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A SINGULAR FREE BOUNDARY PROBLEM

BY
Barry F. KNERr!

1. Introduction

In 1961 Chernoff [1] studied the problem of sequentially testing whether
the drift of a Wiener process is positive or negative, given an a priori normal
distribution, and showed that this problem can be reduced to a singular
parabolic free boundary problem. A description of Chernoff’s formulation
and reduction of the problem can also be found in [7]. Briefly, one considers
a Wiener-Levy stochastic process x(7) and an associated process &(1) with
drift w; i.e. £(7) = x(7)+ wr where u is an unknown constant whose sign is
to be determined.

p is considered as a random variable with known a priori normal
distribution. . The problem then of observation and periodic testing to
determine the sign of £ and hypothesize the sign of w in such a way as to
minimize the expected cost of the operation becomes one of uniformly
minimizing the Bayes risk B(¢, 7). It is assumed that the cost of an incorrect
decision is proportional to || and that the cost of observation is constant
per unit time. Chernoff then shows that B then satisfies the equation

%B€£+-§B€+B,+1=0

in the continuation region and certain boundary conditions as well. Then,
defining a new function u(x,t) in terms of the Bayes risk B(¢ 7) and
performing a change of variables Chernoff reduces the problem to the
following singular parabolic free boundary problem: find a function u(x, t)
and a free boundary curve x = s(t) such that

u—u, =—1/2t>) for 0<x<s(t), 0<t<T,
u (0,)=—% for 0<t<T,

u(s@), t)=u/ (s, t)=0 for 0<t<T,

s(0)=0.

(P)

It should be noted that the conditions on u, are incompatible at the origin
and that the equation is singular at ¢t =0.
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Figure 1.

There have been several studies directed at the numerical solution of this
singular free boundary problem (see [6], [7] and the references cited there).
However, in this paper the problem will be solved analytically by the
method of penalty functions. In fact we will treat a more general class of
problems where u, — u,, = f(t) and f(t) is negative and behaves like —t™* for
some k=0, and we will allow more general conditions on u, (0, t) as well.

In Section 2 we define the notion of a solution in the spirit of variational
inequalities and prove uniqueness.

Then, in Section 3, we develop the a priori L¥ and Hélder estimates that
enable us to prove existence in Section 4.

To motivate the techniques used in this paper consider problem (P) above,
and the following nonrigorous remarks. Clearly, by the maximum principle,
we should expect that —3=<u, <0 and therefore, since u =0 along s, that
u>0 for 0<x <s(t). Differentiating the function u(s(t), t), which vanishes
identically, we see that u,(s(t), t) = 0. Since u,, =0 on {x =0}, the maximum
principle implies u, =0 for 0 <x <s(t). Next, to derive estimates of sup u,
sup s consider the following simple argument which is a variant of one used
in [2]: if u(xe, t5)>0 let Q={0<x<s(t), 0<t<t,} and define

w(x, t) = u(x, t)—zlng (x —x0)>.
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Since w(xo, to)>0 w must attain a positive maximum somewhere in Q and
since w, — w,,, =0 in Q it must occur either on s or on {x =0}. But w=0on s
so the positive maximum must occur on {x =0}, where, therefore, w, =
(=14 x,/(t,)®) must be nonpositive. Thus x,=t3. But since —3=u, <0 it
follows that 0=<u(x, t,) <12 for 0=x <s(t,) so we expect that u(x, t)=@)t?
and s(t)=t> Since the function z=t?u satisfies z,—z, =2tu—(GeL",
z=z,=0on s, z, =—(3)t> when x =0, the L? estimates of Solonnikov [9]
imply that z, and z,, are in L? for each p>1. Thus u, and u,, are in L? of
regions bounded away from t=0.

In Sections 3 and 4 we will make all of these remarks rigorous through the
use of suitable penalty function approximations to the free boundary prob-
lem and we will prove existence. In Section 4 we also prove that the free
boundary s is Holder continuous down to ¢t=0. We then prove a result
about the initial growth of the free boundary when f(t) behaves like —t™*
and k>3. We prove that there exists a constant >0 such that, for each
€ >0, s(t) initially grows faster than (8 — £)t* but slower than 6t*. For the
special problem (P) this implies that s(t) grows almost like 6¢>, which agrees
well with existing numerical results (see [6], [7]).

The author would like to thank L. C. Evans and R. Rishel for their
comments and suggestions.

2. Statement of the problem

Throughout the paper we let k and T denote arbitrary but fixed constants
satisfying k=0 and T>0. The function « satisfies

2.1) ta(t)e C*[0, TIN CY(0, T],

2.2) t“a(t)—>0 as t\O0,

2.3) a'()<0 and a(®)<0 for ¢t>0.
The function f satisfies

(2.4) fe Y0, T],

(2.5) —o<—c"=t'f(t)=—-c'<0 for 0<t=T,
(2.6) f'(=0 and f(t)<0 for t>0.
Finally, we define

(2.7 X =1+a(T)/f(T).

Notice that we do not assume that a(t)—0 as t\x0 when k>0.
We have already discussed the fact that decision theory gives rise to the
following problem.

Problem A. Find a nonnegative, bounded, continuous function
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u(x, t): R*x[0, T]—[0,«) and a function s(t)e C[0, T] such that s(0)=0
and s(t)>0 for t>0 such that:

(i) On the set Q={(x,)]|0<x<s(t), t>0u(x,)>0 and u(x,t) is a
classical solution of the equation u, —u,, =f(t).

(ii) wu, is continuous up to the free boundary x = s(t) and up to the line
{x=0} and u(s(t), t)=u.(s(t), t)=0 and u,(0, t) = a(t) for t>0.

We will solve Problem A indirectly by formulating a Problem B, solving
this problem and showing that the solution also solves Problem A. The
advantage of this approach is that Problem B will be stated without explicit
mention of a free boundary x =s(t), but part of the boundary of the set
{u>0} will in fact be the free boundary. Also, it is relatively easy to prove
uniqueness over a broad class for Problem B.

DeFmntTION 2.1, We denote by X the set of functions u(x, t) defined on
[0, o) %[0, T] which satisfy the following conditions:

@ ulx, t)e C([0, ) %[0, T)NL=(0, ) %[0, T)].
(i) wu(x,t)=0 on [0, ) %[0, T].
(iii) There exists a constant X, >0, depending on u, such that u(x, )=0
if x=X, and t€[0, T].
(iv) For each 7€(0, T), u, € C([0, ) X[, T]).
(v) u possesses a distributional (weak) derivative u, in L*((0, ®) X (, T))
for each 7€ (0, T).
(vi) u(x,0)=0 for x €[0, «).

Although condition (iii) implies that ¥ is not closed this causes no
problems since we will actually prove the existence of a solution which
vanishes for x = X, where X is defined by (2.7). We would, of course, like to
prove uniqueness over as large a class ¥ as possible. In fact, it will become
apparent that we still have existence and uniqueness if we broaden ¥ so that
X, == in some appropriate sense and if the derivative u, in (iv) is a weak
derivative. Our formulation of conditions (iii) and (iv) is therefore a com-
promise in the interest of simplicity. We now define Problem B.

Problem B. Find a function ued such that the following integral
inequality holds for each 0<7,<7,<T and ve X:

(2.8) I J;Xu,(v—u)+ux(v—u)x dx dt+j

T1

T.

" a(t)(v —u)(0, 1) dt

T1

T, X
= I L f@)(v—u) dx dt
where X =min (X, X,) (see (iii) of Definition 2.1).
Notice that, formally, a solution to Problem A is a solution to Problem B.

THEOREM 2.1 (Uniqueness). There exists at most one solution to Problem
B.
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Proof. Suppose that u and w are solutions to Problem B and let
X =min (X, X,,). Without loss of generality we may assume that X = X,. If
we write (2.8) with v=w and then with u=w and v=u and add the
resulting inequalities we get

T, X T, X
I L zz,dxdts—j j 22dxdt=0

1

where z =w —u. It follows that
X X
[ G mrax SL (2(x, 7)) dx
A _

Letting 7,0 this implies that [y (z(x,7,))?dx=0 so that u=w on
[0, X]x[O0, T]. But w=0 on [X, ©) X[0, T] so it suffices to prove that u=0
on [X, X, ]x[0, T]. To show this we define two functions v,(x, t) and v,(x, t)
as follows:

ulx,t) if 0=x=X
2ux,t) if X=x=X,

sl t)__{u(x,t) if 0=x=X,
2 lu(x,t) if X=x=X,.

vi(x, )= {

Since u=u,=0 on x=X (since u=w there) and since uc¥ it is not
difficult to verify that v, and v, are in ¥ with X, =X, =X,. If we write
(2.8) with v =v, and v = v, we get

T, X, T, X,
I L u,u+u§dxdtZI Lf(t)udxdt

and

_[: Jj u(—3u) + u, (—3u,) dx dt = f JX“ FO)(—iu) dx dt

X

which together imply that

X X

T, X, T, Xu
j I u,u+u§dxdt=I J' fu(x, ) dxdt=0

since u=0 and f=0. Then, as before, we deduce that u=0 on
[X, x,1x[0, T].

Once a solution to Problem B has been shown to exist, a solution to
Problem A will be derived by setting s(t) =sup {x|u(x, t)>0}.

In the next section we will establish estimates that will later be used to
prove the existence of a solution to Problem B.
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3. Estimates

Recall the definitions of k, T, and X. Given any £>0 we define the
Problem C(g) as follows.

Problem C(¢). Find a function u®(x,t)eC,,(R) where R=
(0, X)x (0, T) which satisfies:

(3.1 ui—un +B°w*)=f(t) inR,
(3.2) u®(x,00=0 for O0=x=X,

(3.3) ;;ue(O,t)={e(t) for 0=t=T,
(3.4) ;;ue(X,t)EO for 0=t=T.

The functions B°, f* and ¢° are smooth functions that satisfy the conditions
listed below:?

B(=0, fO=f1), CWO=a@l) if t=e
dgey=0, Lrm=0, L=
EB (t)—'03 dtf (t)—09 dt{ (t)—'o for all t

£°(0)=0, —0 < B°(0)=f*(0),
—c"=t*f*(t)<0 for 0=t (see (2.9)).

For simplicity we will suppress the superscript £ in this section. The

existence of a solution to Problem C(e) follows, for example, from Theorem
7.4, Chapter V of [5].

Lemma 3.1. If u® is a solution to Problem C(e) then the following
inequalities hold on R:

i)

3.5) % u®(x, t)=0,

d
(3.6) a(T)=—u"(x, )=0,

9x
3.7 0=u°(x,t).
Also, if 0<e<t=T then
(3.8) O=u®(x,t)=e+Aa®(t)t* for 0=x=<X

2 For the duration of the paper we shall assume, for simplicity of expositon, that the functions

« and f are in C*. Otherwise we would simply define the functions B¢, £° and f° differently and
proceed along the same lines.
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where A =1/(2¢") (see (2.5) for the definition of ¢'). In particular, there exists
a constant M >0 not depending on €, such that

(3.9) O=u*(x,t)<M for (x,t)eR for 0<e<T

Proof. To prove (3.5) we differentiate equation (3.1) with respect to ¢
and set du®/ot =v to obtain

)
v,—vxx+B’(u)v=5f‘* =0 in R

Since v(x,0)=7°(0)—B°(0)=0, v,(0,t)=d¢*(t)/dt=0 and v, (X, 1)=0 it
follows from the maximum principle that v(x, t)=0 in R. Inequality (3.6)
follows from the maximum principle, applied to the equation which results

from differentiating equation (3.1) with respect to x. Then (3.7) follows from
(3.5) and (3.2).
To prove (3.8), fix 0<7=T and let 0<g <. Then let

a(t) _«
(3.10) XOE%SK(—;;)<X.
Recall that f*(7)=f(7) and {*(7) = a(T) since ¢ <7. We define functions v
and z by
(3.11) v(x,t)=e+c(x—X,)> where c=—f(1)/2,
(3.12) z(x, )=v(x, t)—us(x, t).

Let S=(0, X,) % (0, 7) and let Q={(x, t)|u(x, t)>¢e}NS. Then z,—z, =0
on (), since B(x)=0 for x=¢ implies z,—z,, =—2c—f(t)=—2c—f(1)=
—2¢—f(r)=0. For 0<t<t we also have

z,(0,)=—2cXp—a(r)=0 and z,(X,,t)=—-u(X,,t)=0.

Since z=0 at boundary points of () in S, where u® =g, we can use the
maximum principle to conclude that z=0 in Q. Thus u <e +c(x — X,)? in Q
and since u=<¢ on S\ () it follows that

(3.13) ulx,t)=e+cX3
holds on S. But since u, =0 (see (3.6)), (3.13) holds for 0<x <X, 0<t<r
Therefore, using (2.5) we see that

R GG 5 G

=eg+cXi= =
ulx,t)=e+cXg=¢ 2 fr) € e

so that 0 <e <7 implies
(3.14) us(x, t)=e+(a*n)/2c)t* on (0,X)x(0, 7).
This proves (3.8), and also (3.9). W

Lemma 3.1 facilitates the proof of the next lemma. From now on we will
always assume that ¢ <T.
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Lemma 3.2. If u® is a solution to Problem C(g) then, for any integer p>1,
T pX
(3.15) j L (1B () dx dt <C
(0]

where C depends on p but not on ¢.

Proof. It suffices to consider p to be an even integer. Let s=k+1 and
let @« >0 be an arbitrary constant and define £(t) =(T—t)*. Then

T X T pX
I= J;) J; tspg(t)ﬁp(ll) dx dt= L J; tspﬁ(t)B"‘l(u)[f” (t)—' u + uxx] dx dt.
By expanding we get three integrals which we denote I, I,, and I;. Then

L=- f LX 28 (y)B° (), dx dt

rT X

8 (#2£(1)BP (w)} dx di

u—
J0 Y0 at
o T p

= || wtpe 087w+ v (6B ) i
Jo Jo

= ut“’éa—t (&(@)B" X(u)) dx dt

Y0 <0

(because u=0 and B(u)=0 and p is even)

T sp _6_ p—1
ijo [ 02 (cpr 2wy dxa

0

(because u =M (see (3.9)) and all factors in the integrand are nonnegative)

T X
=—MI L sptP T E()BPH(u) dx dt.

0

If we apply Young’s inequality a® *b=mn((p—1)/p)a®+b?/(pn°~") we see
that

L=< spMT® j L £ (£ £(t) P |B))P~" d dt
< spMT* L L (o = DIp)EPER) B +(1p)n &(r) dx dt

=ns(p— 1)MT* LT LX tPE()(B(w))P dx dt + s °PMTX LT LX £(t) dt dx.

Thus, for any n >0,
(3.16) L=mns(p—1)MT*I+ sn* °MT**X/(a + 1).
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Proceeding, we see that

L= [TLX £PE(6) 87 (u)hye dx dif

0

= LT {rewpe i, |X— LX ()~ DB () (w)u? de) dr.
Then
(3.17) I;=0.

Continuing, we get

L= LT LX £2E(1) 8P (u)f* (1) dx dt
SL L t£() |B)P (t7c") dx dt

- TC"LT LX (£ B E" dx dt

< Tnc"(p—D/p)I+0*Pc"XT*?/((a + 1)(p)).

Using this inequality, together with (3.16), (3.17) and the fact that I=
L+ I,+1;, we get
I=my, [+ 7Py, T*(a+1)

where v,, v, depend on k, p, M, T, and ¢” but not on &. Letting n =1/(2v,)
we get

[ [ e o) dedr=2pmwia+1),

Using the Lebesgue Bounded Convergence Theorem to let a \y0 we obtain
T X
(3.18) j I tPBP(u) dx dt<2n"""y,. A
0 J0
LemMa 3.3. If u is a solution to Problem C(g) then, for each 1=p <o,
(3.19) ey, 1 tellrmy = C

where C does not depend on e.

Proof. Consider the function z(x, t) = t*u(x, t) where s = k + 1. According
to equations (3.1)—(3.4) we have

(3.20) Z,— 2 = t5f(t)—t°B(u) + st“u in R,
(3.21) z(x,0)=0 for O0=x=X
(3.22) z,(0,t)=tL°(t) for O=t=T,

(3.23) z, (X, )=0 for O0=t=<T.
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Theorem 17, p. 122 of Solonnikov [9], and Lemmas 3.1 and 3.2 imply that
(3.24) Iz llecwy s | zexllsy = C(p)
where C(p) does not depend on &. This proves the result. W

LemMmA 3.4. For any monotone sequence {&,} converging to zero, if u"
denotes the solution to Problem C(e™), then there exists a subsequence, which
we again denote {e"}, and a function u(x, t) such that u(x, t) satisfies;

(3.28) ueL*(R)NC(R) and u(x, t)=<Aa?(t)t*

in R where A =1/(2¢") and

(3.29) u(x,t)=0inR and u(x,00=0 for xe[0,X];
(3.30) u, € C,(R,)NL"(R)

for each 7€(0, T), where ac(0,1) depends on T and C, is the space of
functions which are Hélder continuous with respect to x (exponent o) and t
(exponent a/2), and R, =(0, X)x (1, T);

(3.31) u, (0, )=a(t), u (X, t)=0 for te(0,T);
(3.32) a(M=u/(x,t)<0 in R;

for some Be€(0,1) and C>0,

(3.33) lu(x, H)—u(x, )| =C|t—t|®

for all (x,1), (x,t) in (0, X)X (r, T) where C and B depend on 7; and u
possesses weak derivatives

(3.34) U, Uy € LP((0, X) X (7, T))
for each 1€(0, T], p>1; and, for each >0,

(3.35) u"—>u uniformly in R,

(3.36) u—u, uniformly in [0, X]x[7, T],
(3.37) u"—u, weaklyinL?(0,X)x (7, T)),
(3.38) ut,—u,, weaklyinL?((0, X)X(s, T)).

Proof. Let T be an arbitrary number in (0,T) and define S=
(0, X)X (7, T). By Lemma 3.3 of [5] and Lemmas 3.1 and 3.3 we see that

sup |u"|+sup |ul|+ Ui+ uhs + (Ul "

= Cy([u"l, o, b, 6 Ukl
=G,
where C; and C, depend on p and 7 but not on n, and & =3/p. Here

W)s=sup |lulx, ) —ulx, O|f—tl°;  (uis=sup|u®, t)—ulx, /|2 —x|°
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where the sup is taken over (x, f), (%, t) and (x, t) in S. By Ascoli’s lemma it
is clear that some subsequence of {u"} converges uniformly together with its
derivatives {u%} on (0, X)X (7, T) for each 7e€(0, T) to a function u(x, t)
satisfying (3.29)—(3.33). All of the other claims, except (3.28), (3.29), and
(3.35) are also clear. That u e L*(R) follows from (3.9), and that u e C(R)
and that (3.35) holds are consequences of (3.8) and (3.5). In fact, u(x, t)=

(1/(2¢")a(p)t* for (x, t) € R follows from (3.8) and proves that u is bounded
and that u(x, 0)=0.

4. Existence

We are now in a position to prove the existence of a solution to Problem
B.

THEOREM 4.1. Suppose that (2.1)—-(2.7) all hold. Then there exists a
solution u(x, t) to Problem B. Furthermore, u(x, +) is an increasing function for
each x [0, X] and u(-, t) is a decreasing function for each te[0, T].

Proof. Let {¢"} be a sequence such that 0<eg, ., <eg, <T and such that
the solutions u™ to Problem C(¢") converge to a function u as described in
Lemma 3.4. Let 0<7,<7,<T, ve¥X, and §>0 be arbitrary and let
w(x, t)=v(x, t)+8. If we write (3.1) for u", multiply both members by
(w—u") and integrate by parts over (0, X)X (74, 7,) where Y =min (X, X)
we find that

4.1) [Tz LY uf(w—n")dxdt— fz ut(w—u™)(Y,t) dt

Y

+ J;Tz a(®)(w—u")(0,t)dt+ .[12 L u(w—u"), dx dt

+ IY fz B"(w)(w—u") dx dt

(o

—L [ 6 n- B v —ur) dxar

Y 7,
= L J' f@)(w—u") dxdt
if n is sufficiently large (so that ¢, (t)=a(t), and f,(¢t)=f(t) for te (74, 75)).
Let us label these integrals consecutively so that (4.1) reads
4.2) L+ L+ L+ + I+ 1=

Consider I,:

T,

(4.3) I=-— [ “un (Y, O(w—un)(Y, ¢) dt.

T1
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There are two cases: either Y=X, or Y=X. If Y=X, then w(Y, t)=34,
w, (Y, t)=0, u"(Y, t)=0 and ul(Y, t)<0 so that L,<a(T)(m,—7,)8 (where
we have used (3.6)). On the other hand, if Y=X, then u?(Y,t)=0 and
L=0<a(T)(r,—7,)8. In any case, we have

(4.4) 12 = a(T)(Tz - 71) 8.

The monotonicity of B" implies

4.5) I,=0

and from (4.2)—(4.5) we get

(4.6) L+a(T)(r,—7)é+ L+ 1+ 1=

By Lemma 3.4 it is clear that passage to the limit as n— is possible .in
(4.6). This yields

4.7 j b LY u(w—u) dx dt +a(T)(ry— 1) 8+ j a(t)(w—u)0, t) dt

+ FJ'Y u,(w—u), dxdt= LY r f®)(w—u) dx dt

0 Iy
since w=8>0=> I;—0 as n—. The integral inequality of Problem B now
follows by letting 8 —0.

To show that u e ¥ it suffices to show that u(X, t) =0 for t€[0, T]. To do
this, we define

Q={(xt)eR|u(x, t)>0}.

Since u € C(R), Q is an open set and, by the Schauder estimates (see [3]), it
follows that u e C,,,(Q). Also, from this and Lemma 3.4 we find that

(4.8) u—u,=f(t) in Q<R
(4.9) u(x,00=0 for xel0,X],
(4.10) u, (0, )=a(t) for te(0,T),
(4.11) u, (X, t)=0 for te(0,T).

Let (xo, 1) €Q and define a function w(x, t) by
wx, t)=u(x, t)—c(x —xo)> where c=—f(T)/2.
Let Q=0N{0<t<ty}. Then w,—w, =f(t)+2c=f(T)+2c=0 in Q. At
boundary points of ) in R we have u =0 and w=0. Also,
w (X, ) = u (X, 1) —2c(X —xg) = —2¢(X —x¢)=0.

By the maximum principle w cannot take a maximum in Q. But w e C(Q)
and w(xo, to) = u(xo, t,)>0 so that w must achieve a positive maximum
somewhere on the parabolic boundary of Q. One easily deduces from the
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above considerations that the maximum must occur at some point (0, t*)
where 0=t*<T. But then w,(0,t*)<0 and 0=u,/0, t*)+2cx,=
a(T)+2cx, so that

xo=-a(D)2c=a(D/f(T)=X-1.

Thus QN{X —-1<x<X}=¢ which proves that u(x, t)=0 for x=X-1 so
that u € ¥. The other assertions of the theorem follow easily from (3.5) and
36). N

We will now show that the solution u to Problem B gives rise to a solution
{u, s} to Problem A.

THeEOREM 4.2. Let u be the solution to Problem B and define Q=
{x,t)eR|u(x,t)>0}. Then there exists a function s(t)e
C[0, TINCY>™¥ (1, T) for each 7€ (0, T) and v e (0,3), such that:

(4.12) Q={(x,t)|0<x<s(t)},
(4.13) s(t)=Aa()t* (> s(0)=0),
where A =—-1/c’,

(4.14) s is a monotone increasing function and s(t)>0 forte (0, T),
and

(4.15) u(s(t), )=u(s(),t)=0 for te(0,T).

Proof. Define s(t)=maxo.,x{t|u(x, t)>0}. Since u=0 on R and
u, (0, t) = a(t) <O it follows that s(t)>0 for each te (0, T). Therefore, since
u(X, t)=0, by Theorem 4.1, we have

(4.16) 0<s()<X for te(0,T).

The monotonicity of s is clear because u(-, ) and u(x, -). /. To prove
(4.13) we observe that in the proof of Theorem 4.1 it is possible to take
¢ =—f(ty)/2 instead of ¢ =—f(T)/2 and we then deduce from (2.5) that

xo=a(to)/f(to) = (—1/c)a(to)ts

whenever (x,, t,) € Q, which implies (4.13). Since (4.15) is a direct result of
Theorem 4.1 we need only to prove that s is locally Holder continuous, and
this will be accomplished by an argument similar to the maximum principle
argument of the proof of Theorem 4.1. Let 0<t,<t,<T and let x, =s(t,)
and Q=((x;, X)X (t;, £,))NQ where we assume that s(t,)>s(t,) (since if
s(t,) = s(t,) then s(t)=s(t,) for te[t,, t,] and s is locally Holder continuous
in (t3,t,)). Let x; <x,<s(t,), which implies u(x,, t,)>0, since u(-,t) is a
decreasing function. Let
w(x, t) =u(x, t)—c(x —x,)*

where c¢=—f(t,)/2. Then w,—w, =<f(t,)+2c=0 on Q and w(x, t;)=
u(x,, t,)>0. As before, there must be a point (x;, t*) where t; <t*=t, such



A SINGULAR FREE BOUNDARY PROBLEM 451
that w(x,, t*)>0. Hence 0 <u(x,, t*)— c(x,—x;)>. But, by (3.33) there exist
positive constants B and & such that u(x,, t*)=<¢&|t*—¢,|® so that

0<élt,—t,]® —c(x,—x,)%

Since this holds for all x,<s(t,) we get

(s(0) = st =2 =1
or
0=s(t)—s(tp= ‘/E/_C(tz — ;).

A review of Lemma 3.4 shows that 8 can be taken to be any constant in
(0, 1) but that & will depend on t, and B. Thus s(t)e cV>7(t, T) for each
v€(0,%) and the theorem is proved.

Tueorem 4.3. If k=1 and t“a(t)e C*'[0, T] then s C?[0, T] for each
8€(0,3).

Proof. The proof of Lemma 3.2, in the case k=1, can be modified to
give

4.17) J'O L (t*B=(u®))? dx dt = C(p).

In fact, if we go back to the estimation of I, in Lemma 3.2, with s =k, we
get

I<kpMT*™* L L (£(0)" |B))P £ dx di

which implies that
L=nk(p—1)MT* I+ kn* P MT**"*X/(a +1)

holds instead of (3.16). Also, I,, and I; can be estimated to yield (4.17). As
in Lemma 3.3 it then follows that t“u, and t“u,, are bounded in the L norm
on R for each p>1 and therefore by Lemma 3.3 of [4] (see the proof of
Lemma 3.4) that

(4.18) (tu) =" =C(p).

Now suppose that u(x,, t,)>0 and let 0<t*<t, and x*=s(t*). Let Q
denote the open set

{(x, ) x*<x<s(t) and t*<t<t}
We will suppose that t, is sufficiently small that
(4.19) a?()*r<(c?k for 0=t=t,

since the Holder continuity of s for large t was established in Theorem 4.2.
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By (4.18), there exists a constant B, depending on k and p but not on t¥*,
such that

(4.20) z(x*, )=B({t—t*)° for t=t*

where 0 =1-3/(2p) and z(x, t) = t“u(x, t).

We now use an argument we have used several times before. Let
£(x, t) = (c'/4)(x — x0)* and define w(x, t) = z(x, t)— {(x, t). Then, using (3.28)
we get

W, — W, = t5f(x, t) + kt* u(x, t)+c'/2
=—c'2+ka*(t)t*7'/(2¢")=<0 on Q

(where we have used (4.19)). Since w=0 on s, the maximum principle

implies that a positive maximum of z in Q is attained at some point (x*, t)

with t* <t=t, Thus {(x*, t)=<z(x*, t) which implies that
Xo—x*=<2vB/c'(t, — t*)®

where 8 = (3)—3/(4p). Recalling that x* = s(t*) and letting x, 1 s(t,) proves

the result, since s is monotone. W

LemMA 4.4. Suppose that 0=k <1 and a(t)t* € L*(0, T) for some s>
3—k. Then

T pX k—1
4.21) j L (8. ()2 e dr =S
where ¢ >0 does not depend on ¢ if 0<e<min (1, ,37'7%).

Proof. Let us first remark that with no loss of generality we may assume
that

4.22) e|B=(0)|=C,

holds for some constant C;. To see this note that the condition B°(0)=

f(0)=2f(¢) is consistent with the other assumptions concerning 8° and f°.

However, under this assumption we deduce that
£|B°(0)|=—eB°(0)=—2¢f(e)<2e(c"e *)=<2c" for O0=e<l1.

Also, £° satisfies those hypotheses stated for a(t).
The proof now proceeds along the lines of the proof of Lemma 3.2. Let
7€(0, T) and define

Jx t*B%(u)&(t) dx dt

0

(4.23) I= J:T

where &(t)=(T—1t)* and a (0, 1) is arbitrary. Here B denotes 8, and u
denotes u,_, a solution of Problem C(g). Then

(4.24) I=L+1L+1I,
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where
(4.25) L=["[" e s ava
T Y0
T X
(4.26) L=-["[ eorsumaxa
T J0
(4.27) I,= [T LX EOt*B(u)u,, dx dt.

As before, it follows easily that I,<0 and I,=<(1/3)I+ C where C does
not depend on «, 7, or £. Thus

(4.28) I=<2L,+C

and it remains to estimate I,. We get

L= f jox ua—"t (OB (w)) dx dt

< jT LX (e + ALWM* = (EOBW) dxde - (by (3.8)

=J,+J, where {=¢.

Then
Iy= ﬁOX 22 (e(1)B(w) dx dt
i at
—c LX{—TZkg(T)B(u(x, )= J 2kE2R1E(0)B(u) dt} dx
= Jre T
But, by (4.22) J¥=er*¢(1)|B2(0)]X = C so that
(4.29) J¥=C.

Estimating J¥* we get
T X
Ji*=—2ke I L t271£()B(u) dx dt
T X
szeka—lj j £ |B(w)| £(t) dx dt
T Y0

= ZskT"‘l{J;T LX nt>* &) B (u) + (1/(4m))E dx dt}

for each n>0. Choosing n =1/2k we get
(4.30) I < e Y(I+C).
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Thus, combining these results we see that
(4.31) Ji=er* I+ C)+C.

We shall now estimate J,. Since we assume that a(t)t™*eL” we can
choose the £ so that {2(t)=Bt* where B <0 does not depend on &. Using
this fact and extending the integral in J, to (0, X)X (0, T) we see that

4.32) J,<AB L L t28+3"£; (O Bw)) dx dt
—_AB LT LX 25+ 3K)E(0)B W)+ dx dt

T pX
SC’L J' £(t)(Bz(u)t2"‘“)+%t‘“‘+"‘”) dx dt

(e}

where C’'= AB|2s+3k|. Using Lemma 3.2 and the fact that s>3—k it
follows that J, = C where C does not depend on & or 7. From (4.31) we get

(4.33) L=e*'I+0O)+C
which, by (4.28) implies
(4.34) I=2er* I+ C)+C

and the result follows by letting a—0.

Lemma 4.5.  If the hypotheses of Lemma 4.4 hold and t*a(t) e W*2(0, T)
then

t“u,, t“u, € L*((0, X)X (0, T))
and t“u(x, t) is Holder continuous in t (exponent 3).

Proof. Let u" and u be the functions of Lemma 3.4 and let S=
(0, X)X (7, T) for an arbitrary constant 7€ (0, T). Let z" =t*u". Then z"
satisfies

(2" = (2")ex = t°f™ (1) = B, (u™) + kt* u" =f

in S and z,(0, 1) = t*¢"(t), z,(X, t) = 0 for <t <T. By Theorem 9.1 of [5] or
Theorem 17 of [7] we see that

2"l + 127 sy + 125l sy = CUfleae) + 127 C, lhwi20,30 + 1 (Ollwr2e1)-
By (2.5), Lemma 3.1 and Lemma 4.1 it follows that
“ﬂ!%ﬁ(s) =C+C(e, 7+ 1)/(1—2¢, 7 )+ Cllt* ' u|Z sy

where C depends neither on n nor 7. Thus, there exists a function 3(x, t) in
L?(S) possessing weak derivatives 3, and 3., in L*(S) such that some
subsequence of z" (again denoted z") converges weakly in L?(S) along with
z% and z, to X, 3, and 3, respectively. Also, from the L? estimates above
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we get
IR+ 1%+ Eell = C+ CllE ulP + 12, Dllwr20,0

where ||:||=]|*|l.2s)- But by (3.28) and the fact that a(t)=<Bt*, for some
B>0 and s>3—k we get

tk—lu <= ABt2k—1+2s

which is bounded by assumption. By (3.30) it is clear that ||z(:, 7)||,,»> does
not depend on 7. Thus

IR+ +El=C

where C does not depend on 7 and where ||| =||-||.2s,. However, it is clear
from (3.35)-(3.38) that 3, = t*u and that

i)
3= " (tu) and 3., = éi—z (t“u) (weak derivatives) a.e. in S.

Thus

(4.35) I u)ell+ |t ull=C

where C does not depend on 7 and where ||| =||[lL2o.x)x@1y- Fatou’s
lemma implies that (4.35) holds with ||:|| =||*||L2c0.x)xc.1y @and this, together

with Lemma 3.3 of [5] proves the lemma.

THEOREM 4.6. If 0=k <1 and the hypotheses of Lemma 4.5 hold, then
s(t)e CY¥[0, T1.

Proof. Lemma 4.5 establishes (4.18) with p =2 and the rest of the proof
is identical to that portion of the proof of Theorem 4.3 which follows (4.18)
since s >2—k implies a?(¢t)t**"1—0 as t—0.

LemmA 4.7. Let ay, co, and k be positive constants with k>3. Then for
each constant 0, satisfying

(2/3)(@oco) < 0 <(ao/co)

there exists a positive constant T, depending on ay, co, 0o, and k, and classical
solution u(x, t) to the problem

(4.36) U—u,=—cot™ for 0<x<s(t), 0<t<r,
4.37) u0,t)=—a, for 0<t<r,

(4.38) u(s@®), t)=u,(s@),t)=0 for 0<t<nm,
where

(4.39) s(t) = 0ot~

Proof. We shall omit the zero subscripts of aq, ¢o, and ,. Let a(t) and
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b(t) be functions given by

(4.40) a(t)=@G)ct™,

4.41) b(t) = ((e — c0)(36%)t7%),

and notice that both functions are nonnegative. We define
(4.42) u(x, )= a(®)(s(t) —x)*+b(H)(s(t)—x)?

for 0<x<s(t) and 0<t<1. By writing u = as*(1—£)*+bs*(1— £)*> where
& =x/s it is easy to see that u is bounded for 0 <x <s(t), 0<t<1. It is also
easy to check that u satisfies (4.37) and (4.38). By direct computation we get

(4.43) (U — Uy, + ct)/(sm) = an>+ B +y = o(n)
where
n=(1-x/s)e(0, 1), a = (=2k/3)(a—ch)t <0,
B =(a—(3/2)cO)kt™?, v=kcOt ' —(2/6%)(a — cO)t™2~,
Thus ¢(n) is a convex parabola with vertex at
3 (a—3co)
8 a—cod

By hypothesis 6 >(2/3)(a/c) so that n* =0 and therefore the result will be
established once we show that ¢(0)=<0 for small t. But

@(0) =y =1t"*(kcot> ' —(2/6%)(c — c0))
which, because we assume k>3 and a>c6, is clearly negative for all

0<t<rt where 7 depends on k, ¢, 0 and . W

Our choice of the function u(x, t) was inspired by a lecture given by Alan
Soloman [8].

n=n*=-p/Qa)=

THeEOREM 4.8. Let u(x, t) be a solution to Problem B with a(t)<=—a,<
0 and k >3. Then for each sufficiently small € >0 there exists a constant >0
depending on € such that

(4.44) [(ag/c—elt“ =s(t) for O0<t<r

Proof. Let co=c" and 0,= (ay/co) — € where & < a,/(3¢y) in Lemma 4.7
and denote the solution of (4.36)—(4.39) by (u*, s*). Also let + be the
constant 7 of Lemma 4.7.

We shall compare u and u™® in the domain

D={(x,t)|0<t<t,0<x<§(t)} where §(t)=min (s(t), s*(t)).

Let §=IUII where I={§ =5} and II ={§ =s*} and let P=u—u*. Then P
satisfies

P—P.=f(t)+c"t™*=0 inD.
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Since it is easily seen that u*e C(D) it follows that Pe C(D) and attains a
minimum in D. If this minimum is negative then it must be attained either
on x =0 or on x = §, by the maximum principle. But P, (0, t) = a(t) + (=<0,
P.,=0on I and P=0 on II since,on I, u=u, =0 and i =0, i, <0 and, on
II, u*=u%=0 and u=0, u,<0. Thus a negative minimum cannot be
attained anywhere in D and hence P=0 in D. Hence u*(x, t) < u(x, t) in D
and in particular u*=<u on §. But since uu®*=0 on § it must be that u*=0
on § and that s*(t)=<s(t) for 0=t =r; for, if for some t we have s(t) <s*(t)
then §(t)<s*(t) and u*(3(t),t)>0 since u*(:,t) is a strictly decreasing
function and u*(s*(1), t) = 0. But by (4.39) we see that s*(t) =[(a,/c")— &]t*
for 0=t< 7 and the result follows. W

Theorems 4.2 and 4.8 together imply the following corollary.

CoRrROLLARY 4.9. Let the assumptions of Theorem 4.8 hold. Then for
O0=t<n,

(4.45) [(ao/c")— e]t* = s(t) <[—a(t)/c']t".

In particular if a(t)=—a, then [(ay/c)—elt* =s(t)<[ao/c']t* for 0=t<
. A

Thus we have proved that s(t) grows initially like t* if k>3.

Remark 4.10. For the original transformed optimal stopping time prob-
lem of Chernoff we had a,=1, ¢"=c'=1 and k =2. Thus we get (1—g)t*<
s(t)=t> for 0=t <7 where 7 depends on . This agrees well with the results
of various numerical approximations (see [6], [7]).

The method of Lemma 4.7 seems to fail to provide a useful comparison
function when k=3. However the next lemma and theorem give lower
bounds on the initial growth of the free boundary when k is small.

Lemma 4.11. Let k=0 and c, 0, a, &, B>0 be constants and let
v =k +B+¢ and suppose that y>3, k+& <P, and 6 <a/c. Then there exists
a classical solution of the problem

(4.46) U—u,<—ct™ for 0<x<s(t), 0<t<m,
(4.47) u (0, )=—at® for 0<t<nm,

(4.48) u(s),)=u(s®),t)=0 for O<t<r
where

(4.49) s(t)= 61"

and 7>0 is a constant.

Proof. We proceed as in the proof of Lemma 4.7 except that now we
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define
(4.50) a(t)=(c/2)t™*>0,
4.51) b(t)= At*~2Y — Bt ™+~

where A =a/(36%) and B = ¢/(30). Clearly A and B are positive and u(x, t)
defined by (4.42) is bounded for 0 <x <s(t) and ¢t >0 sufficiently small.
After appropriately modifying (4.43) one easily deduces that

% _i[ ckt® —66vyA + 66yBt® ]__) (g) Y o 1
40l-AQRk+B+2e)+B(k+vy)t° k+e+y

n 2

as t\yO0. It follows that ¢ is a convex parabola with ¢(1) =<0 for small ¢, and
thus completes the proof.

THEOREM 4.12. Suppose that u(x, t) is a solution of Problem B and that
a(t)<—ayt® where a, and B are positive constants and B >max (}, k). Then
for each v satisfying max (3, k +B)<+vy and each 0 € (0, ay/c) there is a 7>0
such that 6t <s(t) for 0=t<r.

Proof. Without loss of generality y<2B. Let ¢ =y—k—8 in Lemma
4.11 and proceed as in the proof of Theorem 4.8.

REFERENCES

1. HERMAN CHERNOFF, Sequential tests for the mean of a normal distribution, Fourth Berkeley
Symposium on Math. Statist. and Prob., vol. 1, Univ. of California Press, Berkeley,
Calif., 1961, pp. 79-91.

2. L. Evans and B. KNERR, Instantaneous shrinking of the support of nonnegative solutions to

certain nonlinear parabolic equations and variational inequalities, to appear.

3. A. FRIEDMAN, Partial differential equations of.the parabolic type, Prentice-Hall, Englewood

Cliffs, N.J., 1964.
, Partial differential equations, Holt, Rinehart and Winston, 1969.
. O. A. LADYZENSKAJA, V. A, SoLoNNIKOV and N. N. URALCEVA, Linear and quasilinear
equations of the parabolic type, Amer. Math. Soc. Translations of Mathematical
Monographs, vol. 23, Providence, R.I. 1968.
6. G. H. MEYER, One-dimensional parabolic free boundary problems, Siam Review, vol. 19, no.
1 (1977), pp. 17-34.
. G. Sackett, Numerical solution of a parabolic free boundary problem arising in decision theory,
Math. of Computation, vol. 25 (1971), pp. 425-434.
8. A. SoLoMAN, Symposium-Workshop on Moving Boundary Problems, September 26-28,
1977. Sponsored by the Army Research Office-Durham and the Mathematics and
Statistics Research Department of the Computer Sciences Division of the Union
Carbide Corporation Nuclear Division.

9. V. A. SOLONNIKOV, A priori estimates for equations of second order of parabolic type, Amer.
Math. Soc. Transl., vol. 65 (1967), pp. 51-137.

w

<

UNIVERSITY OF KENTUCKY
LEXINGTON, KENTUCKY



