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LACUNARY SPHERICAL MEANS

BY
CALxTo P. CALDERON!

0. Introduction and statement of results

Professor E. M. Stein introduced in [4] (see also [6]) the maximal function

0.1) SPH(x)= su}g

L f(x—ea) do

where f is any Borel measurable function defined on R", a is a point on the
unit sphere 3 of R" and do stands for its ‘“‘area” element. In the above
paper Professor Stein proves the following result: If n=3 and p>n/(n—1),
then

(0.2) IS@l <G, Il

If p=n/(n—1) and n =2 the result is false; what happens for n =2 and p >2
remains an open problem. Throughout this paper, we shall be concerned
with the lacunary version of Stein’s theorem. Define

(0.3) o(f)(x) =sup L f(x—27%a) do
k>0

where k takes all the natural values. We have the following result:
0.4. TueoreM. If n=2, p>1 and f is Borel measurable in R" then
@ le®ll <G, Ifl, p>1.

Moreover, we have the following inequality “near” L': If Q is a cube in R"
and A >1/|Q| then

(i) |QNE(s()> )\)|<% |Q|

llo)g\ B L” |f1 [1+(og™ |f]) log* log* |f]] dx.

The constants C, and C, depend on n and Q but not on A or f.

+C,

In particular, (ii) implies differentiability a.e. by lacunary spherical means
in the Orlicz Class L(log* L)log* log* L. Professor S. Wainger communi-
cated to me that part (i) of the above theorem has been obtained also by R.
R. Coifman and G. Weiss.
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I would like to express my gratitude to Professors A. Zygmund and Y.
Sagher for helpful discussions concerning the matters of this paper.

1. Auxiliary lemmas
1.1. Lemma. Let K(x) be a radial function defined on R". Let

w(s)= sup |[RK(r)—R(0)| and v(s)= sup |K(r,)—K(r).

o<r<s r1>s, 12>s

Assume that w(s) and v(s) satisfy

w© 2 1 2

(a) I v(s) ds <o, (aa) L ws) ds <oo,
1 S s

Then the operator

k
T(f) =sup

k=1

L" eIR[27*|y|If(y) dy|

(k takes natural values only) satisfies

0 <1+ [ 2D as+ [ 72 as) "y,

1

C, is independent from f and K if K(0)=1.

_Proof. Let ¢(x) be a C” radial function such that ¢ is C; and ¢(0)=
K(0). Let

(1) T.(Hx) = | e*(@[27 |y[1- K[27*|y|DF(y) dy
-

and

M) =sup | 2602+ (= if(y) dy)

Then we have

(L.1.1) ﬁ“(f)(x>|254{M2<f)<x)+§ TP,

Integrating and using Plancherel’s inequality and estimates (a) and (aa) we
get the thesis.

1.2. Remark. The above lemma is a version of the tauberian condition in
L? (see [4] and [6]).

1.3. Lemma. Let K(x) be a L* function supported on the unit ball of R".
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Let wy(t) denote its L*-modulus of continuity. Suppose that w,(t) satisfies the
Dini condition

(a) L w,(0) d7‘< .

Then the maximal operator

Fiw=sup [2%] K-y av|
k>0 R"™

satisfies

. . Twi()) 1
0 EdD>ni<coft+ [ 20) g,
where C, depends on the dimension only if |K|,=1.
Proof. Consider the Calder6n—Zygmund partition for f,f=0: f=f,+f,

where 0=f, =2"A a.e. and f,=37 (f— u;)¢;(x). Here, ¢;(x) stands for the
characteristic function of Q; and the u; are the mean values:

(1.3.1) I"j=_—1—j fd, A<p=2"A, j=1,2,...
Q] Jo,
and
- 1
(13.2) lU Q,.|<—I fat.
1 )\ R"

for details see [5, pp.17, 18].

Let G, =U75Q; where 5Q; stands as usual for the dialation of Q; 5
times about its center. Let x be a point in R"—G, and consider the
convolutions

(1.3.3) (K *fo)(x) where K (y)=2"*K[2"y].

Let y; be the center of Q,. The above convolution can be written as

0

(134 Wer 0= T | Kl y)= K=y} dy.

i=1

In the above summation we have made use of the fact that f, has mean
value zero over Q. Notice also that

(13.5) L (K (= y)~ K (x—y)}faly) dy =0
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provided that 2* diam (Q,)=1. Thus, if x€ R"—G, we have

136 | [ Hatx-n-Ku-n) ]

IA

uMg IMS
uMs

T [ K- -Klxyl )l dy

i

iA

LI | ey Kl
k<d Q;

where d;=diam (Q;). Notice that the second and third members of the
above inequality do not depend on k; consequently, they constitute a bound

for T*(f,) on R" — G,. Integrating the third member of (1.3.6) over R" — G,
we get

asn [ F T [ KoKyl dy

"—G, j=12%<d;! JQ

=1

<Y oI E [ KKyl

"-5Q,

([ w0 ) |, iy

Inequalities (1.3.5), (1.3.6) and (1.3.7) show that

*
13.8) [ e ax=c([ wo D).
R"—G,
Assuming that [g-|K|dx =1 and using the fact that 0=f, <2"\ we get
*
(1.3.9 E{T(f)>2"A}=0.

We get the thesis by using (1.3.8), (1.3.9), and the fact that

Gl = Il

The following lemma is related to a one dimensional result due to R.
Fefferman (see [1]).

1.4. Lemma. Let K(x) be a non-negative monotonic radial function sup-
ported on the unit ball. Then, there exists F=K such that

1
(i) I+ L wi(F, 1) d{ <Ci+C, j K log* K dx.
x|=1
Here, w,(F, t) denotes L*-modulus of continuity of F.

Proof. If K(r) is non-decreasing, it is possible to find a domination of the
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form
(1.4.1) K(r)= i 2'¢;(x) =F(x)

where the ¢;(x) are characteristic functions of annuli E; of the form
{x;0<n=lx|<1}, j=1,2,... .

If K(r) is non-increasing, it is possible to find a domination of the form
(1.4.2) K(r)=Y 2¢(x)=F(x)
1

where the ¢;(x) are characteristic functions of balls
B ={x;0<|x|=r,<1}, j=1,2,...

We are going to assume that we are in the first case since the second one can
be dealt with in a similar manner.

The dominant function F(x) can be constructed so that the following two
inequalities hold:

L 2Ed=4(]  Keodx+iBd),
1 Ix|=1
(1.4.3)
AL c(j K log* K dx +IBO|>.
1 Ix|=1

Here, B, stands for the unit ball in R" and |B,| for its measure. Assume
without loss of generality that 2¥|E,|<1 and r, >2. Our first task will be to
estimate w,(F, s). We have the trivial inequality

(1.4.4) Wi(E, )= 3. 2wy, ),
thus '
(1.4.5) [ DL 2kL wildo )L,

In the above inequalities we have used the notation w;(¢y, s) for the moduli
of continuity of the ¢,.

The following estimates can be easily verified:

(1.4.6) wild, s)=2|E| if s>i(1-n),
o wi(d, $)=2n|By|s if s<i(1—r).

Consequently

1
(1.4.7) j wi(de $) B=20"1 B |+2 B, log —— .
o N |Ek|
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From (1.4.5) and (1.4.7) we get

(1.4.8) J, wiE.5) L= Il + § 24 Bl o

Now consider the two families of subindicies, {k’} and {k"}, defined as
follows:

{k"} is the set of k’s for which 2“|E, |<37¥,

1.4.9
( ) {k™ is the set of k’s for which 2*|E,|=37 .
Thus
(1.4.10) Y. 2¢|E,|log 1
T |E,|

i

szlEklllog2k|Ek||+[ Flog* Fdx
1

Bo

Flog* Fdx+Y 37 +log3 ) k2"|E|
K’ k"

(g

s%+2J' Flog" Fdx.

B,
By combining (1.4.10), (1.4.8), (1.4.5) and (1.4.3) we get the desired result.

Remark. Lemmas 1.3 and 1.4 provide a generalization of Theorem 3 in
Zo’s paper; see [8].

The following lemma is essentially due to L. Carleson and P. Sjolin (see
[3, p. 563]). This, however, is a different type of proof.

1.5. Lemma (Carleson—-Sjolin). Let T be a sublinear operator mapping
LP?(R™), p>1, into weak L?(R") such that

Co

(a) IE(TOI> D<= 3

L, p>1,
where C, and p are independent from f and p. Let Q be a cube in R" and
A>1/|Q|; then

@ leniTdi>Ni<S jol+c, 18

L If1[1+ Qog” [f)° log" log™ f] dx

Here, C, and C, do not depend on f or A.

Proof. Let E, be the set where 2*<|f|=2**", k=1. Let f, be the
function that equals f on E, and is zero otherwise. Let Q be a given cube in
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R™ and choose A >1/|Q|. From (a), taking p=1+1/k we have

(1.5.1) lE(|T(fk)‘>A)|<A1+1/k k®2¥|Eg|

<TloM k2

C(Q) CQ oo, .

Let us consider the sets X, (A) =E(|T(fk)|>)t and the exceptional set
X(A)=UT X, (A). By (1.5.1) we have

(152) X< Ifidog" ) dx
"

Let D, (s) be the distribution function of |T(f,)| on Q—X(A). We have the
estimates

(1.5.3) L_Xm Y IT¢)| dx=Y | Di(s)ds

1
1/k2

=) Dk(s)ds+ Y Dk(s)ds+J' Dy (s) ds

k:;k2s<s1/A k;k2>1/A

=|Q| Z k2+CZ J'l/kz k"2k|Ek|; .

1

Let_f be the function that equals f if |f| =<2 and zero otherwise. Decompose f
as f+Y% fi and use (a) for f with p =1+ 1/k, for some fixed k,. In order to
deal with )7 fi use inequalities (1.5.2) and (1.5.3). This finishes the proof.

1.6. Following E. Stein (see [4]) let us introduce the following kernels:

(1 r )a—l
(1.6.1) K, (= T R(a)>0,
and their Fourier transforms
(1.6.2) R (r)=nmor d=arly o an(270).

Consider the maximal operators

(1.6.3) S%(f)=sup
k=1

L ¢ “VR, 2+ yDf(y) dy|, R(a)>1/2-n/2

If f is a step function we have (see [4])

(1.6.4) o(f)=S5().
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2. Proof of the main result

Write o =u+iv and consider 1/2—n/2<u <M. Using the procedure in
[7, pp. 158-159], and the formulas

(2.1.1) F<2+a——) J2 1 |[p| WU gD e

I'iz)= 2 I‘(z +1), R(2)>0,

(see [7, p. 281 bottom note], we get the estimates

(2.1.2) . e e ST 1/2‘
|K, (x)|=min | C,, Czl"(§+ u— 1/2) PeE

where C; and C, are uniform provided 1/2—n/2<R(a)<M. (For similar
estimates see [6, pp. 60 and 61].) An application of Lemma 1.1 gives

(2.1.3)
K 1

n
ISZPIE~=7- 575 [T P e A, 3 3<R@<M.
| +u-—1/2
2
Here, | [, is the usual notation for Lorentz’s norms. The estimate

[ IKtog IK.| dx <= et (14 o)
Ix|=1
and Lemmas 1.3 and 1.4 give

(2.1.4) ISZONE <— DA+ o) IfIE -

To end the proof of the main result consider the case n =2, a typical one.

Consider step functions f and the analytic family of operators

2.15) Tl = [ PR @ lyDF) dy

where 0=R(z)=<1, a(z)=%[(u—1)+ & +iv] and k(x) is a bounded measura-
ble function taking natural values only. (See [7, p. 280]).

The main theorem and definitions in [2] can be formulated in terms of
characteristic functions of finite union of intervals and step functions. From
this remark and estimate (2.1.2) we see that T, ,,(f) is admissible (see [2]).
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From (2.1.3) and (2.1.4) we have

2|

e
||Ta<iv)(f)||?3,w) < C(|”| +1) ;'372‘ “f "?‘2,2),
(2.1.6)

ele/4
"Ta(1+iv)(f)"ﬁ,°°) < C(l”' +1) “"8- "f"ﬁn

Take u=1—¢ and define P, by
1 € 1-¢

P, 2 1

Sagher’s convexity theorem gives (see [2])

K
(2.1.7) 1 Tec-o O, =7 Ifl.e.-

Replacing P, by its value, P, =1+ ¢/2 — ¢, and using (2.1.7) and the fact that
k(x) is arbitrary we get

K
(2 1 ~8) usg(l)‘(f)"?l-i-(elz-e).m) S_e_ “f"?‘l+ e/2—e, 1+e/2—e)*

An application of Lemma 1.5 gives part (ii) of the thesis and Marcin-
kiewicz’s interpolation theorem gives part (i).
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