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LACUNARY SPHERICAL MEANS

BY

CALLXTO P. CALDER6N

O. Introduction and statement of results

Professor E. M. Stein introduced in [4] (see also [6]) the maximal function

(0.1) S(f)(x) sup f f(x
>0

where f is any Borel measurable function defined on R", a is a point on the
unit sphere X of R" and &r stands for its "area" element. In the above
paper Professor Stein proves the following result: If n > 3 and p > n/(n- 1),
then

(0.2) Ilsq)ll <

If p <-- n/(n 1) and n -> 2 the result is false; what happens for n 2 and p > 2
remains an open problem. Throughout this paper, we shall be concerned
with the lacunary version of Stein’s theorem. Define

(0.3) r(f)(x) sup f f(x 2-ka) do"
k>O

where k takes all the natural values. We have the following result"

0.4. TI-mORM. If n >--2, p > 1 and f is Borel measurable in R" then

(i) I[ r(f)[lp < Co Ilfllo,
Moreover, we have the following inequality "near" Ll: If Q is a cube in
and h > 1/[Ol then

C(ii) IOf3E(r(fl> X)l<lOl
I og x______Jl f Ill fl+ dx.

A .JR
The constants Ca and Cz depend on n and (9 but not on or f.

In particular, (ii) implies differentiability a.e. by laeunary spherical means
in the Orlicz Class L(log+ L)log+ log+ L. Professor S. Wainger communi-
cated to me that part (i) of the above theorem has been obtained also by R.
R. Coffman and G. Weiss.
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I would like to express my gratitude to Professors A. Zygmund and Y.
Sagher for helpful discussions concerning the matters of this paper.

1. Auxiliary lemmas

1.1. LEMMA. Let ff2(x) be a radial ]’unction defined on R". Let

w(s) sup I/(r)-/(0) and v(s) sup I/(rl)- R(r)l.
O<r<s rl>s, r2>s

Assume that w(s) and v (s) satisfy

(a) I1 v2(s)s ds < 0%

Then the operator

w(s)(aa) ds <.
S

T(f) sup

(k takes natural values only) satisfies

* (IoW2(S) Iv(s) )/2(i) Ilz(f)ll2 < Co 1 + ds +
S S

Co is independent from f and K ff (0)= 1.

Proof.
g(0). Let

(1)

and

Let q(x) be a C radial function such that q3 is CS and if(O)=

T(f)(x) IR- e*<’>(ff[2-[Yl]--/[2-IYI])(Y) dy

M(f) sup
k

2k"q[Z(x- y)]f(y) dY I-
Then we have

(1.1.1) IT(f)(x)12<--4{M2(f)(x)+ . ITk(f)(x)12}.

Integrating and using Plancherel’s inequality and estimates (a) and (aa) we
get the thesis.

1.2. Remark. The above lemma is a version of the tauberian condition in
L2 (see [4] and [6]).

1.3. LEMMA. Let K(x) be a L function supported on the unit ball of R".
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Let wl(t) denote its L1-modulus o1: continuity. Suppose that wl(t) satisfies the
Dini condition

(a) wl(t) d__t<.
Then the maximal operator

satisfies

T(f)(x) sup
k>O

2"Ig. K(2(x y ))f(y) dy

(i) [E(T(]’) Co 1 /

where Co depends on the dimension only i[ IIKII- 1.

Proo]’. Consider the Calder6n-Zygmund partition for f, f-> 0: f I:1 + 1’2
where 0 <- [1--< 2"A a.e. and [2=(]’-/xj)q(x). Here, qi(x) stands for the
characteristic function of Q and the t are the mean values:

(1.3.1) /Zi=l- f(t) dt, h</z--<2"h, j=l, 2

and

(1 3.2) 6 O <1 IR.fdt.
for details see [5, pp.17, 18].

Let Gx ’ 5Qi where 5Q stands as usual for the dialation of Qi 5
times about its center. Let x be a point in R"-Gx and consider the
convolutions

(1.3.3) (K,h)(x) where K(y)=2"K[2y].

Let y be the center of Qi. The above convolution can be written as

(1.3.4) (K,h)(x) {K(x-y)-K(x-y)}h(y) dy.
i=

In the above summation we have made use of the fact that fz has mean
value zero over Q. Notice also that

(1.3.5) f {Kk(x-y)-K(x-y)}fz(y) dy =0
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provided that 2k diam (Qj)-> 1. Thus, if x R"-Gx we have

(1.3.6) {K(x- y)-K(x- y)}h(y) dy

-< Ig(x y)- gk(x y)l [h(y)l dy

= 2<d

where d diam (O). Notice that the second and third members of the
above inequality do not depend on k; consequently, they constitute a bound
for T*(f) on R -Gx. Integrating the third member of (1.3.6) over R-Gx
we get

(1.3.7) Ig(x y) g(x Y)I lh(Y)l dy

2k<d

Inequalities (1.3.5), (1.3.6) and (1.3.7) show that

(x.3.8) T(9 dx C w(t)

Assuming that IKI dx 1 and using the fact that 0f2"A we get

(1.3.9) E{T(f) > 2"X} .
We get the thesis by using (1.3.8), (1.3.9), and the fact that

The following lemma is related to a one dimensional result due to R.
Fefferman (see [1]).

1.4. LEMMA. Let K(x) be a non-negative monotonic radial function sup-
ported on the unit ball. Then, there exists F>_K such that

Io dt< Ix(i) IIFIl + w(f t)-f C + C= K log+ K dx.

Here, w(F, t) denotes L1-modulus of continuity of F.

Proof. If K(r) is non-decreasing, it is possible to find a domination of the
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form

(1.4.1) K(r)<_ 2’tk(x)= F(x)

where the the(x) are characteristic functions of annuli E of the form

{x; O< r <--Ixl< l}, ]=1,2

If K(r) is non-increasing, it is possible to find a domination of the form

(1.4.2) K(r)<_ ’. 2q(x)= F(x)

where the q(x) are characteristic functions of balls

B={x;O<lxl<--r<l}, j= 1, 2,

We are going to assume that we are in the first case since the second one can
be dealt with in a similar manner.
The dominant function F(x) can be constructed so that the following two

inequalities hold:

2klEkl--<4 K(x) dx +lBo[

(1.4.3)

Y. 2klEl <_ C K log+ K dx + I ol).
Here, Bo stands for the unit ball in R" and ]Bol for its measure. Assume
without loss of generality that 2IEI < 1 and rk > 1/2. Our first task will be to
estimate wl(F, s). We have the trivial inequality

(1.4.4) Wl(F s)<_ , 2kWl(4k, S),

thus

Io Io,(1.4.5) Wl(F, s)-- 2k 14e(tk S)--.
S S

In the above inequalities we have used the notation Wl(tk S) for the moduli
of continuity of the the.
The following estimates can be easily verified:

(1.4.6)
w(4,,s)ZlEl if s >1/4(1- rk),
Wl(d,,s)<--2nlBols if s<1/4(1-r).

Consequently

(1.4.7) Io 1wx(dO, s) ds [E[ + 2 lEvi log
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From (1.4.5) and (1.4.7) we get

Io 1(1.4.8) wl(F, s) dS CIIFIII + 2klEkl log
[Ek["

Now consider the two families of subindicies, {k’} and {k"}, defined as
follows:

{k’} is the set of k’s for which 2k IEk]< 3-,
(1.4.9)

{k’} is the set of k’s for which 2klEkl >--3-.
Thus

1(1.4.10) 2klE[ log Iugl

2IEI Ilog 2IEII + F log+ Fdx
1

--< In F log+ Fdx + Y’. 3-/2+log 3 k2k levi
k’ "

<_+2IB Flog+ Fdx.

By combining (1.4.10), (1.4.8), (1.4.5) and (1.4.3) we get the desired result.

Remark. Lemmas 1.3 and 1.4 provide a generalization of Theorem 3 in
Zo’s paper; see [8].

The following lemma is essentially due to L. Carleson and P. Sj61in (see
[3, p. 563]). This, however, is a different type of proof.

1.5. LEMMA (Carleson-Sj61in). Let T be a sublinear operator mapping
L(R"), p> 1, into weak LP(R") such that

Co 1
(a) IE(IT(f)I > h)[ <

(p1)-------7 -7 II/[l, p >, 1,

where Co and O are independent from f and p. Let Q be a cube in R" and
h > 1/IQI; then

(i) C1 Ilog
| Ill[l+ (log,+ Ill) log+ log+ f] dx,. dR.

Here, C and C2 do not depend on f or h.

Proof. Let Ek be the set where 2<lf[-<2+l,k->l. Let f be the
function that equals f on Ek and is zero otherwise. Let Q be a given cube in
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R" and choose A > 1/IOl. From (a), taking p 1 + 1/k we have

(1.5.1) IE(IT(f)l > h)l < X/ k"2lEl
C<- IOl’ko2lE
C(Q)

k,2k<- IEl.

Let us consider the sets Xk(X)=E([T([)I>A and the exceptional set
X(X)= U7 x(x). By (1.5.1) we have

(1.5.2) IX(X)I <- If[flog+ Ill) dx.

Let D(s) be the distribution function of ITff)l on Q-X(X). We have the
estimates

(1.5.3) ITff)l dx D(s) ds
-x(x)

D(s) ds+ D(s) ds+ D(s) ds
k ;k2l/h k ;k2>l/h Ik

iQI +c k2klEl-.
/k 8

Let f be the function that equals f if I]’1 <- 2 and zero otherwise. Decompose
as f +Y. ]’k and use (a) for f with p 1 + 1/ko for some fixed ko. In order to
deal with 7 ]’k use inequalities (1.5.2) and (1.5.3). This finishes the proof.

1.6. Following E. Stein (see [4]) let us introduce the following kernels"

(1 6.1) K,,(r) (1- r2)-r()’ R(a)>o,

and their Fourier transforms

(1.6.2) /(r) _-.-(,/2)-+1r l(2rr).(n/2)+ot-

Consider the maximal operators

(1.6.3) S*(/) sup
k=l

e’<">/ (2- lY I)/(Y) dy I’ R(a) > 1/2- n/2

If f is a step function we have (see [4])

(1.6.4) o’(f) So*(f).
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2. Proof of the main result

Write ot u + iv and consider 1/2- n/2 < u<M. Using the procedure in
[7, pp. 158-159], and the formulas

(2.1.1) F(+ct-).x/llgl(n/2)+u-1 e-(lv), v---oo,

F(z)=-I r(z + 1), R(z)>0,
Z

(see [7, p. 281 bottom note], we get the estimates

(2.1.2)
I/ (x)[-< min , CF + u 1/2

where C1 and C2 are uniform provided 1/2-n/2<R(o)<M. (For similar
estimates see [6, pp. 60 and 61].) An application of Lemma 1.1 gives

(2.1.3)
K 1 n* * ---< R@t) <M.

IIp*.q is the usual notation for Lorentz’s norms. The estimate

C
log+ IKI dx

and Lemmas 1.3 and 1.4 give

S* . Cell/)(1

To end the proof of the main result consider the case n 2, a typical one.

Consider step functions f and the analytic family of operators

(2.1.5) ,(x y) k(x)T()(.f) e /.()(2- lyl)/(y) dy

where 0_< R(z)<_ 1, or(z) 1/2[(u 1)+ e + iv] and k(x) is a bounded measura-
ble function taking natural values only. (See [7, p. 280]).
The main theorem and definitions in [2] can be formulated in terms of

characteristic functions of finite union of intervals and step functions. From
this remark and estimate (2.1.2) we see that To,(z)(f) is admissible (see [2]).
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From (2.1.3) and (2.1.4) we have

(2.1.6) . e Iv 1/4
C(Ivl + 1)’

Take u 1-e and define P. by

1 e 1-e

P. 2 1

Sagher’s convexity theorem gives (see [2])

(2.1.7)

Replacing P by its value, P 1 + e/2- e, and using (2.1.7) and the fact that
k(x) is arbitrary we get

(2.1.8) * * < Ilfll +s/2-s, 1+12--e)"!lSo (f)ll( ),=)

An application of Lemma 1.5 gives part (ii) o the thesis and Marcin-
kiewicz’s interpolation theorem gives part (i).

1. R. FEFFERMAN, A theory of entropy in Fourier analysis, Advances in Mathematics, to appear.
2. Y. SAGHER, On analytic families of operators, Israel J. Math., vol. 7 (1969), pp. 350-356.
3. P. SJOLrN, An inequality of Paley and convergence a.e. of Walsh-Fourier Series, Arch. Math.,

vol. 7 (1969), pp. 551-569.
4. E. M. STERN, Maximal functions, Spherical means, Proc. Nat. Acad. Sci., vol. 73 (1976), pp.

2174-2175.
5. Singular integrals and differentiability of functions, Princeton University Press, 1970.
6. E. M. STEIN and S. WArNGER, Problems in harmonic analysis related to curvature, preprint.
7. E. M. STERN and G. WEISS, Introduction to Fourier analysis in Euclidean spaces, Princeton

University Press, Princeton, N.J. 1971.
8. F. Zo, A note on approximation of the identity, Studia Math., vol. 55 (1975), pp. 111-122.

UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE
CHICAGO ILLINOIS


