be dropped. Unfortunately, I have been unable to
solve this although, as will be seen, the restriction can be slackened somewhat
for the result in Theorem 2.
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We shall need the following

LEMA 1. Let be a spherically uniform metric space and let x be such
that N(x, r, ) >= 2 for some r, < 1/2). Then d(S(x, r) -> ar (1 W 2a) -1,
where d( C) denotes the diameter of the set C.

Proof. Since 2 is spherically uniform, N(x, r(1 -t- 2a) -1, a)

_
2. Let

y, z be the centres of two closed spheres of radius ar(1 - 2a) -1 which meet
S(x, r(1 -t- 2a)-) and whose corresponding open spheres are disjoint. Then
y, z S(x, r) and p(y, z) >= ar( 1 W 2)-, where p is the metric in t.

LEptA 2. If is a finite dimensional, separable netric space then A’(12) 0
for some positive integer n, where A denotes the Hausdorff measure corresponding
to the function h(x) x

Proof. Since t is finite dimensional there exist positive real numbers R
and a (a < 1/2) and a positive integer N such that N(x, r, a) <- N for all
r < R and for all x e It. Thus any closed sphere S(x, r) in 2 with r R
can be covered by N spheres of radius 2ar. Continuing this argument we see
that any such sphere S(x, r) can be covered by N spheres of radius
Now choose a positive integer n such that N(2a)" < 1. Then, since (2a) --, 0
as j -o we have

h’(S(x, r))

_
lim._, N(2 (2a)r) 0,

for r _<_ R. Now since 2 is separable it can be covered by a countable collec-
tion of spheres of the form S(x, r) with r R and so/t’(t) 0 as required.

THEOREM 1. Let be a complete, separable, spherically uniform metric space
of infinite dimension. Then contains c disjoint, compact sets of infinite di-
nension.

Proof. Let a ( < 1/2) be such that given any positive integer N, there exists
a real number R(N) such that N(x, r, a) >= N for all r < R(N) and for all
xet.
Put C S(x, R) for some x e ft and some R < R(2). Then let 2n be the

largest even integer such that S(x, R(1 -t- 2a)-) meets 2n closed spheres of
radius aR(1 W 2a)- and whose corresponding open spheres are disjoint. If
there is no such largest integer put n 1. We note that, in either case, since
ft is spherically uniform and R < R(2) we must have n >- 1. We now choose
2n such spheres, say

S(x(i,), aR(1 -t- 2a)-), i 1, 2, ..., 2n
and for each ii with 1

_
i

_
2n put

C(i,) S(x(i), (/4)( + 2)-).

We note that C(i) C for all i. Now assume that forj 1, 2, ..., m 1
we have defined integers n -> 1 and for any (m 1)-tuple (i,/, ..., i,_)
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with 1 -< it

_
2n forj 1, 2, ..., m 1 a sphere

C(i, i, ..., i_)
of the form

((i. i...., i_). (.-R/4-)( +
th the foong properties" each of the 2n spheres

C(i, i, ..., i_, k), k 1, 2, ..., 2n
is contained in the sphere C(i, i, ..., i_) and

p(C(i, i2, ..., i_, k), C(i, i2, ..., i, q)) (2a-R/4-)(1 + 2a)-(-)

if k q. Now choose the largest even integer 2n, say, such that each

S(x(i, i2,..., i), (a-R/4-)(1 + 2a)-)

meets 2n closed spheres of radius (aR/4-l)(1 + 2a) and whose cor-
responng open spheres are disjot. If there is no such largest teger put
n 2n. Again, in either case, we must have n, 1. For each
C(i, i,..., i) we now choose 2n such spheres, say

S(x(i, i, ..., i, i)(aR/4-)(1 + 2a)-), i 1, 2, ..., 2n
and for each i th 1 i 2n put

c(i,, , ..., i, i) (x(i, i, ..., i, i), (a/4)( + 2,)-).

We note that C(i, i, ..., i_, i) C(i, i2, ..., i) for 1 i, 2n,.
Also ff k q

p(C(il, i2, ..., i_,, k), C(i, i, ..., i, q)) (2aR/4)(1 + 2a)-.
Hence we have defined, by induction, for each integer j an integer n 1 and
for eh m-tuple (i, i, ..., i) th I i 2n for j 1, 2, ..., m a sphere
C(i, i, ..., i) of radius

(aR/4)(1 + 2a)

and each of the 2n spheres C(i, , ..., i, j) is contained in the sphere
C(i, , ..., i). We also have

p(C(i, i, ..., i_, k), C(i,, i, ..., i_, q)) (2aR/4)(1 + 2a)

ifkq.
Now define

S(O) U:- C(i) and S(1)

Assume that S(k, , ..., k,) hbeen defined for all -tuples (h, , ".., k)
of zeros d ones and that for some fite collection A of m-tuples,
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Then we put

(, k, , O) U., ,,.,)., U"" C(i, i, i, i,+)im+ll

and

Thus we have defined, by induction, closed sets S(kl, k.,..., k,) for all
rn-tuples of zeros and ones and for m 1, 2, We note that

and

S(Io, k,..., k,) n S(,j, ...,j) ft if (k,/,..., k,) (,j,...,j).

Let {k.} be an infinite sequence of zeros and ones and define

Then we have c disjoint, non-empty, compact subsets of
We now turn our attention back to the integers n defined in the construc-

tion of the spheres C(il, i, ..., i,). We note that nj --. o as j --. o since,
otherwise, there would be an integer M and spheres S(x, r) of arbitrarily
small radius r such that S(x, r) meets at most M closed spheres of radius ar
whose corresponding open spheres are disjoint. This is impossible because
of our choice of a.

Now let {kl be an arbitrary sequence of zeros and ones and let p be an
arbitrary positive integer. We show that A (S(kl, 1, )) > O.

Since nj - as j --, we may choose N so large that for j >-

n > (32(1 -t- 2a)/a).
Let U} _1, be an arbitrary finite open covering of S(k,/, with

d(U) < 2aNR(1-F2a)-N/4 for i-- 1,2, ...,I.

We may, and do, assume that each U contains at least two points of S(k,
ks, ). Then for each i, 1

_
i

_
I there is an integer re(i) > hr such that

U intersects only one sphere of S(k, k, ..., k()_) but has points in common
with at least two different spheres of S(kl, k, ..., k()). So we must have

d(U) >-_ 2a()R(1 -t- 2a)-()/4()
_

d(V),

where V is any one of the spheres of S(k, k, ..., k()) which U intersects
Then -_, (d(U,) ) >- -_ (d(V,) ).

Now let C(i,/, ..., i_) be any sphere of S(k,/, ..., kN_), we shall
show that

{(d(V,)):V,n C(il, i, ..., ir_) } >- (d(C(i, i,., ..., ir_))).
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For, assume otherwise; then using Lemma I and the fact that

(’a+R )__.)’
we see that there must be a sphere

c(i, ,..., i_,, i),
say, of S(kx, k, ..., k) such that

E {(d(,))"

Thus if U is such that U n C(ix, i, ..., i_x, ) 0 then re(i) N + 2.
Now sume that for some integer q there is a sphere

"* "*C(i, i, ..,, i_, , +,
of S(k, , ..., k+q) such that

{(d(V,))" V,

and such hag if

"* "*U n (i, i, ..., i_, ,, ,+, ...,
ghenm(i) N+
sphere

C(i, i, i_, ,
say, of S(, k, ..., ++) such

Thus if U is such

U a C(i,

hen re(i) N + + 3. Hence we have shown by inductionh tot 0,
1, 2, her xiss a sphr

z,+) ofC(i, , ..., i,_, ,, ,+,
such ha if U n C(i,
re(i) N+a+2. Nowpu

.,., i+);
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then x e S(kl, k2, ). If x U for some i then

"* "* i*+)U n C(i, i., ..., i_, , +, ...,
for all q 0, 1, 2, .... Hence n(i) is not defined.
we have shown that

This is impossible and so

{(d(V,))"V, n C(il, i2, ..., iN_) 0} >= (d(C(z, i, ..., iN_))).
Hence by Lemma 1,- (d(U)) >_ (R/4-1)(1 -f- 2a)-.
Now {UI was an arbitrary open covering of S(kl, ks, and so h(S(k,

k., )) > 0. Using Lemma 2 and the fact that p was an arbitrary integer
we deduce that we have c disjoint, infinite dimensional, compact sets as re-
quired.
We recall from [7] that a space S has finite generalized Hausdorff dimension

if and only if there is a measure function h such that hh(S) 0. We say
that a sequence {U] of sets is a fine repeated cover of S is S c LJ U for
i 1, 2, and d(Ui) --* 0 as i --* oo. In [7] it was shown that S has finite
generalized Hausdorff dimension if and only if it has a fine repeated cover.
We shall now deduce a result similar to that of Theorem 1, this time in the
case of spaces of infinite generalized Hausdorff dimension.
A complete, metric space 2 is said to be spherically monotonic if

N(x, r, a) >= N(y, r’, a)

whenever 1/2 :> a > 0 and S(x, r) S(y, r’).
Let 2 be a complete, spherically monotonic metric space of infinite general-

ized Hausdorff dimension. Then 2 does not have a fine repeated cover.
Assume that, for all positive numbers a < 1/2) and r, each closed sphere of
radius r meets only finitely many closed spheres of radius ar whose correspond-
ing open spheres are disjoint. Let x e f and put S(i) S(x, i) for i 1, 2,.., so that 2 U 8(i) and 8(1) c 8(2) .... Put U1 8(1). 8(2)
can be covered by finitely many spheres of radius -, let these spheres be Us, U,.., U. Similarly, S(3) can be covered by finitely many spheres of radius
let these spheres be U+, U+s, ..., U. Continuing in this manner we
see that the sequence Ui} will form a fine repeated cover, which is impossible.
Thus there exists an x e 2 and positive numbers a, r such that N(x, r,
We can now use this fact to prove

THEOREM 2. Let be a complete, spherically nonotonic netric space of
infinite generalized Hausdorff dinension. Then contains c disjoint, closed
subsets each of infinite generalized Hausdorff dimension.

Proof. Let x e 2 and r, a be such that N(x, r, ) oo. Then since is
spherically monotonic we can define points c(i) for i 1, 2, such that
p(c(i), c(jl)) >_- at(1 4- 2a)- for i j and p(c(i), x) <= r for i 1, 2, ....
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Again, using the fact that is spherically monotonic, for each 1, 2,
define points c(, ) for 1, 2, such that

p(c(i, i), c(i, fi)) ar/4(1 + 2a) for i j
and

p(c(i, i), c(i))

_
at + 2a) for i 1, 2, ....

It is easy to see that, in general, we can define points c(ix, i, ..., i,) where
i 1, 2, for j 1, 2, ..., n such that

p(c(i, ,, ..., i,_, i,), c(i, i, ..., i,,_, j)_
ar/4-(1 + 2a)

and

t,(c(i, i, ..., i,,_,, i,,), c(i,, i,..., i,_))_
a’-r/4"-(1 + 2a)- for i, 1, 2,....

Thus the c(it,/, ..., i) may be defined for all n with i. 1, 2, for j 1,
2, ..-n.
Now let {i.} be any sequence of positive integers; then

{c(i, i, ..., i,)},__.

forms a Cauchy sequence. Denote the limit point by c(i,./, ). Then

(c(i, i, ..., i, i+, ...), c(i, i, ..., i, j+, ...)
+1

>_ a (2 + 3a)r for $,+1 # j+l
4(1 + 2a)+t(4 + 7a)

Let {k} be a sequence of zeros and ones and put

S(k, ka, ...) {c(i, i, ...):i m kmod (2) for m 1, 2, ...}.

Then the S(kt, ka, ) form disjoint, closed subsets of
Assume that for some sequence {k.} of zeros and ones, S(kt, k, ) has a

fine repeated cover. That is, there exists a sequence {U} of sets such that
S(kt, k, ...) (J U for j 1, 2, and d(U) - 0 as i --. oo. For
each j 1, 2, define I(j) to be an integer so that

d(V,) < aCr/4(1 +2a) for i>- I(j) and I(j+ 1) >I(j).

Then if i -> I(1), U cannot contain points c(it, i, and c(jt, j, of
.$S(k, k, with it # jr. Hence we may choose st --- kt mod (2) such that

.$

c(it, ia, U for I(1)

_
i < I(2) if .it ,t. It is easy to see that, in

general, we.may choose i* m k. mod (2) such that c(i, i, ) U for
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I(n) =< i < I(n -F 1) if i i for j 1, 2, ..., n. But then

-* ...) ...)
and

c(zl,z.,...)#U for all i>- I(1).

Hence the sequence UI is not a fine repeated cover. Thus the S(kl, k, )
are of infinite generalized Hausdorff dimension. This completes the proof of
Theorem 2.
As we noted at the beginning of the work the problem has been solved in the

case of Lorman’s finite-dimensional spaces. In fact these spaces are essen-
tially those with a geometry which behaves in a similar fashion to the geom-
etry of Euclidean spaces. It is shown in [7] that in Banach spaces the notion
of finite generalised Hausdorff dimension is exactly the same as the usual no-
tion of finite dimension. So we see from the results of this paper that although
the problem remains unsolved in "large" metric spaces, the difficulty is
probably not the size of the space but more its lack of uniformity in the general
case.
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