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1. Introduction

In 1961 Chernoff [1] studied the problem of sequentially testing whether
the drift of a Wiener process is positive or negative, given an a priori normal
distribution, and showed that this problem can be reduced to a singular
parabolic free boundary problem. A description of Chernoff’s formulation
and reduction of the problem can also be found in [7]. Briefly, one considers
a Wiener-Levy stochastic process X(z) and an associated process (r) with
drift Ix; i.e. (z)= X(z)+ Ix where Ix is an unknown constant whose sign is
to be determined.

Ix is considered as a random variable with known a priori normal
distribution.. The problem then of observation and periodic testing to
determine the sign of and hypothesize the sign of Ix in such a way as to
minimize the expected cost of the operation becomes one of uniformly
minimizing the Bayes risk B(, z). It is assumed that the cost of an incorrect
decision is proportional to [ix[ and that the cost of observation is constant
per unit time. Chernoff then shows that B then satisfies the equation

1/2Bee +-B +B + 1 0

in the continuation region and certain boundary conditions as well. Then,
defining a new function u(x, t) in terms of the Bayes risk B(, r) and
performing a change of variables Chernoff reduces the problem to the
following singular parabolic free boundary problem" find a function u(x, t)
and a free boundary curve x s(t) such that

(P)

u,-u**=-l/(2t2) for 0<x<s(t),
u. (0, .t) -1/2 for 0<t<T,
u(s(t),t)=u,(s(t),t)=O for 0<t<T,
s(0)= 0.

0<t<T,

It should be noted that the conditions on u are incompatible at the origin
and that the equation is singular at 0.
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and lhe foIIoinB roomrs remarks.
we should expect that - 0 and therefore, since u 0 along s, that
u0 for Ox s(t). Differentiating the function u(s(t), t), which vanishes
identically, we see that u(s(t), t)= 0. Since 0 on {x 0}, the maximum
principle implies 0 for Ox s(t). Next, to derive estimates of sup u,
sup s consider the following simple argument which is a variant of one used
in [2]: if U(Xo, to) 0 let Q 0 x s(t), 0 < to} and define

1
w(x, t) u(x, (x Xo)
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Since W(Xo, to)> 0 w must attain a positive maximum somewhere in Q and
since wt w,x -< 0 in Q it must occur either on s or on {x 0}. But w -< 0 on s
so the positive maximum must occur on {x =0}, where, therefore, wx
1/2(-l+xo/(to)2) must be nonpositive. Thus Xo<-t. But since -1/2-<u,-<0 it

1 2follows that O<_u(x, to)<_to for O<--x<_s(to) so we expect that u(x, t)--<(1/2)t2
and s(t)<_ 2. Since the function z tEu satisfies zt- z** 2tu -(1/2 L,
z- z,- 0 on s, z,--(1/2)t2 when x 0, the L estimates of Solonnikov [9]
imply that zt and z.x are in L for each p > 1. Thus u, arld u, are in L of
regions bounded away from 0.

In Sections 3 and 4 we will make all of these remarks rigorous through the
use of suitable penalty function approximations to the free boundary prob-
lem and we will prove existence. In Section 4 we also prove that the free
boundary s is Holder continuous down to 0. We then prove a result
about the initial growth of the free boundary when f(t) behaves like -t-k

and k >1/2. We prove that there exists a constant 0 >0 such that, for each
e >0, s(t) initially grows faster than (O-e)t but slower than Ot. For the
special problem (P) this implies that s(t) grows almost like Ot2, which agrees
well with existing numerical results (see [6], [7]).
The author would like to thank L. C. Evans and R. Rishel for their

comments and suggestions.

2. Statement of the problem

Throughout the paper we let k and T denote arbitrary but fixed constants
satisfying k >0 and T> 0. The function c satisfies

(2.1) ta(t) C’1[0, T]f3 C1(0, T],

(2.2) tkt(t)--O as tN0,

(2.3) a’(t)<0 and a(t)<0 for

The function f satisfies

(2.4) f e C(0, T],

(2.5) -<-c"<--tf(t)<--c <0 for

(2.6) f’(t) >-- 0 and f(t) < 0 for

Finally, we define

(2.7) X 1 + a(T)/f(T).

t>0.

O<t<_T,

t>0.

Notice that we do not assume that a(t)--0 as t0 when k >0.
We have already discussed the fact that decision theory gives rise to the

following problem.

Problem A. Find a nonnegative, bounded, continuous function
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u(x, t): R 1 [0, T]--[0, oo) and a function s(t) C[0, T] such that s(0) 0
and s(t)>0 for >0 such that:

(i) On the set ={(x,t) 10<x<s(t), t>0}u(x,t)>0 and u(x,t) is a
classical solution of the equation u,-ux, f(t).

(ii) u, is continuous up to the free boundary x s(t) and up to the line
{x=0} and u(s(t),t)=u,(s(t),t)-O and u,, (O, t) a t) for t>0.

We will solve Problem A indirectly by formulating a Problem B, solving
this problem and showing that the solution also solves Problem A. The
advantage of this approach is that Problem B will be stated without explicit
mention of a free boundary x s(t), but part of the boundary of the set
{u > 0} will in fact be the free boundary. Also, it is relatively easy to prove
uniqueness over a broad class for Problem B.

DEFINITION 2.1. We denote by the set of functions u(x, t) defined on
[0, ) [0, T] which satisfy the following conditions:

(i) u(x, t)C([0,)[0, T])ClL([0,)[0, T)].
(ii) u(x, t) >- 0 on [0, ) [0, T].
(iii) There exists a constant X > 0, depending on u, such that u(x, t)=-0

if x>_X and t[0, T].
(iv) For each z (0, T), u C([0, ) [, T]).
(v) u possesses a distributional (weak) derivative u, in L((0,--) (, T))

or each r (0, T).
(vi) u (x, 0) 0 for x [0, ).

Although condition (iii) implies that is not closed this causes no
problems since we will actually prove the existence of a solution which
vanishes for x >-X, where X is defined by (2.7). We would, of course, like to

prove uniqueness over as large a class as possible. In fact, it will become
apparent that we still have existence and uniqueness if we broaden so that

X in some appropriate sense and if the derivative u in (iv) is a weak
derivative. Our formulation of conditions (iii) and (iv) is therefore a com-
promise in the interest of simplicity. We now define Problem B.

Problem B. Find a function uf such that the following integral
inequality holds for each 0 < zl < q’2 T and v "
(2.8) u,(v u) + u,(v u) dx dt + a(t)(v u)(O, t) dt

>-- f(t)(v- u) dx dt

where X =rain (X, Xo) (see (iii) of Definition 2.1).
Notice that, formally, a solution to Problem A is a solution to Problem B.

THEOREM 2.1 (Uniquefless). There exists at most one solution to Problem
B.
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Proof. Suppose that u and w are solutions to Problem B and let
X min (Xu, X,). Without loss of generality we may assume that X Xw. If
we write (2.8) with v w and then with u =w and v u and add the
resulting inequalities we get

zzt dx dt <- z dx dt <-0

where z w- u. It follows that

(z(x, dx <- (z(x, dx

Letting zlN0 this implies that I(z(x,-2))2dx<_O so that u=w on
[0, X]x [0, T]. But w =-0 on IX, oo)x [0, T] so it suffices to prove that u =-0
on IX, Xu]x [0, T]. To show this we define two tunctions vl(x, t) and v2(x, t)
as follows:

t2u(x, t)

u(x, t)
v (x, t)= t1/2u(x, t)

if O<_x<_X,
if X<_x<_X,,
if O<_x<_X,
if X<_x<_X,.

Since u =u =0 on x =X (since u w there) and since u it is not
difficult to Verify that vl and v2 are in with XI X2= X,. If we write
(2.8) with v v and v v2 we get

I.2 I utu + u2 dx dt >

I.’ Ixx u,(-1/2u)+ u,,(-1/2u,,) dx dt >-

and

I.’ I’x f(t)u dx dt

which together imply that

utu + u,, dx dt

I.’ f’x f(t)(-1/2u) dx dt

’I f(t)u(x, t) dx dt <-0

since u_>O and f-<O. Then, as before, we deduce that u=O on
IX, x] x [0, T].
Once a solution to Problem B has been shown to exist, a solution to

Problem A will be derived by setting s(t)=sup {xlu(x, t)>0}.
In the next section we will establish estimates that will later be used to

prove the existence of a solution to Problem B.
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3. Estimates

Recall the definitions of k, T, and X. Given any e >0 we define the
Problem C(e) as follows.

Problem C(e). Find a function u(x,t)C2+,(R) where R=
(0, X) (0, T) which satisfies:

u-u,+13(u)=ff(t) in R,

(3.2) u (x, 0) 0 for 0--< x --< X,

0
(3.3) 0xU (0, t)=(t) for 0--<t--<T,

(3.4) oxU (X,t)=-O for 0-<t-<T.

The functions/3, f and are smooth functions that satisfy the conditions
listed below:2

(3(t)O, ff(t)f(t), (t)=a(t) if tee,

d
/3(t)>0

d
if(t)>0,

d
(t)<0 for all t,

C(0)=o, -oo< t3(o) f(o),

-c"<- tf (t) < 0 for 0 <-t (see (2.5)).

For simplicity we will suppress the superscript e in this section. The
existence of a solution to Problem C(e) follows, for example, from Theorem
7.4, Chapter V of [5].

LEMMA 3.1. if U is a solution to Problem C(e) then the following
inequalities hold on R:

(3.5) --u(x,t)>-O,
Ot

(3.6)

(3.7)

Also, if 0 < e < <-- T then

o
u(x t)<O,a Tl <---x

O<_u(x,t).

(3.8) 0 <- u (x, t) <- e + AaE(t)tk ]’or 0 <- x X

2 For the duration of the paper we shall assume, for simplicity of expositon, that the functions
a and f are in C=. Otherwise we would simply define the functions/3, and 1’ differently and
proceed along the same lines.
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where A 1/(2c’) (see (2.5) ]’or the definition o c’). In particular, there exists
a constant M> 0 not depending on e, such that

(3.9) O<_u(x,t)<_M for (x,t)R for 0<e<T

Pro@ To prove (3.5) we differentiate equation (3.1) with respect to
and set Ou/Ot v to obtain

v-v+3’(u)v= ->0 in R.

Since v(x, 0) ff (0) /3 (0) >- 0, v(0, t)=d(t)ldt<-O and v(X, t)=0 it
follows from the maximum principle that v(x, t)>_O in R. Inequality (3.6)
follows from the maximum principle, applied to the equation which results
from differentiating equation (3.1) with respect to x. Then (3.7) follows from
(3.5) and (3.2).
To prove (3.8), fix 0 < <-T and let 0< e < . Then let

(3 10) Xo-m--aO’) a(T)
fO’) - f(’T) < X.

Recall that ff()= f() and ()= a(T) since
and z by

(3.11) v(x, t)= +c(x-Xo)2 where c =-f()/2,

(3.12) z(x, t)= v(x, t)- u(x, t).

Let S (0, Xo)X(0, ) and let lI--{(x, t)lu(x,t)>e}f3S. Then z,-z>_O
on lI, since /3(x)=-0 for x>_e implies zt-z=-2c-f(t)>_-2c-ffO’)
-2c -f() 0. For 0 < < we also have

z(O, t)<---2cXo-aO’)=O and z(Xo, t)=-u(Xo, t)>-O.

Since z->0 at boundary points of lI in S, where u= e, we can use the
maximum principle to conclude that z > 0 in
and since u--< e on S\II it follows that

(3.13) u(x, t) <-- e + cX
holds on S. But since u--<0 (see (3.6)), (3.13) holds for 0<x<X, 0<t<z.
Therefore, using (2.5) we see that

1 (a (’r))
u(x, t)<_e + cX= e--<--e +

2 fO’) 2c’
so that 0 < e < implies

(3.14) u(x, t)_e+(aO-)/(2c’))- on (0, X)(0, -).

This proves (3.8), and also (3.9).

Lemma 3.1 facilitates the proo o the next lemma. From now on we will
always assume that e < T.
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LEMMA 3.2. If U is a solution to Problem C(e) then, ]’or any integer p > 1,

(3.15) IIoX(t+l[3(u))Pdxdt<_C
where C depends on p but not on e.

Proof. It suffices to consider p to be an even integer. Let s k + 1 and
let ct > 0 be an arbitrary constant and define (t)= (T-t). Then

I =- tspl(t)[3p (u) dx dt tsP(t)[3-(u)[ff (t)- ut + u] dx dt.

By expanding we get three integrals which we denote 11, 12, and Ia. Then

/2 tsP(y)P-(U) dx dt

u {t(t)P-(u)} dx dt

ufue-(0-(u) e (()-(u)) x

utPot ((t)-(U)) dx dt

(because u 0 and B(u) 0 and p is even)

MIoTIoxOtPp ((t)-X(u)) dx dt

(because u M (see (3.9)) and all factors the integrand are nonnegatNe)

-M sptP-(t)P-(u) dx dt.

If we apply Young’s inequality aO-b ((p- 1)/p)a + bP/(p-) we see
that

dx dt

spu ((p-1)/p)tSo(t)(fl(u)) + (1/p)-P(t) dx.dt

ns(p ) to(t)((u,)) dx dt + sn- (t) dt ax.

Thus, for any > 0,

(3.16) G ns(p 1)I+ snx-o+X/(a + 1).



4:46 aa,v r.

Proceeding, we see that

Then

(3.17)

Continuing, we get

11 tsl(t)13p-l(u)f"(t) dx dt

<_ t!(t I/3(u)l- (t-c") dx at

Tc" (t(t)TM I1(u)1)-1TM dx dt

Tc"((p 1)]p)I+ -c"X+al(( + 1)(p)).

Using this inequality, together with (3.16), (3.17) and the fact that I=
I +I+ I, we get

where t, depend on k, p, M, T, and c" but not on e. Letting i/(2x)
we get

Using the Lebesgue Bounded Convergence eorem to let a 0 we obtain

(3.18) Io’IoXt’,P(u) dxdt2-,. .
La 3.3. if u is a solution to oblem C(e) then, for each 1p<,

(3.19) Ilt+ll), IIt+.ll) C

where C does not depend on e.

Proof. Consider the function z(x, t)= tu(x, t) where s k + 1. According
to equations (3.1)-(3.4) we have

(3.20) z,- z,, tf(t) t13(u)+ stUu in R,

(3.21) z(x, 0)=0 for O<--x<--X,

(3.22) z (0, t) t (t) for 0 <-- <-- T,

(3.23) z(X,t)=0 for Ot<_T.
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Theorem 17, p. 122 of Solonnikov [9], and Lemmas 3.1 and 3.2 imply that

(3.24) IIz, ll,.<), IIzll,o<)-<
where C(p) does not depend on e. This proves the result.

LESA 3.4. For any monotone sequence {e,} converging to zero,
denotes the solution to Problem C(e"), then there exists a subsequence, which
we again denote {e"}, and a [unction u(x, t) such that u(x, t) satisfies:
(3.28) u L(_) f3 C(_) and u(x, t) <- Aa2(t)tk

in R where A 1/(2c’) and

(3.29) u(x,t)>_OinR and u(x, 0)=0 I’or xe[0, X];

(3.30) u C,(/L) fq L(R)

]:or each " (0, T), where a (0, 1) depends on " and C, is the space o[
[unctions which are Hflder continuous with respect to x (exponent a) and
(exponent a/2), and 1L (0, X) x (., T)

(3.31) u(0, t) a(t), u(X, t) 0 for (0, T);

(3.32) ot(T)<_u(x, t)<_O in R;

]or some 13 (0, 1) and C> O,

(3.33) lu(x, )- u(x, t)l-< C I- tl
[or all (x, ), (x, t) in (0, X)x (., T) where C and 13 depend on ’; and u
possesses weak derivatives

(3.34) u,, u L ((0, X) (, T))

[or each (0, T], p > 1; and, [or each > O,

(3.35) u" u uniformly in R,

(3.36) u’ u uniI’ormly in [0, X] x [,, T],

(3.37) u7 u weakly in L’((O, X) x (., T)),

(3.38) u’,, u= weakly in Lp ((0, X) x (., T)).

Proof. Let be an arbitrary number in (0, T) and define S=
(0, X)x (-, T). By Lemma 3.3 of [5] and Lemmas 3.1 and 3.3 we see that

/. n\l--e \(l--e)/2sup lu"l +sup lu’l+(unXX-’/+\u.s,,..

where C1 and C2 depend on p and r but not on n, and e 3/p. Here

(u),.s sup lu(x, ?)- u(x, t)l/I?- tl (u).s sup lu(, t)- u(x, t)l/l
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where the sup is taken over (x, ’), (2, t) and (x, t) in S. By Ascoli’s lemma it
is clear that some subsequence of {u"} converges uniformly together with its
derivatives {u} on (0, X)(z, T) for each re(0, T) to a function u(x, t)
satisfying (3.29)-(3.33). All of the other claims, except (3.28), (3.29), and
(3.35) are also clear. That u L(R) follows from (3.9), and that u C(R)
and that (3.35) holds are consequences of (3.8) and (3.5). In fact, u(x, t)<_
(1/(2c’))a2(t)tk for (x, t)/ follows from (3.8) and proves that u is bounded
and that u (x, 0) -=- 0.

4. Existence

We are now in a position to prove the existence of a solution to Problem
B.

Tx-moM 4.1. Suppose that (2.1)-(2.7) all hold. Then there exists a
solution u(x, t) to Problem B. Furthermore, u(x, .) is an increasing function for
each x [0, X] and u(., t) is a decreasing function for each [0, T].

Proof. Let {e"} be a sequence such that 0 < e,+l < en < T and such that
the solutions u" to Problem C(en) converge to a function u as described in
Lemma 3.4. Let 0<rl<rz--<T, v, and 8>0 be arbitrary and let
w(x, t)= v(x, t)+& If we write (3.1) for u", multiply both members by
(w- u") and integrate by parts over (0, X) x (, $2) where Y min (, X)
we find that

i0(4.1) uT(w n) dx dt- u(w u")(Z t) dt

+ a(t)(w u")(O, t) dt + u(w u") dx dt

+ ()( u) dx dt

((w)- (u))(w u) ax at

f(t)( u dx dt

if n is suciently large (so that (t)(t), and f(t)f(t) for te(r, )).
Let us label these integrals consecutNely so that (4.1) reads

(4.2)

Consider

(4.3)

+++L++t6=.

r_= u’(Y, t)(w-u")(Y, t) clt.
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There are two cases" either Y X or Y X. If Y =X then w(Y, t) 3,
w(Y, t)=0, u"(Y, t)>_O and u’(Y, t)<_O so that I2<--a(T)(-z-’l)6 (where
we have used (3.6)). On the other hand, if Y=X, then u(Y, t)=0 and
I2=0<a(T)(r2-r). In any case, we have

(4.4) I2 (T)(z2-) 3.

The monotonicity of " implies

(4.5) I60
and from (4.2)-(4.5) we get

(4.6) Ix + a(T)(2- z) 3 + I3 + 14 + I5 J.

By Lemma 3.4 it is dear that passage to the limit as n is possible in
(4.6). This yields

(4.7) u,(w-u) dxdt+a(T)(-z)3+ a(t)(w-u)(O, t) dt

+ u(w- u) dx dt f(t)(w- u) dx dt

since w 8 > 0 Is 0 as n . e integral inequality of Problem B now
follows by letting 0.
To show that u it suces to show that u(X, t) 0 for [0, T]. To do

this, we define

a {(x, t) e R u(x, t) > 0}.

Since u C(R), is an open set and, by the Schauder estimates (see [3]), it
follows that u e C+(). so, from this and Lemma 3.4 we find that

(4.8) u-u f(t) in O c R,

(4.9) u(x, 0) 0 for x e [0, X],

(4.10) u(0, t) a(t) for (0, T),

(4.11) u(X, t) 0 for e (0, r).

Let (xo, to) and define a function w(x, t) by

w(x, t) u(x, t)- c(x Xo) where c -f(T)/2.

Let O=an{O<t<to}. en w,-w=f(t)+2cf(T)+2c=O in O. At
boundary points, of in R we have u 0 and w 0. so,

w(X, t) u(X, t)- 2c(X- Xo) -2c(X- Xo) 0.

By the maximum principle w cannot take a maximum in O. But w C(Q)
and W(Xo, to) U(Xo, to)>0 so that w must achieve a positive maxum
somewhere on the parabolic boundary of O. One easily deduces from the
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above considerations that the maximum must occur at some point (0, t*)
where 0-< t*-< T. But then w(0, t*)-< 0 and 0 >- u(0, t*) + 2CXo->
a (T) + 2CXo so that

Xo <-- -ot(T)/2c a(T)/f((T) <-- X- 1.

Thus ff3{X-l<x<X}=d which proves that u(x,t)=O for x>_X-1 so
that u X. The other assertions of the theorem follow easily rom (3.5) and
(3.6).
We will now show that the solution u to Problem B gives rise to a solution

{u, s} to Problem A.

TrmORM 4.2. Let u be the solution to .Problem B and define
{(x, t) R u(x, t) > 0}. Then there exists a function s(t)
C[0, T] f3 C1/2- (’, T) for each " (0, T) and "y (0, 1/2), such that:

(4.12)

(4.13)

{(x, t) 0 < x < s(t)},

s(t) <- Aa(t)tt (=), s(0) 0),

where A =-l/c’,

(4.14)
and

s is a monotone increasing function and s(t) > 0 for (0, T),

(4.15) u(s(t), t) u(s(t), t) 0 for (0, T).

Proof. Define s(t) maxo<<x{t u(x, t) > 0}. Since u -> 0 on R and
ux(0, t)=a(t)<0 it follows that s(t)>0 for each t(0, T). Therefore, since
u(X, t)= 0, by Theorem 4.1, we have

(4.16) O<s(t)<X for t(0, T).

The monotonicity of s is dear because u(., t)’,a and u(x, .)/. To prove
(4.13) we observe that in the proof of Theorem 4.1 it is possible to take
c =-f(to)/2 instead of c =-f(T)/2 and we then deduce from (2.5) that

Xo< a(to)/f(to) <-- (-1/c’)a(to)t
whenever (Xo, to) f, which implies (4.13). Since (4.15) is a direct result of
Theorem 4.1 we need only to prove that s is locally H61der continuous, and
this will be accomplished by an argument similar to the maximum principle
argument of the proof of Theorem 4.1. Let 0< tl <t2< T and let Xl S(tl)
and O ((xx, X) (h, t)) f3 where we assume that s(t) > S(tl) (since if
s(t2) s(h) then s(t)--S(tl) for [h, t2] and s is locally HiSlder continuous
in (h, t=)). Let xx <x<s(t), which implies u(x2, t=)>0, since u(., t) is a
decreasing function. Let

w(x, t) u(x, t)- c(x x)

where c -f(t2)/2. Then wt w,, < f(t2) + 2c 0 on O and w(x2, t2)
u(x2, t2)>0. As before, there must be.a point (Xl, t*) where tl <-t*<_ t2 such



A SINGULAR FREE BOUNDARY PROBLEM 451

that W(X1, t*)> O. Hence 0 < u(xl, t*)-c(xz-xl)a. But, by (3.33) there exist
positive constants /3 and 6 such that u(xa, t*)<_ It*-qla so that

0 < It- t,l c(x- xO.
Since this holds for all x2 <s(t2) we get

(s(tg- s(tO) <- It- t[
or

0 -< s(t2)- s(q) <- /6/c(t2-
review of Lemma 3.4 shows that can be taken to be any constant in

(0, 1) but that " will depend on tt and /3. Thus s(t)ct/2-v(t, T) for each
(0, 1/2) and the theorem is proved.

THEOREM 4.3. If k --> 1 and tka(t) C’1[0, T] then s C8[0, T] ]’or each
ae(o,1/2).

Proof.
give

The proof of Lemma 3.2, in the case k >-1, can be modified to

(4.17) (tke(Ue))p dx dt <- C(p).

In fact, if we go back to the estimation of 12 .in Lemma 3.2, with s k, we
get

I <- kpMT- (tkl(t)TM It3(u)l)-(t)TM dx dt

which implies that

I2 k(p-1)k-I+k-o+kX/(a + 1)

holds instead of (3.16). so, I, and I3 can be estimated to yield (4.17). As
in Lemma 3.3 it then follows that tk and tk, are bounded in the L norm
on R for each p > 1 and therefore by Lemma 3.3 of [4] (see the proof of
Lemma 3.4) that

(4.18) (tkux1.3/(Ep) < C(p)./t,R

Now suppose that U(Xo, to)>0 and let 0<t*<to and x*= s(t*). Let Q
denote the open set

{(x, t): x* < x < s(t) and t* < < to}

We will suppose that to is sufficiently small that

(4.19) az(t)tEk-t<(c’)2/k for Otto
since the H61der continuity of s for large was established in eorem 4.2.
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By (4.18), there exists a constant B, depending on k and p but not on t*,
such that

(4.20) z(x*, t) <- B(t- t*) or >- t*

where 0 1- 3/(2p) and z(x, t)= tku(x, t).
We now use an argument we have used several times before. Let

(x, t)= (c’/4)(x- Xo)2 and define w(x, t)= z(x, t)-!(x, O. Then, using (3.28)
we get

w,-w tk[(x, t) + kt-u(x, t) + c’/2

<--c’/2 / ktE(t)t2-t/(2c’) <- 0 on Q

(where we have used (4.19)). Since w---0 on s, the maximum principle
implies that a positive maximum of z in O is attained at some point (x*, t)
with t* < -< to. Thus (x*, t)<- z(x*, t) which implies that

Xo- X* <_ 2x//c’(to t*)

where (1/2)-3/(4p). Recalling that x*= s(t*) and letting Xo ’ S(to) proves
the result, since s is monotone.

LEMMA 4.4.
1/4- k. Then

Suppose that 0<_ k < 1 and x(t)t L(O, T) for some s >

IT I0X: C(eTk-1 + 1)
(4.21) (tk[e (u))2 dx dt <-

1 2e"-
where c >0 does not depend on e if 0 < e <min (1, z, 1/2a-k).

Proof’.
that

(4.22)

Let us first remark that with no loss Of generality we may assume

8 I/ (0)l C

holds for some constant Ca. To see this note that the condition /3(0)=
(0)= 2/(e) is consistent with the other assumptions concerning/3 and

However, under this assumption we deduce that

e l[3(o)l=-el3(o)=-2ef(e)<-2e(c"e-)<-2c" for O-<e<l.

Also, satisfies those hypotheses stated for ct(t).
The proof now proceeds along the lines of the proof of Lemma 3.2. Let

r (0, T) and define

(4.23) I =-- t2132(u)(t) dx dt

where l(t)=(T-t) and a (0, 1) is arbitrary. Here /3 denotes /3 and u
denotes u, a solution of Problem C(e). Then

(4.24) I Ia + I2+ Ia
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where

(4.25)

(4.26)

(4.27)

As before, it follows easily that I3-<0 and I1<-(1/3)I+C where C does
not depend on a, -, or e. Thus

(4.28) I --< 212 + C
and it remains to estimate I2. We get

u ((t) (u)) ax t

(e +A2(t)tk)t2k ((t)fl(u)) dx dt (by (3.8))

J + J2 where .
Then

But, by (4.22) J eC((z)10(0)lx C so that

(4.29) J C.

Estimating J* we get

J* -2ke t-(t)(u) dx dt

2ekr- I(u)l (t) dx dt

2ekr-
or each >0. Choosing 1/2k we get

(4.30) J* er-*(I+ C).
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Thus, combining these results we see that

(4.31) J1 <- e’k-(I+ C) + C.

We shall now estimate J2. Since we assume that a(t)t L we can
choose the so that 2(t)--< BP where B < 0 does not depend on e. Using
this fact and extending the integral in J2 to (0, X)x (0, T) we see that

(4.32) .[2 <- AB 2s+ak- ((t)/3(u)) dx dt
Ot

-AB (2s + 3k)((t)(u)t+- dx dt

C’ (t)((u)t(++t4(+-) dx dt

where C’ AB 12s + 3kl. Using Lemma 3.2 and the fact that s >- k it
follows that J C where C does not depend on e or . From (4.31) we get

(4.33) I2 er-(I+ C) + C

which, by (4.28) implies

(4.34) I 2ek-(I+ C) + C

and the result follows by letting a0.

LE 4.5. If the hypotheses of Lemma 4.4 hold and ta(t) W’2(0, T)
then

t, tku L2((0, X) x (0, T))

and tku(x, t) is Hflder continuous in (exponent ).

Proo[. Let u" and u be the functions of Lemma 3.4 and let S=
(0, X)x (z, T) for an arbitrary constant (0, T). Let z"= tu". en z"
satisfies

(z"),- (z") tk" (t) t,(u")+ kt-u"

in S and z(0, t)=tk"(t), z(X, t) 0 for <t<Z By eorem 9.1 of [5] or
eorem 17 of [7] we see that

By (2.5), Lemma 3.1 and Lemma 4.1 it follows that

IlfllL (s c + + 1)/(1 2e,r-’) +
where C depends neither on n nor r. us, there exists a function E(x, t) in
L2(S) possessing weak derNatives E, and E in L2(S) such that some
subsequence of z" (again denoted z") converges weakly in L(S) along with
z7 and z to E, E,, and E respectively. so, from the L2 estimates above
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we get

where But by (3.28) and the fact that a2(t)Bt, for some
B>0 and s>-k we get

tk-tu ABt2-+2s

which is bounded by assumption. By (3.30) it is clear that llz(., z)[l. does
not depend on z. us

IIl+ll,ll+llllc
where C does not depend on and where I!’11 Hoeer, it is dear
rom (3.35)-(3.38) that Z t and that

Z (t,) and Z (t,) (weak derivatives) a.e. in S.

Thus

(4.35) II(tku)tll / IItull--< C
where C does not depend on and where I[’[I=II’[IL((0,x(,,T. Fatou’s
lemma implies that (4.35) holds with [I.II =ll.llr,((o,xo,r and this, together
with Lemma 3.3 of [5] proves the 1emma.

THEOREM 4.6. If 0<__ k < 1 and the hypotheses o1’ Lemma 4.5 hold, then
s(t) C1/8[0, T].

Proo]’. Lemma 4.5 establishes (4.18) with p 2 and the rest of the proof
is identical to that portion of the proof of Theorem 4.3 which follows (4.18)
since s >-]-k implies a2(t)t2k-t--0 as t---0.

LEnVA 4.7. Let ao, Co, and k be positive constants with k >1/2. Then ]’or
each constant Oo satisfying

(2/3)(CtoCo) < 0o < (ao/Co)

there exists a positive constant , depending on to, Co, 0o, and k, and classical
solution u(x, t) to the problem

(4.36) u, u,,,, <--Cot- [or 0 < x < s(t), 0 < < -,
(4.37) ux(0, t) -Cto ]:or 0 < < ’,

(4.38) u(s(t), t)=u,,(s(t), t)=0 ]’or 0<t<z,

where

(4.39) s(t)=Oot.
Proof. We shall omit the zero subscripts of ao, Co, and 0o. Let a(t) and
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b(t) be functions given by

(4.40) a(t) (1/2)ct-,
(4.41) b(t) (( c0)(302)t-2),
and notice that both functions are nonnegative. We define

(4.42) u(x, t) a(t)(s(t)- x)2 + b(t)(s(t)- x)3

for 0 < x < s(t) and 0 < < 1. By writing u as2(1 )z + bs3(1 )3 where
Ii x/s it is easy to see that u is bounded for 0 < x < s(t), 0 < < 1. It is also
easy to check that u satisfies (4.37) and (4.38). By direct computation we get

(u, u + ct)/(sn) an2 + [3n + (n)(4.43)

where

rl (1 x/s) (0, 1), a (-2k/3)(a cO)t-1 < 0,

[3 (a -(3/2)cO)kt-, "r kcOt--(2/oE)(a -cO)t-2.

Thus (rl) is a convex parabola with vertex at

rl rl* -/3/(2a) _3 (2a 3c0)
8 a-c0

By hypothesis 0 >(2/3)(a/c) so that 1" <-0 and therefore the result will be
established once we show that (0)<-0 for small t. But

q(O) t-2k (kcOt2k-1 (2/02)(ct cO))

which, because we assume k >1/2 and a > cO, is clearly negative for all
0 < < - where " depends on k, c, 0 and a.
Our choice of the function u(x, t) was inspired by a lecture given by Alan

Soloman [8].

THEOREM 4.8. Let u(x, t) be a solution to Problem B with a(t)<--ao<
0 and k > 1/2. Then for each sufficiently small e > 0 there exists a constant " > 0
depending on e such that

(4.44) [(ao/C")-e]t <-s(t) for 0<t<.

Proof. Let Co c" and 0o (ao/Co)-e .where e <ao/(3Co) in Lemma 4.7
and denote the solution of (4.36)-(4.39) by (u*, s*). Also let - be the
constant of Lemma 4.7.
We shall compare u and u* in the domain

D {(x, t) 0 < < ’, 0 < x < (t)} where (t) min (s(t), s*(t)).
Let g ItA H where I { s} and H { s*} and let P u u*. Then P
satisfies

Pt-P>-f(t)+c"t-k >--O inD.
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Since it is easily seen that u* C(/)) it follows that P C(/)) and attains a
minimum in D. If this minimum is negative then it must be attained either
on x =0 or on x= g, by the maximum principle. But P(0, t) ct(t)+t0<--0,
P--> 0 on 1 and P >-0 on II since, on L u =u 0 and fi-> 0, fi-< 0 and, on
II, u* =u=* 0 and u _>0, u --<0. Thus a _negative minimum cannot be
attained anywhere in/3 and hence P->0 in D. Hence u*(x, t)<_u(x, t) in
and in particular u*_< u on g. But since uu*=-0 on it. must be that u*= 0
on and that s*(t)<-s(t) for 0_< t-< r; for, if for some we have s(t)< s*(t)
then g(t)<s*(t) and u*((t), t)>0 since u*(., t) is a strictly decreasing
unction and u*(s*(t), t)= 0. But by (4.39) we see that s*(t)= [(o/C")-e]t
for 0-< < z and the result follows.

Theorems 4.2 and 4.8 together imply the following corollary.

COROLLARY 4.9. Let the assumptions of Theorem 4.8 hold. Then for
0_< t<-,

(4.45) [(ao/C")-e]tk <--s(t)<--[-a(t)/c’]t.
In particular i]’ ct(t)=-Cto then [(ao/C")-e]tk<-s(t)<-[ao/C’]t [or 0<_t<

Thus we have proved that s(t) grows initially like k if k >1/2.
Remark 4.10. For the original transformed optimal stopping time prob-

lem of Chernoff we had Cto 1/2, c" c’ 1 and k 2. Thus we get (1- e)t2 <--
s(t) <--t2 or 0_< < " where r depends on e. This agrees well with the results
of various numerical approximations (see [6], [7]).
The method of Lemma. 4.7 seems to fail to provide a useful comparison

function when k <_-1/2. However the next lemma and theorem give lower
bounds on the initial growth of the free boundary when k is small.

LEMMA 4.11. Let k>-O and c, O, a, e, t>0 be constants and let
k + [3 + e and suppose that /> 1/2, k + e < [3, and 0 < t/c. Then there exists

classical solution of the problem

(4.46) ut-u,,<_-ct- [or 0<x<s(t), 0<t<’,

(4.47) u(0, t) -ata [or 0 < < r,

(4.48) u(s(t), t)=u(s(t), t)=0 [or 0<t<z

where

(4.49) s(t) Ot

and - > 0 is a constant.

Proo] We proceed as in the proof of Lemma 4.7 except that now we
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(4.50) a(t) (c/2)t- > 0,

(4.51) b(t) At- Bt--’
where A a/(30) and B c/(30). Clearly A and B are positive and u(x, t)
defined by (4.42) is bounded for 0<x <s(t) and >0 sufficiently small.

After appropriately modifying (4.43) one easily deduces that

rl * --[ ckt 60"yA + 60"yBt ] () /-- >1-A(2k + [3 + 2e)+ B(k +/)t k + e +3’
as N0. It follows that q is a convex parabola with q(1)-< 0 for small t, and
thus completes the proof.

THEORE 4.12. Suppose that u(x, t) is a solution o1’ Problem B and that
(t)<--ota where o and [3 are positive constants and [3 >max (1/4, k). Then
]’or each 3’ satisfying max (1/2, k +/3)< /and each 0 e (0, o/C) there is a ->0
such that Ot" <- s (t) ]’or 0 <- < ’.

Proof. Without loss of generality T < 2/3. Let e T- k -/3 in Lemma
4.11 and proceed as in the proof of Theorem 4.8.
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