
ILLINOIS JOURNAL OF MATHEMATICS
Volume 22, Number 3, September 1978

ALEXANDER POLYNOMIALS OF LINKS OF
SMALL ORDER
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Torres [12] has given necessary conditions for a polynomial to be the Alex-
ander polynomial of a link in S3. These conditions are analogous to Seifert’s
necessary and sufficient conditions for a polynomial of one variable to be the
Alexander polynomial of a knot [11], but they have never been proved
sufficient or insufficient. This paper attacks the sufficiency question in the case
of two-component links with both components unknotted.

It has long been known that the genus [11] of a link places an upper bound
on the total degree of its Alexander polynomial. We have shown elsewhere [7]
that the degree of individual variables in the Alexander polynomial is also of
geometric significance. (These variables are in 1-1 correspondence with the
components of the link.) The orders or geometric intersection numbers of a link
determine upper bounds for the degrees of the individual variables in its Alex-
ander polynomial.
We begin with links of small order and work upward. In this paper, we

characterize the Alexander polynomials of links of linking number _+ 2 or 0,
orders less than or equal to 4 and 2, linking number _+ 1, orders less than or
equal to 3 and 3, and linking number

_
3, order (3, 3). In the last-named case, a

restriction in addition to the Torres conditions is required.
The question of whether the Torres conditions characterize the Alexander

polynomials of links may be too broad, in the sense that links with quite
different properties could have the same Alexander polynomial. In links with
more than two components, the Alexander .polynomial does not always deter-
mine the linking numbers of all pairs of components. Moreover, a link which
has as a component a nontrivial knot with Alexander polynomial A(x) 1 may
have the same Alexander polynomial A(x, y,...) as a link with unknotted
components. We exclude links with more than two components and links with
knotted components from consideration.

In Section 1 below, we state the Torres conditions, the above-mentioned
theorem concerning orders, and some needed lemmas. In Section 2, we show
that, for small Alexander polynomials, the reduced Alexander polynomial
A(t, t) determines the unreduced Alexander polynomial. In Section 3, we give
the Seifert matrix computations necessary to characterize the Alexander poly-
nomials in all the above-mentioned cases but the last. In Section 4, we establish
our new restriction in the linking number +_ 3, order (3, 3) case.
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(1)

(2a)

1. Preliminary results

THEOREM 1 (The Torres conditions [12], [5]). If a polynomial A in

Z[t, t 1, t,, t; 1]
is the Alexander polynomial of a link L with/ > 1, then:

A(tl, t) (- 1)t]’"" t"dA(t ,..., t; ) for some integers n,,...,

If #(L)- 2, then

1
A(tl),

where is the linking number of L and A(t 1) is the Alexander polynomial of the
first component of L

(2b) /f/(L) > 2, thenA(t, ...,t,_, 1)= (tt t,-I- 1)(t, ...,t,_),
where l is the linking number of the ith component of L with the th component
and A(t, t,_ ) is the Alexander polynomial of the link consisting of the first- 1 components of L

In the case of two-component links with both components unknotted, condi-
tion (2)reduces to

A(t,, d + + + 14: 0,

0 for/=0:

We will usually write A(x, y) instead of A(tx, t2).
Throughout this paper, the Alexander polynomial of a two-component link

will be written in a rectangular array, as follows"

A(x, y)= ago + aaox + a20 x2 + -+- amo Xm

+ aol + allxY + azlxZY + + amlXmY
+

ao.y" + al,,xy" + a2nx2yn + + amnXmyn, aij Z.

(Negative powers of x and y can be eliminated by multiplication by units.) This
notation allows ready display of the Torres conditions. For example, (1)states
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that aj a,,-i,,-j. The dimensions of the array correspond to the x- and
y-degrees of A(x, y). This notation is adopted in the table of knots and links
and their Alexander polynomials in the back of Rolfsen’s book Knots and Links
[10, p. 388]. The term of smallest degree is in the lower left-hand corner,
however.

DEFINITION. Let L K w...w Ku be a link in S3 with K1 unknotted.
Then the first order of L is the nonnegative integer if there exists an em-
bedded disk D1 in S3 with boundary K which intersects K2 Ku in tl
points, while no embedded disk with boundary K intersects K2 k,) k,) Ku in
fewer points. If K is unknotted, we define the ith order in the same way.

Order can be loosely described as an unsigned linking number. Unlike the
linking number, the order may be asymmetric in two-component links. If the
link L has all its components unknotted, so that t different orders i are
defined, then we say that L has order

DEFINITION. Let L be a link in S3 with Alexander polynomial A(tl,..., u).
Then degi A (maximum ti-power of any term of A) minus (minimum
t-power of any term of A).

Convention. If A(tl, tu) 0, then degi A 1.

THEOREM 2. Let L K1 w w Ku, p > 1, be a link in S3 with Alexander
polynomial A(t 1, tu). Assume K is unknotted, and let be thefirst order ofL
Then degl A + 1 <

The proof of Theorem 2 is based on showing that an over presentation [3] for
a special projection of L gives rise to an Alexander matrix in which just rows
contain an entry "’1", and that these rows contain to the first power. See [7].
James Bailey of University of British Columbia has extended this theorem to

links with knotted components. His inequality involves the genus as well as the
order of the component in question, and can be sharper than the inequality of
Theorem 2 in the case of an unknotted component. Thus we do not prove
Theorem 2 in detail.

LEMMA 3. Let L= K1 w w Ku be a link with Alexander polynomial
A(t 1, tu). If E is the link obtained from L by reversin9 the orientation ofK 1,

and A’(tl, tu) is its Alexander polynomial, then

A’(tl, tu)= A(t-1, t2, tu),
up to units.

This lemma, proved in [7], will be needed in Section 4. The following result of
Conway’s [1, p. 338] will be needed in Section 3.
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LEMMA 4. Let Loo be a link which contains a configuration

in its diagram. (x and y are segments from distinct knots.) Let L+ + and L__ be
the links obtained by replacing this configuration by

and

respectively. Then the Alexander polynomials Aoo, A + +, and A_ ofLoo, L + +,

and L__ can be normalized so that A+ + + A__ (1 + xy)Aoo.

For a proof, see [7].

2. Reconstructing the Alexander polynomial from the reduced
Alexander polynomial

The reduced Alexander polynomial A(t) A(t, t) is much easier to compute
than A(x, y), as we shall see in the next section. (Our definition of A(t)agrees
with that of Torres [12] and, in the case of two-component links, Hosokowa [6].
It differs by a factor (1 t) from Crowell’s definition [2].) In this section, we
prove that A(x, y) is no more powerful than A(t) for links of order (2n, 2) and
(3, 3).

First suppose that th link L has linking number _+2, order (2n, 2)and
Alexander polynomial A(x, y). Then by Theorems 1 and 2,

A(x,y)= ao +alx +’"+ an_l xn-1 +(1--an_l)X ao x2n-1

-aoy-a xy + (1 -a,,_ )x"- y+ a,,_ xnY +’"+ ao X2n y.
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If we actually compute the reduced Alexander polynomial and obtain

tn t2n,A(t)=bo+b:t+ +b,_ +b, + +bo
then ao bo, a: ao b, a2 a b 2, and a,_ a,_ 2 b._ . We can
now solve for the a"

a: ao + b bo + b:,

a2 b2 + a b2 + b + bo,

a,_ b_ + b,_2 + + bo.
Thus the Alexander polynomial is completely determined by the reduced Alex-
ander polynomial. A similar analysis holds for links of linking number 0, order
(2n, 2), provided the Alexander polynomial is not identically zero.
Now let us examine the case of linking number 1 or + 3, order (3, 3). In the

first case,

A(x, y)= aoo + aox + (-aoo a,o)X
+ aoy + (1 2ao)xy + aoxy
+ (- aoo ao)Y + aoxy + aooxY.

In writing this expression, we have used the first Torres condition and the
second Torres condition in the rows but not the columns. Applying the second
Torres condition to the first column, we have aoo + ao + (-aoo- ao)= 0,
or ao ao. Thus letting aoo A and ao ao B, we have

A(x, y)= A + Bx -(A + B)x2

+ By + (1 2B)xy + Bx2y

--(A + B)y2 + Bxy2 + Ax2y2.

Similarly, if the linking number is + 3,

A(x, y)= A + Bx + (1 A B)x2

+ By + (1 2B)xy + BxZy
+ (1 A B)y2 + Bxy2 + Ax2y2.

Suppose that in either case we actually compute the reduced Alexander
polynomial and obtain

t3 4.A(t) bo + bx + b2 t2 + bx + bo
Then bo A, b 2B, and we reconstruct the Alexander polynomial very
easily.
For Alexander polynomials of higher degree in x and y, this method no

longer works, at least not without additional information. The number of
independent parameters in A(x, y)becomes larger than the number of indepen-
dent parameters in A(t).
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3. Computations using the Seifert matrix

In this section and the next, we apply the method of the classic paper [11] to
compute reduced Alexander polynomials of links using Seifert surfaces and
matrices. From geometric properties of the links, we will then be able to recon-
struct their Alexander polynomials, in the manner of the previous section.

Every link in Sa spans an embedded, orientable surface of some genus h. For
a two-component link, this "Seifert surface" can be represented as a disk with
2h + 1 attached bands, as shown in Figure 1. These bands can be twisted,
knotted, and linked. By replacing twists

in the bands by loops

one arrives at a projection in which only one side of the orientable surface is
visible.
The paths a, az, ah/ which trace the midlines of the bands form a

basis for the first homology group of the surface. The paths a, 1, 2h are
oriented so that a_ crosses a from left to right at their point of intersection
in the disk. The orientation of ah+ coincides with that of the boundary
component K which includes the edges of all the other bands.
The Seifert matrix is defined in terms of the "overcrossing numbers" v of the

paths a. Let v be the number of times a crosses over a from left to fight
minus the number of times a crosses over a from right to left. if a c a ,
then v= v (this is a linking number) and if/= 2k-1, j= 2k, then
V2k- X.2k V2k.2k- + 1; see [4, p. 152]. The Seifert matrix of L, as defined in [6],
is then

v**(1 t)

v(l:- t)-

v,n-(1 t)
v.,_(1 t)
l)l,2h

vl,2h+ 1(1 t)
VZ,h+.(1 t)

V_ 1,h+ 1( t)
Vah,_+ 1(1 t)
l)2h+ 1,2h+
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FIG.

The determinant of this matrix, a link invariant, is the reduced Alexander
polynomial [12, pp. 64-73].
We proceed to calculate the reduced Alexander polynomials of a class of

links of linking number 2, order (2, 2). Figure 2 shows the class of links together
with their Seifert surfaces and a suitable basis for the first homology groups of
the surfaces. The path a 3 must be parallel to the component K in order to play
the role of a2h + in Figure 1. The only intersection of paths is that ofa and a2.

There are no intersections, merely overcrossings, at the crossing points of the
link projection. For example, at the crossing labelled c in Fig. 2, a3 overcrosses
a, which overcrosses a2.

FIG. 2
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The overcrossing numbers of the projection in Fig. 2 are vlt 1,
v22 1 + k, where k is any integer, (negative k corresponds to twists in the
opposite direction), v33 2 (the linking number), vt2 0, v13 =-1, and
v23 0. Thus the Seifert matrix is

-1 (1 + k)(1 t) 0
-1 0 2

Calculation of its determinant gives A(t)= (1 + k)- 2kt + (1 + k)t2. In the
language of Section 2, bo (1 + k), and hence can equal any integer. Since
both orders are 2,.the complete Alexander polynomial is

A(x, y)= (1 + k) kx

ky+(1 +k)xy.
There is only one independent parameter, and it can take any integer value.
Thus the Alexander polynomials of links of linking number + 2, order (2, 2) are
characterized by the Torres conditions.
We proceed to a class of links which includes the previous class but in which

the first order may be 4 or 2. A typical member of the class is shown in Fig. 3.
This time we allow three of the overcrossing numbers, namely v22, v, and v2,
to take arbitrary integer values. This is accomplished by adding twists in the
bands which include a2 and a4 and giving a2 and a4 an arbitrary linking
number, without changing K or the Seifert surface near K. (It is geome-
trically clear that v22 and /)44 are not really independent: only the sum
/)22 + /)44 is a link-type invariant.)Compute the other overcrossing numbers;
the entire Seifert matrix is

(1- t) 1 0 0 (t- 1)
-t v22(1 -t) 0 v2,(1 -t) 0
0 0 (l-t) (t- 1
0 /)2,,(1 t) /)44(1 t) 0
-1 0 -1 0 2

Taking the determinant yields the reduced Alexander polynomial

A(t) -v2, + (v22 + v,, + 2Vz4)t + (2- 2(v22 + v,,)- 2Vz,)t2- (/)22 + /)44 + 2V24)t3 /)24 t’.
Let m =/)22 --/)44. Then bo -v2 is an arbitrary integer and b m + 2/)24
can be made arbitrary by varying m. Again, the Alexander polynomials of links
with linking number

___
2, first order less than or equal to 4, and second order 2

are characterized by the Torres conditions. For in this case

A(x, y)= ao + atx + (1- al)x2- ao X3
aoy + (1 al)xy + atx3y + aox3y

where ao -/)24 and at m + /)24"
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C
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With little additional work, we can extend these results to characterize Alex-
ander polynomials of links of linking number 0, first order less than or equal to
4, second order less than or equal to 2. The case of order (0, 0) is trivial" the
only possible Alexander polynomial is A(x, y) 0, and the splittable link with
two unknotted components has this Alexander polynomial.
We move straight to the analogue of Fig. 3, since these links include the links

of Fig. 2 as a special case. We apply Lemma 4 (Conway’s lemma) to the
crossings labelled c and d in Fig. 3. Figure 4(a) gives a larger picture of these
crossings. The links of Fig. 3 play the role of L+ + in Lemma 4. The links L_
(Fig. 4(b)) have linking number 0: we will compute their Alexander polyno-
mials. In all cases, Loo is the standard link of linking number 1. By Lemma 4,
A+ + + A__ (1 + xy)Ao0. In order to maintain the symmetry of the first
Torres condition, we must take Aoo(X, y)= x. Then

A__ (X -["" X2y)- A+ + /0 ’’[- (1 OI)X "+" (1 1)x2 + aox
+aoy + (a, 1)xy + (1 a,)x2y- aox3y,

where ao and a can be arbitrary integers by the analysis of the linking number
2 case. Thus the Alexander polynomials of links of linking number 0, orders less
than or equal to 4 and 2 are also characterized by the Torres conditions.
A link of linking number + 1, order (1, 1) can only have A(x, y) 1, (up to

units) and the standard link of linking number 1 has this Alexander polyno-
mial. We move on to the case of linking number + 1, first and second order less
than or equal to 3. Figure 5 illustrates the class of links we will use to character-
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K, yK2 K,

L
FIG. 4

ize the Alexander polynomial in this case. Again, we leave three crossing num-
bers undetermined, namely v2,, v22, and v4. These are related to the number of
twists in the "arms" of the link by v2 k 3, v 22 k + k 3, v,, k 2 + k 3. Since
k, k2, and k3 can be arbitrary integers, so can v2,, v22, and v,. Compute the
other overcrossing numbers; the Seifert matrix is

[(l__-lt 0 0 (t 1))v22(1 -t) 0 24(1- t) 0

I 0 (l-t) 1 (t-1
/)2,(1 -t) -t v44(1 -t) 0

1 0 -1 0 +1

Computing its determinant gives

A(t) (v,-/)22/),,-/)2") "t" (4v22v,4- 4v, + 2v24)t
+ (1 2v24 + 6v4 6v22 v44)t2 + (4v22v44 -4v4 + 2v24)t3

Thus the parameters A and B of Section 2 are given by

(1)
(2)

A v224 V22/)44 V24
B 2V22 V44- 2V4 + V24.

Let m =/)22/)44" Then m and/)24 can take arbitrary integer values. We shall
show that A and B then can take arbitrary integer values, and thus that the
Torres conditions are sufficient in this case.
Given A and B, we must have 2A + B -v2,, by (1) and (2). Then

A (2A + B)2 m + (2A + B),
so m (2A + B)2 -F (A + B). But we must also have B 2m 2(2A + B)2
(2A + B), or 2m 2(2A + B)2 + (2A + 2B), or again m (2A + B)2 + a + B.
Since these two expressions for m are identical, we can generate arbitrary A and
B. For example, suppose we wish to find a link with A -5, B 6. Then
2A + B -4,, so /)24 4. m (2A + B)2 + A + B 16 + 1 17, so we let
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FIG. 5

/)22 1,/)44 17. For the number of twists 2kl, 2k2,2k3 in the arms (Fig. 5), we
have k3 =/)24 4, k =/)22 k3 -3, k2 =/),4 k3 13.

Levine [8] has proved that any polynomial which satisfies the Torres condi-
tions for the Alexander polynomial of a two-component link of linking number
_+ 1 is the Alexander polynomial of such a link. His method does not seem to
restrict the knot types of the components, however. Our results are a start
toward showing that the Alexander polynomials of links with unknotted com-
ponents of linking number + 1 are also characterized by the Torres conditions.

4. Insufficiency of the Torres conditions in the linking number 3,
order (3, 3) case

Up to now, we have not tried to display all links of a given linking number
and order, but only a selected class which generates all Alexander polynomials
allowed by the Torres conditions. In establishing a new restriction, however, we
must be careful to consider all possibilities. In the linking number + 3, order
(3, 3) case, this is not too difficult. The assumption that the absolute value of
the linking number equals the order severely limits the ways in which em-
bedded disks spanned in the components of the link can intersect. This in turn
limits the possible Seifert matrices of such a link.
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C p

FIG. 6

The three ways in which two embedded disks in general position in S3 can
intersect are illustrated in Figures 6(a), (b), and (c). We call these three types of
intersections clasps, ribbons and circles respectively.
The links of order (4, 2) in Section 3 contain a ribbon intersection, indeed,

ribbon intersections are necessary to make the order asymmetrical. It is not
clear that circle intersections are ever necessary. In the case we are considering,
both circles and ribbons can be eliminated.

LEMMA 5. Let L K w K2 be a link of linkino number + n, order (n, n).
Then K and K2 span disks which intersect only in n clasps.

Proof. Let D1 and D2 be spanning disks for K and K2 respectively which
intersect the opposite component the minimum possible number of times. Sup-
pose D and D2 are in general position and have a ribbon intersection, with K2
intersecting D in two points, as in Fig. 6(b). Then K2 must have opposite
orientations at the two points. Thus their combined contribution to the linking
number is 0, but their contribution to the order is 2. This contradicts the
assumption that the order equals the absolute value of the linking number.
A circle intersection C divides D and D2 into interior disks D and D and

exterior annuli. If D] or Dz contains no further intersection with D w D2, as in
Fig. 6(c), then the circle intersection can be eliminated by a surgery. Nested
circle intersections can be handled by induction. (See [7].) IfK or K2 intersect
D] w D?z, as in Figure 7, then K1 must enter and leave through D?z, since it
cannot intersect D], and similarly for K2 and D]. This creates one or more
ribbon intersections.
Thus any link of linking number + 3, order (3, 3) contains a pair of spanning

disks which intersect only in three clasps. We can find a regular projection of
the part of the link near Kt and the spanning disks of the type shown in Figure
8(a) and (b).
Our next task will be to construct a Seifert surface for the finks depicted in

Fig. 8(a). We will then use Lemma 3 to determine the Alexander polynomial for
the standard form shown in Fig. 8(b).
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/ D2 \

FG. 7

Applying Seifert’s algorithm [11] for finding a Seifert surface to the portion of
a link depicted in Fig. 8(a) produces one complete Seifert circuit and three
partial Seifert circuits, as depicted in Figure 9. A disk that incorporates these
three partial Seifert circuits can be constructed from the disk D2 of Fig. 8(a) by
eliminating the parts of D2 that project into the interior of D (Fig. 9). In this
way, we obtain a Seifert surface F for any link L in the class depicted in
Fig. 8(a).

Figure 9 also shows a basis for the first homology group of F. Three genera-
tors, al, aa and as, are completely shown, and the remaining two, a 2 and a4, are
partially shown. (The arrangement is entirely analogous to that of the linking

FIG. 8
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vo5-
\
\
\

FIG. 9

number

_
1, order (3, 3) links of Section 3.) Thus all the overcrossing numbers

v can be determined from Fig. 9 except v22, v2, and v,. These three over-
crossing numbers can be arbitrary integers, as the class of links depicted in
Figure 10 shows. That is, we choose

(1)
(2)
(3)

ka so that ka =/324,

kl so that kl + ka + 1 =/322
k2 so that k2 -I- k3 -I- 1 =/324.

The Seifert matrix, with/322,/324, and v,4 undetermined, is

(l_-tt 1 0 0 (t- 1)
/322(1 -t) 0 /32,(1 -t) 0

t 0 (l-t)t (t-I)
v2,(1 -t) -1 v,,(1 -t) 0

1 0 -1 0 3

Taking the determinant, we obtain the reduced Alexander polynomial

a(t) (v2 v,, v, v,,)+ (4v22, 4v22 v,, + 2v22 + 2v2, +
+ (3 4vzz 2vz4 4v44 6vZ4 + 6vzz v44)tz

+ (4v4- 4vz v,4 + 2vzz + 2v4 + 2v44)t + (vzzv44- v4- vz4)t4
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FIG. 10

The unreduced Alexander polynomial may be written

A(x, y)= A + Bx + (1 A B)x2

+ By + (1 2B)xy + Bx2y

+ (1 A B)y2 + Bxy2 + Ax2y2

where now A /)22/)44 /)224 /)24 and B 2v,- 2v22va,4 +/)22 +
v24 + v4,. Thus we are faced with the number-theoretic question of whether
v22, v2, and v4, can be varied to produce arbitrary A and B. The problem
becomes more symmetrical if we replace v22, v24 and v4, by k 1, k2 and ka, using
equations (1)-(3). Then we have

A kl k2 + kl ka + k2k3 + kl + k2 + ka + 1,

B -2klk2 2kl k3 2k2k3 kl k2 k3
Notice that the expression (1 A B), which also appears in A(x, y), is simply
kl k2 + kl k3 + k2 k3. Thus we let a (1 A B), b -B, and ask whether
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the equations

(4)
(5)

kl k2 / kl ka + k2 ka a,
2kx k2 / 2kx k3 / 2k2 k3 + kl + k2 -t- k3 b

have simultaneous solutions in integers for arbitrary integers a and b.
We can reduce equations (4) and (5) to one equation in two unknowns. For if

c k + k2 / k3, then equations (4) and (5) combine to give 2a + c b, or

(6) c b- 2a k + k2 /

Using equation (6) to eliminate k3 from equation (4), we have

klk2 + kx(c- kx k2)/ k2(c- k k2)= a,

which simplifies to

(7) -k2 kx k2 k22 + ckx + ckE a.

In order to make our Alexander polynomial symmetric under the change of
orientation depicted in Fig. 8(b), we assume A 1 A B. Then

y)= y).
This condition translates into b= 2a- 1. Then c b-2a 1. Now
assume a 1 A B A > 0. Then equation (7) becomes

(8) k+kxk2+k22+k+k2=-a.
Equation (8) does not have a real solution, much less an integer solution,
because the function of two variables f(x, y) x2 + xy + y2 / x / y assumes
its minimum value of 1/3 at (- 1/3, 1/3). We summarize these results in a
theorem.

THEOREM 6. A polynomial

A + Bx + (1 A B)x2

+ By + (1 2B)xy + Bx2y

+ (1 A B)y2 / Bxy2 / Ax2y2

is the Alexander polynomial of a link of linking number +_ 3, order (3, 3)/f and
only if there are integers k, k2 and k3 such that

B -2k k2 2kx k3 2k2k3 k k2 ka
and

A klk2 / k k3 / kEk3 / k + k2 / k3 / 1 or kk2 / kEk3 / kak.
This is a genuine restriction. For example

A + (1 2A)x + Ax2

+ (1 2A)y + (4A 1)xy + (1 2A)x2y

+ Ay2 + (1 2A)xy2 + Ax2y2,
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A > 0, is not the Alexander polynomial of any link of linking number +_ 3, order
(3, 3) although it satisfies all the Torres conditions.
We emphasize again that a link of the class depicted in Fig. 8(b) cannot have

this polynomial as its Alexander polynomial, for reversing the orientation of
Kz would produce a link of the class depicted in Fig. 8(a) with the same
Alexander polynomial.
The following are two classes of links that could generate the missing poly-

nomials of Theorem 6:

(a) Links of linking number + 3 with unknotted components and orders
greater than 3, whose larger orders are not detected by the Alexander polyno-
mial. (Theorem 2 is only an inequality.)

(b) Links of linking number _+ 3 with knotted components whose compon-
ents have trivial Alexander polynomials. (Such knots are given in the final
section of 11], for example.)

To determine the Alexander polynomials of such finks, one must presumably
analyze the universal Abelian covering space of the link’s complement. For
more complicated links than those of this paper, this double-infinite-cyclic
cover is more powerful than the infinite-cyclic cover which is described by the
Seifert matrix.
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