SUBNORMAL OPERATORS AND HYPERINVARIANT SUBSPACES

BY H. W. Kim and Carl Pearcy

- 1. Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space, and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . An operator S in $\mathcal{L}(\mathcal{H})$ is said to be subnormal if there exists a Hilbert space $\mathcal{H} \supset \mathcal{H}$ and a normal operator N in $\mathcal{L}(\mathcal{H})$ such that $N\mathcal{H} \subset \mathcal{H}$ and $N \mid \mathcal{H} = S$. (In this situation we say that N is a normal extension of S and that S is a restriction of N. Alternate characterizations of subnormal operators were given by Halmos [5] and Bram [2].) The operator N is called a minimal normal extension of S if the only reducing subspace for N containing \mathcal{H} is \mathcal{H} itself. It is well known that every subnormal operator has a minimal normal extension and that the minimal normal extension is unique up to unitary equivalence (cf. [5] or [7, p. 101]). Since subnormal operators are intimately related to their minimal normal extensions, and the spectral theorem guarantees the existence of a generous supply of invariant and hyperinvariant subspaces for (nonscalar) normal operators, the question whether every (nonscalar) subnormal operator in $\mathcal{L}(\mathcal{H})$ has a nontrivial invariant or hyperinvariant subspace has long been of interest, and remains open as of this writing. The purpose of this note is to make a modest contribution to this problem. We consider subnormal operators whose spectra have empty interior, and reduce the invariant subspace problem for this class of operators to a rather curious looking special case. This assumption on the spectrum is unpleasant, but a typical subnormal operator in this class has for spectrum a "Swiss cheese" with positive planar Lebesgue measure, and it is generally conceded that this class of subnormal operators is the most intractable with respect to the existence of invariant subspaces.
- **2.** In what follows, the spectrum of an operator T will be denoted by $\sigma(T)$ and the essential spectrum (i.e., Calkin spectrum) of T by $\sigma_e(T)$. Let S be a nonscalar subnormal operator in $\mathcal{L}(\mathcal{H})$, and let N be a minimal normal extension of S acting on a Hilbert space $\mathcal{H} \supset \mathcal{H}$. If $\mathcal{H} = \mathcal{H}$, then S is normal and thus has nontrivial hyperinvariant subspaces, so we may assume that $\mathcal{H} \neq \mathcal{H}$ (which implies that S is not normal). We write $\mathcal{H} = \mathcal{H} \oplus (\mathcal{H} \ominus \mathcal{H})$ and note that it follows easily from the minimality of S that S has dimension S (i.e., S has dimension S is neither finite dimensional nor nonseparable). We summarize these remarks as follows.

PROPOSITION 2.1. Let S be a nonnormal subnormal operator in $\mathcal{L}(\mathcal{H})$. Then its minimal normal extension N may be taken to act on $\mathcal{H} = \mathcal{H} \oplus \mathcal{H}$, and

Received December 20, 1977.

associated with this decomposition of \mathcal{H} , there is corresponding decomposition of N as

$$(1) N = \begin{pmatrix} S & C \\ 0 & B \end{pmatrix},$$

where C and B belong to $\mathcal{L}(\mathcal{H})$.

Henceforth in this section the operators S and N under discussion will always be those of Proposition 2.1 related as in (1). We now begin to study the relations between $\sigma_e(S)$, $\sigma(S)$, $\sigma(N)$, $\sigma(N)$, $\sigma(N)$, and $\sigma(N)$. Recall first that it is known from [6] that $\sigma(N) \subseteq \sigma(S)$.

Proposition 2.2. If the subnormal operator S has no nontrivial hyperinvariant subspace, then $\sigma_e(S) = \sigma(S) = \sigma_e(N) = \sigma(N)$.

Proof. It is an easy consequence of the Fredholm theory that if T is any operator such that $\sigma(T)\setminus \sigma_e(T)\neq\emptyset$, then either T or T^* has point spectrum, and thus T has a nontrivial hyperinvariant subspace. Thus, by hypothesis, we conclude that $\sigma_e(S) = \sigma(S)$. Furthermore, if $\sigma(N) \setminus \sigma_e(N) \neq \emptyset$, then N has point spectrum—say λ is an eigenvalue for N. If (f_1, f_2) in $\mathcal{H} \oplus \mathcal{H}$ is any eigenvector for N corresponding to λ , then, since N is normal, (f_1, f_2) is also an eigenvector for N^* corresponding to the eigenvalue $\bar{\lambda}$, and according to (1) we have $S^*f_1 = \bar{\lambda}f_1$. Since S^* cannot have point spectrum, $f_1 = 0$, which implies that the eigenspace \mathscr{E}_{λ} for N corresponding to λ is a subspace of $0 \oplus \mathcal{H}$. Since \mathscr{C}_{λ} and $\mathscr{H} \ominus \mathscr{C}_{\lambda}$ are reducing for N, this contradicts the minimality of N, and hence $\sigma_e(N) = \sigma(N)$. Finally, if $\sigma(S) \neq \sigma(N)$ and $\lambda \in \sigma(S) \setminus \sigma(N)$, then $N - \lambda$ is invertible, and since $S - \lambda = (N - \lambda) \mid (\mathcal{H} \oplus 0)$, $S-\lambda$ must be bounded below and have closed range. Since $\lambda \in \sigma(S)$, range $(S-\lambda) \neq \mathcal{H}$, and hence kernel $(S-\lambda)^* \neq (0)$. Thus, once again, S^* has point spectrum, which is contrary to the hypothesis that S has no nontrivial hyperinvariant subspace, and the result follows.

PROPOSITION 2.3. If the subnormal operator S has no nontrivial hyperinvariant subspace, then the operator B in (1) satisfies $\sigma(B) = \sigma(N) = \sigma(S)$.

Proof. We know from Proposition 2.2 that $\sigma(N) = \sigma(S)$. If $\lambda \notin \sigma(N)$, then the 2×2 matrix $N - \lambda$ is invertible, and the (1,1) entry $S - \lambda$ is also invertible. In this situation it is always true (and easy to see) that the (2,2) entry $B - \lambda$ must also be invertible, so $\sigma(B) \subset \sigma(N)$. Suppose next that $\lambda \in \sigma(N) \setminus \sigma(B)$. Then $B - \lambda$ is invertible and bounded below—say by γ . Let δ be the open disc in $\mathbb C$ with center λ and radius $\gamma/2$, and let $E(\delta) \neq 0$ be the spectral projection for N corresponding to δ (i.e., let $E(\delta)$ be the value of the spectral measure $E(\cdot)$ of N at δ). Let (f_1, f_2) be any unit vector in $\mathcal{H} \oplus \mathcal{H}$ belonging to the range of $E(\delta)$. Then, by the spectral theorem and (1), for every positive integer n we have

$$\gamma^n \|f_2\| \le \|(B-\lambda)^n f_2\| \le \|(N-\lambda)^n (f_1, f_2)\| \le (\gamma/2)^n,$$

which implies that $f_2 = 0$. This says that the range of $E(\delta)$ is contained in $\mathcal{H} \oplus 0$, and thus that N has a nonzero reducing subspace contained in $\mathcal{H} \oplus 0$. It follows easily from (1) that the range of $E(\delta)$ is also a reducing subspace for S and that S restricted to this subspace is normal. But this implies that S has a nontrivial hyperinvariant subspace (cf. [4, Theorem 1.4]), contrary to hypothesis. Thus $\sigma(B) = \sigma(N) = \sigma(S)$.

Recall now that a vector x in \mathcal{H} is said to be a rational cyclic vector for an operator T in $\mathcal{L}(\mathcal{H})$ if the linear manifold consisting of all vectors of the form r(T)x where r is a rational function with poles off $\sigma(T)$ is dense in \mathcal{H} . Recall also that an operator T in $\mathcal{L}(\mathcal{H})$ is essentially normal if T has a compact self-commutator, or, equivalently, if the image $\pi(T)$ of T in the Calkin algebra is normal.

PROPOSITION 2.4. If the subnormal operator S has a rational cyclic vector and has no nontrivial hyperinvariant subspace, then S can be written as $S = N_1 + K_1$ where N_1 is normal and K_1 is compact. Furthermore, in this case the operator C in (1) belongs to the Hilbert-Schmidt class, and the operator B in (1) is essentially normal.

Proof. According to [1], every hyponormal operator in $\mathcal{L}(\mathcal{H})$ with a rational cyclic vector has a trace-class self-commutator. Since subnormal operators are hyponormal and $S^*S - SS^* = CC^*$ can be deduced from (1) and the normality of N, it follows from the hypothesis that CC^* belongs to the trace-class, and hence that C belongs to the Hilbert-Schmidt class. In particular, S is an essentially normal operator, and since $\sigma_e(S) = \sigma(S)$ by Proposition 2.2, it follows from [3, Corollary 11.2] that S has the form $S = N_1 + K_1$ where N_1 is normal and K_1 is compact. Finally, to see that S is essentially normal, one uses the normality of S and S and S and S and that S and that S is compact has already been observed.

Proposition 2.5. If the subnormal operator S has no nontrivial hyperinvariant subspace and has the further property that $\sigma(S)$ has empty interior, then

$$\sigma(N) = \sigma_e(N) = \sigma(S) = \sigma_e(S) = \sigma(B) = \sigma_e(B)$$
.

Proof. The first four equalities follow from Propositions 2.2 and 2.3, so its suffices to prove that $\sigma(B)\backslash\sigma_{\epsilon}(B)=\emptyset$. Suppose, on the contrary, that $\sigma(B)\backslash\sigma_{\epsilon}(B)\neq\emptyset$. Then one knows (cf. [8, §1]) that the difference $\sigma(B)\backslash\sigma_{\epsilon}(B)$ consists of the union of various holes in $\sigma_{\epsilon}(B)$ together with some isolated eigenvalues of B. Since a hole in $\sigma_{\epsilon}(B)$ is a nonempty open set and $\sigma(B)$ ($=\sigma(S)$) by hypothesis contains no nonempty open set, it follows that $\sigma(B)\backslash\sigma_{\epsilon}(B)$ must consist only of isolated eigenvalues of B. If λ is such a point, then $\bar{\lambda}$ is an eigenvalue of B^* (since $B-\lambda$ is a Fredholm operator of index zero). Since $0 \oplus \mathcal{H}$ is an invariant subspace for $N^*-\bar{\lambda}$ and $(N^*-\bar{\lambda})\mid (0 \oplus \mathcal{H}) = B^*-\bar{\lambda}$, it follows that $\bar{\lambda}$ belongs to the point spectrum of N^* . Arguing just as in the proof of Proposition 2.2, we see that this leads

to a contradiction of the minimality of N, and it follows that $\sigma_e(B) = \sigma(B)$.

3. We are now prepared to establish our main structure theorem.

THEOREM 3.1. If S is a nonnormal subnormal operator in $\mathcal{L}(\mathcal{H})$ such that

- (a) $\sigma(S)$ has empty interior,
- (b) S has a rational cyclic vector, and
- (c) S has no nontrivial hyperinvariant subspaces,

then S can be written as $S = N_1 + K_1$ where N_1 is normal and K_1 is compact, and S has a minimal normal extension \overline{N} acting on $\mathcal{H} \oplus \mathcal{H}$ of the form

(2)
$$\tilde{N} = \begin{pmatrix} N_1 + K_1 & C_1 \\ 0 & N_1 + K_2 \end{pmatrix}$$

where K_2 is compact and C_1 is a Hilbert-Schmidt operator, and where

$$\sigma(N) = \sigma_e(N) = \sigma(S) = \sigma_e(S) = \sigma(N_1 + K_2) = \sigma_e(N_1 + K_2).$$

Proof. According to Propositions 2.1-2.5, S can be written as $S = N_1 + K_1$ where N_1 is normal and K_1 is compact, and S has a minimal normal extension N acting on $\mathcal{H} \oplus \mathcal{H}$ of the form

$$N = \begin{pmatrix} N_1 + K_1 & C \\ 0 & B \end{pmatrix},$$

where B is essentially normal, C belongs to the Hilbert-Schmidt class, and $\sigma(N) = \sigma_e(N) = \sigma(S) = \sigma_e(S) = \sigma(B) = \sigma_e(B)$. Since $S = N_1 + K_1$ and B are both essentially normal and they have the same spectral picture (cf. [8, §1]), it is a consequence of [3] that there exist a unitary operator U and a compact operator K_3 in $\mathcal{L}(H)$ such that $U(N_1 + K_1)U^* + K_3 = B$. We now define

$$\tilde{N} = \begin{pmatrix} 1 & 0 \\ 0 & U^* \end{pmatrix} \begin{pmatrix} S & C \\ 0 & B \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & U \end{pmatrix} = \begin{pmatrix} N_1 + K_1 & C' \\ 0 & N_1 + K_2 \end{pmatrix},$$

where C' = CU and $K_2 = K_1 + U^*K_3U$. It is clear that K_2 is compact and that C' belongs to the Hilbert-Schmidt class. Furthermore \tilde{N} is unitarily equivalent to N and is by inspection a normal extension of S. Since N is a minimal normal extension of S, the same must be true of \tilde{N} , and the proof is complete.

COROLLARY 3.2. If there exists a subnormal operator in $\mathcal{L}(\mathcal{H})$ whose spectrum has empty interior and which has no nontrivial invariant subspaces, then such an operator must be of the form of $S = N_1 + K_1$ in Theorem 3.1, and moreover one may assume that the minimal normal extension of S has the form (2). Furthermore there exists a compact operator K such that $(S+K)^*$ is also subnormal.

Proof. In view of Theorem 3.1, it suffices to prove the last statement. Since $(\tilde{N})^*$ is normal with \tilde{N} and

$$(\tilde{N})^* \mid (0 \oplus \mathcal{H}) = N_1^* + K_2^*,$$

it follows that $N_1^* + K_2^*$ is subnormal, and $N_1^* + K_2^* = (S + K)^*$ where K is the compact operator $K_2 - K_1$.

The structure of the operator \tilde{N} in (2) leads to some interesting questions. Since \tilde{N} is a compact perturbation of the normal operator $N_1 \oplus N_1$, is there any nice relation between the spectral measures of these two normal operators? Can the assumption that $\sigma(S)$ has no interior be removed from Theorem 3.1 without altering the conclusion? What is a concrete model for the operator \tilde{N} ? Finally and most importantly, can Theorem 3.1 be used to solve the invariant subspace problem for subnormal operators S such that $\sigma(S)$ has empty interior?

Added in proof. Recently, Scott Brown; in the brilliant paper Some invariant subspaces for subnormal operators, Integral Equations and Operator Theory, vol. 1 (1978), pp. 310–333, showed that every subnormal operator in $\mathcal{L}(\mathcal{H})$ has a nontrivial invariant subspace. Thus far no one has been able to use his results and techniques to solve the hyperinvariant subspace problem for subnormal operators.

REFERENCES

- 1. C. BERGER and B. J. SHAW, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc., vol. 79 (1973), pp. 1193-1199.
- 2. J. Bram, Subnormal operators, Duke Math. J., vol. 22 (1955), pp. 75-94.
- 3. L. Brown, R. G. Douglas and P. Fillmore, Unitary equivalence modulo the compact operators and extensions of C*-algebras, Proc. Conf. Operator Theory, Springer Lecture Notes in Mathematics #345, 1973, pp. 58-128.
- 4. R. G. DOUGLAS and C. PEARCY, Hyperinvariant subspaces and transitive algebras, Michigan Math. J., vol. 19 (1972), pp. 1-12.
- 5. P. R. HALMOS, Normal dilations and extensions of operators, Summa Brasil. Math., vol. 2 (1950), pp. 125-134.
- 6. —, Spectra and spectral manifolds, Ann. Soc. Pol. Math., vol. 25 (1952), pp. 43-49.
- 7. ——, A Hilbert space problem book, Van Nostrand, Princeton, 1967.
- 8. C. Pearcy, Some recent developments in operator theory, CBMS Regional Conference Series Lecture Notes, Amer. Math. Soc., 1978.

BUCKNELL UNIVERSITY
LEWISBURG, PENNSYLVANIA
UNIVERSITY OF MICHIGAN
ANN ARBOR, MICHIGAN