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SUMS OF GAUSS, EISENSTEIN, JACOBI,
JACOBSTHAL, AND BREWER

BY

BRUCE C. BERNDT AND RONALD J. EVANS

1. Introduction

In [1], we evaluated certain Gauss, Jacobi, and Jacobsthal sums over the
finite field GF(p), where p is an odd prime. One of the main objects o this
paper is to evaluate such sums over GF(p2).

In Chapter 2, we give the basic theorems which relate the sums of
Eisenstein, Gauss, Jacobi, and Jacobsthal. In Chapter 3, Jacobi sums as-
sociated with characters on GF(p) o orders 5, 10, and 16 are evaluated, and
the values of certain Jacobsthal sums over GF(p) are determined. The
ormulae for these Jacobi sums and the Jacobi sums evaluated in [1] are
utilized in Chapter 4, wherein we evaluate Jacobi and Eisenstein sums
associated with characters on GF(p) o orders 3, 4, 5, 6, 8, 10, 12, 16, 20,
and 24. All o the evaluations in Chapters 3 and 4 are effected in terms o
parameters that appear in the representations of the primes p ,as binary or
quartic integral quadratic forms.
Many of the results of Chapters 3 and 4 are new, but some have been

obtained elsewhere by the use of the theory of cydotomic numbers. (In
particular, see [7].) In contrast, our approach is via Jacobi and Eisenstein
sums, as in [1] and [15]. For our purposes, this approach is perhaps simpter
and more natural.
Another goal of this paper is to give a self-contained, systematic treat-

ment of Brewer character sums. Several Brewer sums have been evaluated
in the literature by a variety of methods. In Section 5.2, we develop a
unified theory of Brewer sums. In particular, we express generalized Brewer
sums A,(a) in terms of Jacobsthal sums over GF(p) and Eisenstein sums,
and so generalize a theorem of Robinson [23]. Our proofs do not depend
upon the theory of cyclotomy, as do most existing proofs and explidt
determinations. In Section 5.3, we apply our theory to give mostly new
proofs of known formulae for A. (a) when n 1, 2, 3, 4, 5, 6, 8, 10, and 12.

In Chapter 6, using primarily Theorem 2.7 and the formulae for Jacobi
sums in Chapter 4, we evaluate certain Jacobsthal sums over GF(p). In
Chapter 7, using primarily Theorem 2.12 and the formulae for Eisenstein
sums in Chapter 4, we evaluate the Gauss sums k GF(p2) e

2i t()/O,for
k=2, 3, 4, 6, 8, and 12. Most of the results of Chapters 6 and 7
appear to be new.
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The beautiful Hasse-Davenport theorem on products of Gauss sums [4],
[9, p. 464] is often useful in evaluating character sums. For example, it is
used by Giudici, Muskat, and Robinson [7, p. 340] to evaluate the Brewer
sum A12(a). In this paper, only a very special case of the Hasse-Davenport
theorem is used, namely Theorem 2.3, for which a very elementary proof
exists. In Chapter 8, we show how to obtain an elementary proof in other
special cases.

This paper makes heavy use of the results in [1], but together with [1],
forms an almost completely self-contained unit. Moreover, the methods are
for the most part elementary. The only non-elementary result used is
Stickelberger’s theorem [11, pp. 94, 97], for the purpose of evaluating
certain bidecic and biduodecic Jacobi and Eisenstein sums in Chapter 4.

2. Notation and general theorems

Let Q denote the field of rational numbers. Given a primitive complex
ruth root of unity and an integer with (t, m)= 1, define trt Gal(Q(!)/Q)
by tr,()= ’. Let 1 denote the ring of all algebraic integers.
Throughout the first 7 chapters, p denotes an odd prime, and X, q, A, and

A denote characters on GF(pr), where GF(pr) denotes a field of p ele-
ments. We also let GF(pr)* =GF(pr)-{O}. The quadratic character on
GF(pr) is denoted by tb. If X is a character on GF(pr) with r-> 2, then the
restriction of X to GF(p) will be denoted by X1. The symbols Y and /a
indicate that the sum is over all the elements ct in GF(pr) and GF(pr)-{[3},
respectively. When a Roman letter is used to denote an element of GF(pr)
instead of a Greek letter, it will always be the case that r 1.
The Gauss sum Gr(x) is defined by

pwhere tr (a) tr a a + ct
p + a +. + ap’-I. If X is nonprincipal, Gr(x)

satisfies the fundamental property [10, p. 132]

(2.1)

The Jacobi sum J(x, q) is defined by

Jr(X, )= . X(a)(1- a).

Put Jr(X, X)=]r(X) and Kr(X)=X(4)J(x). We drop the subscript r from
G, J, and Kr when r 1. The following two results are basic properties of
Jacobi sums [10, pp. 93, 133].
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THEOREM 2.1. If X is nonprincipal, we have J,(x, )=-X(-1).

TI-IEOREM 2.2. If X, , and Xk are nonprincipal, then

L(x, 6)

In particular, by (2.1), IL(x,

The following two theorems are proved in [1] for r 1; the proofs of the
more general results ollow along precisely the same lines. Theorem 2.3 is a
special case of a theorem of Davenport and Hasse [4], [9, p. 464] which will
be further discussed in Chapter 8.

THEOREM 2.3. I]: X is nonprincipal, we have K,(X) J(X, d).

THEOREr 2.4. Let X have even order 2k. Then

(i) K,(X) 4(-I)K,(xk-1),
(ii) K,(X)= X(-1)J(X, Xk-1).

The following result is well known and easily proved [8, p. 82].

LEMMA 2.5. Let f(x)= ax2+bx +c, where a, b, and c are integers. Let
d =b2-4ac. Then if p X ad,

Let n be a positive integer and let /3 GF(p’)*. The Jacobsthal sum
4,.,(/3) 4, (/3) is defined by

6,(/3) 6(a)6(a +/3).

Define a related sum ,.,(/3)= , (/3) by

g,. (t) Y. 6(" + t).

The proofs of the following three results follow along the same lines as the
proofs for r 1 [1, Chapter 2].

THEOREM 2.6. For each

TUEOREM 2.7.

natural number n, we have 2,(/3)=

THEOREM 2.8.

Let X have order 2n. Then

6,(/31 X(-1)

Let X have order 2n. Then

i=1
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In the remainder of this chapter, r 2, and so X is a character on GF(p2).
Fix a generator z of the cyclic group GF(p2)* and write /=z(o+l)/z and
g ,. Observe that g is a primitive root (mod p) and that /o _/. We also
have GF(p) {a + b/: a, b GF(p)}.

LZMMA 2.9. If X has order m, then Xl has order m/(m, p + 1). In particular,
if m 1(19 + 1), then X is principal, and if m 12(p + 1) but m (p + 1), then X1
is the quadratic character (mod p).

Proof. Since X has order m, X(r) is a primitive mth root of unity. Hence,
xl(g) X(rp+) is a primitive m/(m, p + 1)th root of unity. O.E.D.
The Eisenstein sum E(X) associated with the character X on GF(p) is

defined by
p--1

(x) +
b=O

We now establish some properties of E(X).
Tr,EOREM 2.10. We have E(X) E(X).

Proof. Since (1 + b/) 1 +b/ 1 b.y for all b GF(p),

E(X) X(1 b/) ’. X’ (1 + b3,) E(XP). Q.E.D.
b b

THEOREM 2.11. Let X have order m, where m > 1 and m (P + 1). en

Pro@ Since () is a pritive ruth root of unity, ()=((*) is a
pritive m](m, (p + 1)/2)th root of unity. is proves the second equaliW.

Since, by Lemma 2.9, X is principal,

,b=0

p--1 p--1 p--1

b=0 a=l b=0

p--1 p--1 p--1

b=0 a=l b=0

p--1

(p- 1)X(V)+ E(X) x(a)

(p l){x() +E(XI},

from which the desed reset follows. Q.E.D.
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THEOREM 2.12. Let X have order m. Then

G2(X) (2)E(x)G(X1) if m X (p + 1),

px(/) p(-1)0+1)/" if m > l and m (p +1),
=-1 if m=l.

Proof. Let ct GF(p2). Then ct a + b/for some pair a, b GF(p), and
tra a + ct

p 2a. Hence.
p--1

G2(X) x(a+b’y)e4i’/p
a,b =0
p--1 p--1 p--I

)". x(bT)+ x(a-t-abT)e4ia/p
b=0 a---1 b=0

p--1 p--1

X(T) . x(b) +E(X) x(a)e4ia/
b=0 a=l
p--1

Y.
b=0

The result now follows from Lemma 2.9 and Theorem 2.11. Q.E.D.

Results similar to Theorems 2.10, 2.11, and 2.12 have been proved by
Whiteman [30, p. 69]. See also [7, pp. 330-331].
COROLLARY 2.13. Let X have order m, where m X (p + 1). Then IE(x)I

Proof. The result is an immediate consequence of Lemma 2.9, Theorem
2.12, and (2.1). Q.E.D.

THEOREM 2.14. Let X have order m. Then

K2(X) p2_ 2, /f m 1,

=-1, if m=2,
p, if m > 2 and m (P + 1),

=-(S)E2(x), if m 12(p+ 1)but m X (p + 1),

E2(X)
K(X), if m X 2(p + 1)E(X2)

Proof. Proceeding by a standard argument [10, pp. 93, 94], we have

G(X) X(a)e’t/ X(13)e

x(-1) Y.
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The result now follows from Lemma 2.9 and Theorem 2.12, with the use of
Theorem 2.2 in the case m Y 2(p + 1). Q.E.D.

The last two cases of Theorem 2.14 can be consolidated into the one case

E2(X-) K(Xl) if m X (p + 1).(2.2) K2(X)

To see this, first observe that when m l2(p + 1) but m 4" (p + 1), Xl has order

2. Thus, by Theorem 2.1, K(X)=-(-nl). Also, observe that, by Theorem

2.11, E(Xz) 1.

The following useful result is due to J. Muskat, and we are grateful for his
permission to include it here.

THEOREM 2.15. Let X have even order m 2n with m X (p + 1). Then

E(Xn-) (-1)(p+l)/2
E(X)
E(x)

Proof. Let R =E(x"-I)E(xZ)/E(x). First, suppose that n Y (p+ 1). By
Theorem 2.12,

and

Thus,

E(X) X(2)G2(x)/G(xO, E(X2) X2(2)G2(X2)/G(xi)

R

X" (2)

E(X.-1)

G2(Xn-1)G2(x"+1)G2(Xz)
G2(x)Gz(x"+)

X(-1)pZG2(xz)
G2(x)G(x"+) Xl(-1)p

by (2.1). By Theorem 2.3,

(x)
X(4) G:z(X:z"----- G:z(X.+)

or
G2(x)G2(x"+x) (4)G2()G2(x2).

Thus, by the above and Theorem 2.12,

R X"+2(2)PJ(X0 X"+z(2)pJ(xO
Ge(b) p(-1)

(- 1)(p+)/2K(x0.

This proves the theorem for n Y (p + 1).
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Suppose next that n (p + 1). Note that p + 1 n (mod 2n), for if not, then
2n [(p+ 1), which is a contradiction. Thus, E(X"-X)=E(xr’), so E(X"-)
E(X) by Theorem 2.10. By Theorem 2.11 and the above considerations, we
then have R =E(x2)=-(-1)(’+/’= 1. By Lemma 2.9, X has order 2.
Thus, by Theorem 2.1,

K(X) J(X) -X(-1) (-1)(p+)/:.

This completes the proof. Q.E.D.

THEOREM 2.16.
-K(x0.

Proof.

Let X have order m with m X (p+ 1). Then E(Xp+I)

First, for b e GF(p), note that (1 + b/)p 1 b/. Thus,

E(Xp+l) X XP(1 + b/)x(l + b/)

X(1 b)x(1 + b)

=Xl(1-gb2)
b

since the expression in braces unts the nmber of solmions b (mod p) m
1-gbn (rood p). Bya 2.9, X g nonprincipal, and so

by Theorem 2.3. Q.E.D.

We will find it convenient to define

T(X) card {1 + bl" b GF(p)., X(1 + by) 1}.

Thus, if X has order m, T(X) is the number of ruth power residues in GF(p2)
of the form 1 +b/ with bGF(p). Observe that T(X) is odd, since if
X(1 +b/)= 1, then X(1-b/)=xP(l+b/)= 1. (In the notation of [7, p. 331],
T(X) ao.) The next result is similar to a result in [7, equation (4.6)].

THEOREM 2.17. If X has order m, then T(X)= (l/m) 1E(XJ).
Proof. We have

m--1 p--1 m--1. E(;t’)= X’(1 + b/)= mT(x).
i=o b=O i=o

Q.E.D.

In Chapter 4, we will record evaluations of T(X) in a few interesting cases.
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3. Jacobi and Jacobsthal sums over GF(p)

3.1. Quintic and decic Jacobi sums

THEOREM 3.1. Let p----1 (mod 10), and let X be a character (mod p) of
order 10. Then

(3.1) (pl)K(x) ao+ box/+ icox/5 +2/+ idox/ 2x/-

where ao, bo, Co, and do are integers such that

(i) alo-1 (mod 5),
(ii) ao+ 5bo+5Co+5do p,
(iii) aobo do-Co- codo.

Furthermore, (ii) and (iii) determine laoi, Ibol, and {tCol, Idol} uniquely.

Proof. Let exp (2ri/10), and note that

(3.2) ix/5+2x/=-+2-2 and i/5-2x/=-+(+2--2,

It is easily seen that {1, x/, ix/5 + 2x/, ix/5-2x/-} is a basis for Q() over Q.
Hence, the representation (3.1) immediately follows, where alo, blo, Co, and
dxo are rational numbers such that (ii) and (iii) hold.
We now show that ao, bxo, Clo, and dlo are integers. We have

(3.3) K(X)+K(X6) X(4n(1- n)) 1 +

By Theorem 2.4(i),

p--1

=2 X(4n(1-n))
r---2

(p--1)/2

=2+4 X(4.(1-.11.
rt----2

4, (n(l-n))

K(X6)-"(-)K(’).
Thus, if (-) 1, we deduce from (3.3) that Re K(X)- 1 2f; if (-) -1,

we deduce that/Im K(X)-1 2.. Hence, if (-)=-1, then

p -{Re K(X)}2 + 1 {Im K(X)}2 + 1 e 411,
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and so Re K(X) 211. Since, by (3.1),

ReK(x)=)(alo+blox/),
and since all algebraic integers in Q(x/) have the form a +bx/, where
either a and b are integers or both 2a and 2b are odd integers, it follows, in
either case, that alo and bo are integers. Therefore, by (3.1), we have

ct CoX/5 + 2x/+ do/5 2x/ f/.
Since

(3.4) ctx/5 +2x/= 5Co+ (2Clo + dxo)X/,
either 5Cxo and (2Co+ do) are both integers, or 10Clo and 2(2Co+ do) are
both odd integers. Letting N/3 denote the norm of an algebraic integer/3, we
have N(x/5 + 2x/)= 5. Thus, by (3.4), 51N(2(5Co+(2Co+ dlo)x/)}, and so
5 10Cxo. Hence, 2clo is an integer. Consequently, 2dxo is also an integer.
From (ii),

4(p ao- 5bo) 5{(2Clo)2 + (2dlo)2}.
If 2Co were odd, this would yield the contradiction that 0==
1+(2do)2 (mod 4). Thus, 2Co is even, i.e., Co is an integer. From (ii), it
follows that dlo is also an integer.

Raising each side of (3.1) to the th power and employing Theorem 2.1,
we get

-l (pl)K(xS)= alo (mod 5").

Thus, ao--=-I (mod 5). The last statement o the theorem on uniqueness
follows from a theorem of Muskat and Zee [17]. Q.E.D.

COROLLARY 3.2. Let p-----1 (mod 10), and let X be a character (mod p) of
order 10. Suppose that 2 is not a quintic residue (mod p). Then

4()J(x) A +Bx/+4iC sin (2r/5)+ 4iD sin (#IS),

where A, B, C, and D are integers such that A=-l (mod5) and
A2+5B2+ 10C2+ 10D2= 16p with AB D2-C2-4CD.

Proof. Suppose, for example, that X(4)= 2, where exp (2ri/10). (The
proofs or the remaining three cases are completely analogous.) By Theorem
3.1 and (3.2),

(-Ij(X) {ao+bo/ +Co(-g+-)+dxo(- + g+-ga)}.
\p!
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Using the facts that cos (r/5)=(x/’+ 1)/4 and cos (2r/5)=(x/-l)/4, we
find, after some manipulation, that

(3.5) 4()J(X) A + Bx/-g+4iC sin (2r/5)+ aiD sin (r/5),

where A, B, C, and D are integers with A =-ao+5bo-5Co-5do. By
Theorem 3.1, A 1 (mod 5). Since sin (27r/5) x/’l0+ x//4 and sin (r/5)
x/10-2x//4, we deduce from (3.5) that 16p=A2+5B2+IOC:+IOD2,
where AB D2- C2-4CD. Q.E.D.

The representation for p given in Theorem 3.1 is due to Giudici, Muskat,
and Robinson [7, p. 345]. The proof given here is more self-contained and
less computational than that of [7]. Corollary 3.2 gives a representation for
16p found by Dickson [6, p. 402]. In this connection, see also a paper of
Whiteman [27, p. 98].
By Theorem 2.4(i),

K(X)= (pl)K(x4) and K(X3)= (Z-)K(x2).
Hence, Theorem 3.1 yields the values of quintic as well as decic Jacobi
sums.

3.2. Bioctic Jacobi sums

LEMMA 3.3. Let p 1 (mod 8). Then 2a4+4a8 p 7 (mod 32), where a4
and a8 are defined in [1, Theorems 3.9 and 3.12].

Proof. Let

rl 1, if 2 is a quartic residue (mod p),

-1, otherwise.

By [1, Theorems 3.14 and 3.16], we have

a4=-(p-3)/2+4(1-rl) (mod 16) and a8 --- 6a + 1 (mod 8)’

Thus, 2a4 +4a8=-- 161 +p+9----p-7 (mod 32).

LEMMA 3.4. Let c and d be rational, and let

Q.E.D.

t cx/2 +/+dx/2-x/ IL
Then c and d are integers.

Proof. First, 2c+x/(c+d)=ax/2+x/fL Thus, 2c and c+d are inte-
gers. Assume that c and d are not integers. Then both 2c and 2d are odd
integers. Since the norm of (/2+x/ is even, we see that 4c2-2(c + d)2 is
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even. Thus,

(2c)2-(2d)2- 2(2c)(2d) -=0 (mod 4).

Since 2c and 2d are odd, the above congruence yields 20 (rood 4), which
is absurd. Thus, c and d are integers. Q.E.D.

TnEOM 3.5. Let p 1 (rood 16), and let X be a character (rood p) of
order 16. Then

(3.6) K(X) a16 + b6/+ icx6.x/2 +/+ id6/2-"/,
where a6, bx6, C16, and dx6 are integers such that

(i) ax6-=-I (mod 8),
(ii) a6+2b6- 2c6-1- 2d6 p,
(iii) 2a16616 d6- c6-2c16d16.

Furthermore, b6 c16, and d6 are even, and (ii) and (iii) determine lax6l,
Ibx61, ana (Icl, Idx6[} uniquely.

Proof. Observe that 2 cos (r/8)= x/2+/. It is then easily seen that the
subgroup (r7)c Gal(Q(e2"i/6)/Q) has fixed field Q(i/2 +x/). By Theorem
2.4(i), r7 fixes K(X), and so K(x)Q(i/2-/). Now {1, 4, i42+4,
ix/2-,/} form a basis for Q(ix/2+/) over Q. Thus, we immediately
conclude that K(X) has the representation given in (3.6), where a16, bx6, c6,
and d16 are rational numbers such that (ii) and (iii) hold.
We next show that a6, bx6, C16, and d16 are integral. Now,

15

(3.7) K(Xj) 16 ISI,
j=0

where S ={n: 0--<n --<p- 1, x(4n(1-n))= 1}. Since w3() =-x/, it follows
from (3.6) that Re {K(x)+ K(X3)} 2a6. By Theorem 2.4(i), K(X) K(X7)
and K(X3) K(Xs). By Theorem 2.1, K(X8) =-1. Using also the evaluations
of quartic and octic Jacobi sums from [1, Theorems 3.9 and 3.12], we
deduce from (3.7) that

(3.8) 16 [SI 8ax6+ 4a8+ 2a4+ p 3.

By Lemma 3.3 and (3.8),

(3.9) 16 ISI -= 8ax6- 8 (mod 32).

Now, the transformation n-- 1-n leaves x(4n(1-n)) unchanged. Since
n 1-n (mod p) except when n -=(p+ 1)/2 (mod p), we see that 16 IS[-= 16
(mod 32). Thus, by (3.9),

(3.10) ax6-=-I (mod 4).
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Proceeding as in (3.3), we find that
(O--1)/2

2 Re K(x)=K(x)+K(x9)=2+4 x(4n(1-n)).
tll (n(l--n))

Thus, Re K(X)- 1 21), and so by (3.6), aa6-- 1 + ba6/ 21I. Since a16-- 1 is
even by (3.10), we conclude that b16 is an integer. Thus, by (3.6),

c16x/2-t-xq d16x/2-x/ 1. Hence, by Lemma 3.4, c16 and d16 are integers.
Since a6 p---1 (mod 8) by (3.10), it ollows from (ii) that c16 and d16 are
even. Furthermore, using (iii) and (3.10), we have

2b6+ 2cx26- 2d6 2b6+2(d6-2c16d16- 2a16b16) + 2d6
=-2b6+4b16-=0 (mod 16).

Thus, by (ii), a6l (mod 16). Hence, by (3.10), a16----1 (mod8). The
claim on uniqueness at the end of the theorem was established by Muskat
and Zee [17]. Q.E.D.

THEOREM 3.6. Let p =-- 1 (mod 16) and write p a6+2b6+2c6+ 2d2x6
with 2a16b16 d6-c6- 2c16d16 Then

b16-- 0 (mod 4),
---2 (mod 4),

i[ 2 is a quartic residue (mod p),
otherwise.

Proo[. Let X be a character (mod p) of order 16. We may assume that
a16 and b16 are as given in (3.6). By Theorem 2.4(i), K(2)= K(X9). Hence,
by Theorem 2.3,

2(a16 + b16x/) 2 Re K(X)

K(X) +K(X9)

Z
Let q X2. Since q(-1)= 1, it again follows from Theorem 2.3 that

p-1 (1- n)(l+ n)2(a16 + b16x) E 1O(n)
.=1 P P

(1-{1(1+=-2K()+ q(n){l+ n)} +
.=1 P P

(p--l)/2

{ (l-n)]{ (l+n))=4-2K(q0+2 q(n) 1+ 1+
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Thus, a16+b16j----2-K(q)(mod411). By [1, Theorem 3.12], K(q0
as+ibs, where a8 and b8 are integers such that a+2b=p and as-=
-1 (mod 4), and by Theorem 3.5, a16 -= -1 (mod 4). Hence,

b16/-= 2 as a16 ibsx/-= ib8/ (mod 411).

The result now follows from [1, Theorem. 3.15]. Q.E.D.

3.3. Jacobsthal sums

TrmomM 3.7. Letp 10k + 1 and p X a. Suppose that x is a character
(mod p) of order 10, and assume that X is chosen such that x2(a)= ei/5 in
the case that a is a quintic nonresidue (mod p). Then, in the notation of (3.1),

45(a) =-1 +4ao, if a is a quintic residue (mod p),

-1 alo- 5bxo + 5Clo- 5dlo, otherwise.

Proof. For r3 Gal(Q(e2i/x)/Q), we have o-3(x/)=-/. Furthermore,
by (3.2), r3(i/) i,J5- 24 and r3(i/5 2) -i/5 + 2J-. Thus,
by Theorem 3.1,

(3.11)

and

(-1)K(x) alo+ blo’+ ico45 /245+ idloX/5

(3.12) (-1)K(x3) a0-- bloX+ ic-oX/5 2x/- ido/5 +2.
Using (3.11), (3.12), and Theorem 2.1 in Theorem 2.7, we obtain

45(a) (-1){2 Re {4(a)K(x)+ ’2(a)K(x3)}+ K(Xs)}

2 Re {4(a)(alo+ box/3 + icxox/5 + 2xf5+ idox/5 2,/5)

+ 9,2(a)(ao box/- + ic:ox/5 2x/- idxoX/5 + 2x/)}- 1.

The desired evaluations of 4s(a) now follow. The computations are facili-
tated by the use of (3.2). Q.E.D.

THEOREM 3.8. With the hypotheses and notations of Theorem 3.7, we
have

6s(a) =4()ao, if a is a quintic residue (rood p),

=(){-alo-5bo-5Co+5do}, otherwise.

Proof. From (3.11), (3.12), and Theorem 2.40), we get

K(X2) (-1)kK(x3) ao- blox/+ iCo4’5 2x/3- idlo/+ 2x/3
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and

K(X4) (-1)kK(x) alo + blox/ + iclox/5 + 2x/ + idloX/5 2x/.

Thus, by Theorem 2.8,

qs(a) 2() Re {2(a)(alo- blox/ + iclox/5 2x/- idlo/5 + 2x/)

+ x(a)(ao+ bo45+ icox/5 + 245+ idlox/5 -2x/)}.
The desired values for qs(a) now follow. Q.E.D.

With the use of Theorem 2.6, qlo(a) can also be evaluated. A less
elementary proof of Theorem 3.8 has been given by Rajwade [19], [20].
(See also [22].) Theorem 3.8 extends results of E. Lehmer [12] and
Whiteman [26], [27].

In the next theorem, columns indicate the residuacity o a. For example, if
an x appears in the column headed by "quartic", it is assumed that a is a
quartic residue, (mod p); if no x appears in the column headed by "quartic",
it is assumed that a is a quartic nonresidue (mod p).

THEOREM 3.9. Let p= 16k+l and suppose that p ’ a. Let X be a
character (mod p) of order 16 chosen so that

(a)=e2"/16 if () =-1

\p/

Then, in the notation of Theorem 3.5, we have the [ollowing table of values
for (-1)48(a).

(-1)kb8(a quadratic quartic octic bioctic

8a16 x
--8a16 x

0 x
8b16 x

-80116

x x
x x
x

Proof.

(3.13)

By Theorem 2.4(i) and (3.6), we have

K(X) K(X7) a16 + b16x/ + ic16/2+/+ id16x/2-/.
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Applying tr3 Gal(Q(e2"/16)/Q) to (3.13), we have

K(X3) K(X5) a16- b16vc ic16x/2-Vr+ id16x/2
Therefore, by Theorem 2.7,

(-1)68(a) 2 Re {(a)(1 + 6(a))K(x)}+2 Re {3(a)(1 + 2(a))K(xa)},

and the results follow. Q.E.D.

With the use of Theorems 2.6 and 3.9 and the values of q8(a) found in [1,
Theorem 4.7],-i/t16(a) may be evaluated. In certain cases, a more explicit
evaluation of 8(a) has been given [6].

4. Jacobi and Eisenstein sums over GF(p2)

In this chapter, r 2, and so X and )t are characters on GF(p2).

4.1 Quartic and octic sums. First, we consider the case p 8k + 1. Let
X have order 16. Then 1 has order 8 by Lemma 2.9. As in [1, Theorem
3.12], write K(hl)=as+ibsx/, where as and bs are integers such that
a+2b=p and as---1 (mod 4). As in [1, Theorem 3.9], write K(A)=

+ ib4, where a4 and b4 are integers such that a+ b4 =p and a4---() =a4

-1 (mod 4). In the next theorem, we evaluate the octic sums E(A2) and
K2(A2) and the quartic sums E(h4) and K2(A4).

THEOREM 4.1. Let p 8k + 1, and let h have order 16. Write X A2. Then
in the notation above,

(i) E(X) -as/ i(-1)k+lbax/ and E(X2) -K(x1) -a4-ib4;
(ii) KE(X)=-EL(x) and KE(X2) =-KE(x1).

Proof. Part (ii) follows from part (i) and Theorem 2.14.
To prove (i), first observe that by Theorem 2.16, E(X2)=E(xP+I)

-K(xI). It remains to evaluate E(X). By Theorem 2.16,

-as-ibsx/= -K(A,) E()kp+I) E(2), i 21 k,

=E(A10), i2 k.

In the case that 21 k, this is the desired result. In the case that 2 k, replace
by 5 to obtain E(X)=-K(). Hence, by Theorem 2.4(i), E(X)

-K(A). Q.E.D.

COROLLARY 4.2. Let p 8k, + 1, and let X have order 8. Then

T(X) (p + 1 2a4- 4as).
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Proof. By applying Theorem 2.4(i) to K(hl), we deduce from Theorem
4.1 that E(X) E(X3). Thus, by Theorems 2.11, 2.17, and 4.1,

8T(X) p + 1 + E(X:) +E(:)+2E(x) +2E() p.+ 1 2a4-4a8.
O.E.D.

COROLLARY 4.3. Let p =8k + 1, and let X have order 8. Then T(X)=--
1 (mod 4).

Proof. The result follows rom Corollary 4.2 and Lemma 3.3. O.E.D.

We now consider the case p 8k + 5. Let X have order 8. Then X1 has
order 4 by Lemma 2.9. As in [1, Theorem 3.9], write K(X) a4+ ib4, where

and b4 are integers such that a,+b=p and a,-=-/)= 1 (mod 4).a4

THEOREM 4.4. Let p 8k + 5, and let X have order 8. Then in the notation
above,

(i) E(X) -E(x2) K(’I) a4-ib4;
(ii) K:(X) p and

Proof. Part (ii) follows from (i) and Theorem 2.14.
To prove (i), first observe that by Theorem 2.16, E(:)=E(xP+x)

-K(xO. Thus,

(4.1) -E(x:) K(,).
It remains to evaluate E(X).

The subgroup ((rs) of Gal(O(e:i/a)/O)={(rs, (r-s, (r, (r-l} has fixed field
Q(i). Since (r5 fixes E(X) by Theorem 2.10, E(x)Q(i). In particular,
A =Re E(X) is an integer. By Theorem 2.11, E(X4) 1. Thus, by (4.1),
Theorem 2.17, and the fact that E(X)= E(Xs),
(4.2) 8 T(X) p + 1 2a4+4A.
If A were even, (4.2) would yield the contradiction that 0---4 (mod 8). Thus,
A is odd. Since E(X) Q(i), it follows that

E(X) {+/-K(x), +/-K()}.
Assume for the purpose of contradiction that E(X) +K(x). Then by

(4.1) and Theorem 2.14,

K2(X) E2(x)K(x)/E(x2) K4(X)/P,

which contradicts the fact that K4(x)/p. Hence, E(X) eK(), where
e +1. It remains to show that e 1.
By (4.2), 8T(x)=8k+6+2aa(2e-1). Since T(X) is odd, we have

8--8k+6+2aa(2e-1) (mod 16),
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and so

(4.3) 1 4k a4(2e 1) (mod 8).
If a4 5-4k (rood 8), then

b=p-a=-8k+5-(9-8k)=--4 (rood 16),

a contradiction. Hence, a4--- 1-4k (rood 8), and so e 1 by (4.3). O.E.D.

COROLARX 4.5. Let p 8k + 5, and let have order 8. Then,

T(X) }(P + 1 + 2a4).

Proof. Since A Re E(X)= a4 by Theorem 4.4, the result follows from
(4.2). Q.E.D.

We finally consider the case p 8k + 3. The quartic sums are trivially
evaluated since 41(p + 1), and so we evaluate only octic sums below.

THEOmaM 4.6. Let p 8k + 3, and let X have order 8. Then"

(i) E(X) a8 + ibs,, where a8 and b8 are integers such that a+ 2b’ p
and a8 =- (-1) (mod 4);

(ii) Kz(X) Ez(X).

Proof. Part (ii) follows from Theorem 2.14.

To prove (i), first observe that the subgroup {r3) of Gal(O(e/8)/O)=
{r3, r-3, rl, r_l} has fixed field O(i). Since r3 fixes E(X) by Theorem 2.10,
E(X) 0. (i4). Therefore E(X) as + ibs/ for some integers a8 and b8 such
that a+2b p.
By Theorems 2.11 and 2.17 and the fact that E(X) E(X3),

(4.4) 8T(X) p + 1 + 4a8.
Since T(X) is odd, 8--- 8k + 4+4a8 (mod 16), from which it follows that
a8 =- 1 2k (-1) (rood 4). O.E.D.

COROLLAR’Z 4.7. Let p 8k + 3, and let X have order 8. Then

T(X) (p + 1 + 4a8),
where a8 is delined in Theorem 4.6.

Proof. This follows from (4.4). O.E.D.

We remark that T(X) is easily evaluated for octic X when p--7 (mod 8),
for it can be seen from Theorems 2.11 and 2.17 that when X has order m
and p =mk 1, then

T(X) k, if 2 ,V k,

=k-l, if 21 k.
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4.2. Cubic, sextic, and duodedc sums. First, we consider the case p
12k + 1. Let k have order 24. Then k has order 12 by Lemma 2.9. As in [1,
Theorem 3.9], write K(h)= a4+ ib4, where a and b4 are integers such that
a24 +b p and a4 (-1)TM (rood 4). As in [1, Theorem 3.19], write K(At)
a2+ib2, where a2=a4 and b2 b4, if 3 a4, and at2=-a4 and b2
-b4, if 31a4. As in [1, Theorem 3.3], write K(k)=K(k)=a3+ibax/,
where a3 and b3 are integers such that a+3b =p and aa---1 (mod 3).

THEOREM 4.8. Let p 12k + 1, and let h have order 24. Write X h2.
Then in the notation above,
(i)
E(X4) E(X2) -K(x1) -a3-ib3x/

(ii) K2(X4) K2(X2) =-K2(x1)
(iii) E(X) E(X3),

-E(x3),
and

Proof.

and E(X) =-ax2+ i(-1)k+Xbx2;
and K2(X)=-E(x);

if 3 X a4,

if 31a4,

K2(X) K2(X3).
The proofs of (i) and (ii) are similar to those of Theorem 4.1, and

so we omit them. Using (i) and (ii) in conjunction with Theorems 4.1 and
4.4, we see that (iii) holds. Q.E.D.

We now consider the case p 12k + 7. Let X have order 12. Then Xt has
order 3 by Lemma 2.9. As in [1, Theorem 3.3], write K(X1) a3 + ib3x/,
where a3 and b3 are integers such that a+3b =p and a3 =-1 (mod 3).

THEOREM 4.9. Let p 12k +7, and let X have order 12. Then in the
notation above,

(i) (-1)kE(x) E(X2) -E(x4) K(I) a3- ib3x/;
(ii) K2(X)= p and K2(X2) K2(X4) -K2(x).

Proof. Part (ii) follows from part (i) and Theorem 2.14.
To prove (i), we first observe that by Theorem 2.16,

(4.5) E(x4) E(X2(+)) -K(x) -K(’l),

as desired. By Theorem 2.15, with X
2 in place of X, we have

E(X4) E(x2)K()/E(x4).
Thus, by (4.5),

(4.6) E(X2) K(1).

It remains to evaluate E(X). Apply Theorem 2.15 and multiply both sides
of the equality obtained therefrom by E2(x2)E(x7) to get

E2(x2)E(xS)E(x7) E(x)E(x7)E(x2)K(x1).
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Applying Theorem 2.10, Corollary 2.13, and (4.6), we find that the above
reduces to E2(X2)p E2(X)p. By (4.6), this last equality implies that E(X)=
eK(t), where e +1. Cubing both sides of the latter equality, we find that

E(X3) ea =- e (mod 3f).

By Theorem 2.11, E(X3)=(-1)TM. Hence, e =(-1)k, as desired. Q.E.D.

We finally consider the case p 12k + 5. The cubic and sextic sums are
trivially evaluated since 61(p + 1); thus, we evaluate only the duodecic sums
in Theorem 4.10.

Let h have order 24. Then hl has order 4 by Lemma 2.9. As in [1,
Theorem 3.9], write K(AI)= a4+ ib4, where a4 and b4 are integers such that
a+b=p and a4(-1)k (mod 4). Observe that 3 ’ a4 and 3 b4, since
a42 / b42 p -=-1 (mod 3).

THEOREM 4.10. Let p 12k +5, and let h have order 24. Write X
Then in the notation above,

(i) E(X) eoiE(x3) (-1)keob4 eoia,

where eo eo() is defined by eo + 1 and. eo--(-1)k+la4.b4 (mod 3). Inother
words, E(x)= B -Ai, where B +b4, B=--a4 (mod3), A=+a4, and
A -= (-1)k+b (mod 3).

(ii) K2(X)=-E2(x)=-K2(x3).

Proof. The first equality in (ii) foilows from Theorem 2.14. Since
K2(X3) -E2(x2) by Theorems 4.1 and 4.4, the second equality follows
from part (i).
To prove (i) first observe that the subgroup (trs) of Gal(Q(e2i/IE)/Q)=

{trs, tr_5, try, tr_l} has fixed field Q(i). Since r5 fixes E(X) by Theorem 2.10,
we have E(X) Q(i). Thus, E(X)= B-Ai for some integers A and B.
By Theorem 2.11, E(X6)=E(X2)=E(X) 1 and E(X4)=E(X8)=-I.

Noting also that E(X) E(X), we obtain, from Theorem 2.17, 12T(x)
p + 1 +4B + 2 Re E(Xa). By Theorem 2.16,

E(Xa) E(A6) E(hp+) -K(hl) -a4-ibm, if 21 k,

E(p+) =-K() =-a4+ ibm, if 2 , k.
Hence,
(4.7) E(X) =-a4+ i(-1)k+lb4.

Thus, 12T(x) 12k +6+4B-2a. Since T(X) is odd,

12= 12k +6+4B-2a (mod 24),

which implies that -l+2k+a42B (mod4). Since a4=--(-1)kl-2k
(mod 4), we deduce that 0----2B (mod 4), i.e., B is even. It follows that
iE(x) A + Bi, where A is odd. Hence, by (4.7), iE(x) {+E(X3), +E(3)}.
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If E(X.)=+iE(3), we find upon cubing each side that E(X3)
+iE(x3) (mod 3f), which is impossible. Thus,

(4.8) E(X) icE(x3),

where e +1. Cubing both sides of (4.8), we get E(X3)
-ieE() (mod 31). Thus, by (4.7),

--a4+ i(-1)+b4----- ieaa+(-1)eb4 (mod 31)).

Comparing real parts, we find that e -=(-1)U/Xa4b4 (mod 3). The result now
follows rom (4.7) and (4.8). Q.E.D.

4.3. Biduofleei sums. First, we consider the case p 24k + 1. Let X
have order 48. Then ) has order 24 by Lemma 2.9. As in [1, Theorem
3.22], write K(Ax) a24 + ib24x/, where a24 and b24 are integers such that
a4+6b4=p and a24=-a8 (mod 3). (Here, a8 is defined as in [1, Theorem
3.12].) The proof of the following theorem is similar to that of Theorem 4.1,
and so we omit it.

THEOREM 4.11. Let p 24k + 1, and let. X have order 48. Write X X2.
Then, in the notation above,

(i) E(X) -a24+ i(-1)k+b24x/r;
(ii) K2(X) -E2(x).
We next consider the case p 24k +7.

THEOREM 4.12. Let p 24k +7, and let X have order 24. Then
(i) E(x)=a24+ib24x/, where a24 and b24 are integers such that a4+

6b4 p and a24------ (--1) (mod 3);

(ii) K2(X)= E2(X).

Proof. By Lemma 2.9, x has order 3. Thus, by Theorem 4.9(i),

(4..9) E(x2) K()= K(X).

Hence, part (ii) follows from Theorem 2.14.
By Theorem 2.15 and (4.9), E(XxX)=E(). By Theorem 2.10, E(X)

E(X7). Thus, E(X) is in the fixed field Q(i46) of the subgroup (tr7, tr) of
Gal(Q(e2i/24)/Q). Therefore, we may write

(4.10) E(X) a24 + ib24x/,
where a24 and b24 are integers such that a+6b4 p. Therefore, cubing
both sides of (4.10) and using Theorem 2.11, we obtain (-1) =E(x3) =-
a24 (mod 3). Q.E.D.

We next consider the case p 24k + 13. Let X have order 24; then has
order 12 by Lemma 2.9. As at the beginning of Section 4.2, write K(X)=
a2+ ibm2.
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THEOREM 4.13.
notation above,

Let p 24k + 13, and let X have order 24. Then, in the

(i) E(X) K(I) a12-ibm2,
(ii) K2(X)=-p.

Proof. By Theorem 4.8(i),

(4.11) E(X2) -K().

Thus, part (ii) follows from part (i) and Theorem 2.14.
By Theorem 2.15 and (4.11), E(Xt)=E(x)K(x)/K(). By Theorem

2.10, E(X)=E(), and so EE(2)=KE(xI). Thus, for =+/-1, E(X)
K(). Cubing both sides of the latter equality, we get E(X3)
3K() (mod 3f). But, by Theorem 4.4, E(X3) K(3). Hence, 1 and
E(X) K(). Q.E.D.

We next consider the case p 24k / 5. Let X have order 24. Then X has
order 4 by Lemma 2.9. As in [1, Theorem 3.9], write K(X) a4+ ib4, where
a4 and b4 are integers such that a+ b42 =p and a4--1 (mod 4). Observe that
3 a4 and 3. g b4, since a42 + b42 p 2 (mod 3). As in Theorem 4.10, define
eo eo(X) by eo +1 and eo =-a4b4 (mod 3).

THEOREM 4.14. Let p 24k +5, and let X have order 24. Then, in the
notation above,

(i) E(X) (eo-i)(1/2e24x/- + if4),

where e24 and f24 are integers such that 3e4+ 2f4 =p and f24 a4 (mod 3);

(ii) KE(X) ieoEE(x) (e24x/r d- if24x/)2.
Proof. By Theorem 4.10(i),

(4.12) E(X2) -eoiK(x1).

Part (ii) now follows from part (i) and Theorem 2.14.
By Theorem 2.15 and (4.12),

(4.13) E(X -eoiE(x).

Note also that, by Theorem 2.10,

(4.14) E(X)

The subgroup (trs, trxx)c Gal(Q(e2i/24)/Q) has fixed field Q(ix/-). From
(4.13) and (4.14), it is not difficult to see that both tr5 and try1 fix
1/2/-(eo + i)E(x). Thus,

1/2x/-(eo W i)E(x) g24 d- if24x/-
where/24 and g24 are integers such that 3p g4+6f4. Clearly, g24--3e24
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for some integer e24. Hence,

(4.15) E(X) (Co-i)(1/2e24/+ if24),

where p 3e224 4- 2f4.
Multiplying both sides of (4.15) by 2 and then cubing each side, we obtain

-E(x3) =- (e0- i)3if24 =- -f24 + ieof24 (mod 3fl).

By Theorem 4.4, E(X3) K()= K(X1), and so the above yields

-a4- ib4 -----f24 -- ieof24 (mod 3f).

Hence, a4----- f24 (mod 3). Q.E.D.

In order to examine the remaining cases p =-- 11, 17, 19 (mod 24), we need
the following lemma.

LEMMA 4.15. Let X have order 24, let 0 =exp (27ri/24), and let denote
the ring of algebraic integers in Q(O). If p =- 11 (mod 24), then E(XS)/E(x) is a.
unit in ; if p =-, 17 or 19 (mod 24), then E(Xll)/E() is a unit in .

Proof. Suppose first that p 11 (mod 24). We must show that

(4.16) (E(x) (E(x).
It follows from Stickelberger’s theorem [11, pp. 94, 97] that G2(x)
(G2(x5). Thus, since 1 has order 2,

Ga(x) G(x)

and (4.16) now follows with the use of Theorem 2.12.
Suppose now that p17 or 19 (mod24). Then by Stickelberger’s

theorem, G2() G2(xll). The desired result now follows by an argument
similar to that above. Q.E.D.

We now consider the case p 24k + 17. Let A have order 48; then 1 has
order 8 by Lemma 2,9. As at the beginning of Section 4.1, write K()=
as+ibsx/, where as and b8 are integers such that a+2b=p and as
-1 (mod 4). Observe that 31a8, since a+2b=p=-2 (mod 3). Write X ,a;
then X1 has order 4. Again, as at the beginning of Section 4.1, write
K(X1) a4+ ib4, where a4 and b4 are integers such that a+b p and
a4--- -1 (mod 4). Observe that 3 a4b4, since a+ b24 p 2 (mod 3). As in
Theorem 4.10, define eo Co(X) by Co=+1 and eo=-a4b4 (mod3). Define
o 8o(X) by 15o-+1 and 15o----(-1)ka4b8 (mod 3).

THEOREM 4.16. Let p 24k + 17, and let X have order 24. Then, in the
notation above,

15o(eo- i) o(eo- i)
(i) E(X) x/ K(I) x/ (a4-ib4),

(ii) K2(X) p.
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Proof. By Theorem 4.10(i),

(4.17) E(X2) -oiK(l).

Part (ii) now follows from part (i) and Theorem 2.14.
By Theorem 2.15 and (4.17),

E(xlb
(4.18) E(X------’ -leo K(I--’--
By Lemma 4.15, E(X)/E() is a unit. Clearly, rtl fixes E(Xzl)/E(). Also,
by Theorem 2.10, rz7 fixes E(XzZ)/E(). Hence, E(Xtl)/E() is in the fixed
field C(i/) of the subgroup (r11, cr17) C Gal(((e2/24)/(). It follows that
E(xZl)=+E(). Thus, by (4.18), E2()=+iK2(x1). It follows that
E(x)/K(z) is a primitive 8th root of unity, and so we may write

(-i)
(4.19) E(X)= x/ K(),

where +/- 1 and e +/- 1. It remains to show that 5 8o and e Co. Cubing
both sides of (4.19), we have

E(X3) =_
8(e + i)

K(Xx) (mod 31).

By Theorem 4.1(i), E(Xa) =-as+ i(-1)k+lbs/. Hence,

(4.20) i(-1)k+bs4-=
8(e +i)

--’-’-- (a4+ ib4) (mod 3).

Multiplying both sides of (4.20) by -/, we get

i(-1)k+Xbs=-8(e + i)(a4 + ib4) (mod 31).

Comparing real and imaginary parts, we find that

e a4b4 (mod 3) and 8 -= (-1)a4b8 (mod 3). Q.E.D.

We now consider the case p 24k + 19. Let X have order 24; then X has
order 6 by Lemma 2.9. As in [1, Theorem 3.3], write K(Xx)=-a3-ib3,
where a3 and b3 are rational integers such that a+3b=p and a3--
-1 (mod 3). As in Theorem 4.6, write E(X3) as + ib84, where as and b8
are integers such that a8 +2b p and as-- (-1) (mod 4). Observe that
3]b8 and 3 " a8, since a+2b=p 1 (mod 3). Define 81 by 8x +/-l and
8x ---a8 (mod 3).

THEOREM 4.17. Let p 24k + 19, and let X have order 24. Then, in the
notation above,

(i) E(X) 8K(o) 8(-a3 + ib34),
(ii) K2(X) p.
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Proof. By Theorem 4.9(i),

(4.21) E(X2) -a3 + ib34= K(I).

Part (ii) now follows from part (i) and Theorem 2.14.
By Lemma 4.15, E(XI)/E() is a unit. Clearly, trll fixes E(X)/E(),

and by Theorem 2.10, r9 does as well. Hence, E(XI)/E() is in the
fixed field Q(ix/) of the subgroup (tr, tr9)c Ga!(Q(e2i/24)/Q). Hence,
E(XI)=+/-E(). By Theorem 2.15 and (4.21), E(X)/E(x)=K2(x)/p. It
follows that

(4.22) E(X) K(2x),

where 5 {+1, +/-i}. Cube both sides of (4.22) and use Theorem 2.1 to get

as-----as+ib8x/C=E(x3)=-63K(f(3) (mod 3f).

Thus, 8 x, and we are done. Q.E.D.

We next consider the case p =24k + 11. Let X have order 24. As in
Theorem 4.6, write E(X3) a8 + ibs,J, where a8 and b8 are integers such
that a+2b=p and as---(-1)TM (mod 4). Observe that 31a8 and 3 Y bs,
since a82 +2b p 2 (mod 3).

THEOREM 4.18. Let p =24k + 11, and let X have order 24. Then, in the
notation above,

(i) E(X) e24x/r+ if24X/ where e24 and f24 are integers such that 3e4+
2f224 p and f24 b8 (mod 3),

(ii) K2(X) E2(x).

Proof. Part (ii) follows from Theorem 2.14.
To prove (i), first observe that O’11 fixes E(XS)/E(x) by Theorem 2.10.

Clearly, tr_5 fixes E(XS)/E(x). Thus, by Lemma 4.15, E(XS)/E(x) is a unit
in the fixed field O(if) of (tr_5, tr>c Gal(Q(e2/24)/Q). Hence,

(4.23) E(X) eE(xS),

where e +/-1. Cubing both sides of (4.23), we find that

ib8/-- E(X3) eE(9) eE(3) =- iebsx/ (mod 31)).

Thus, e 1, and

(4.24) E(X) -E(x5).

Thus, both tr5 and iE), and so iE(x) Q(i), the ed field
of (5, ). Therefore,

(4.25) E(X) e24+ i24,
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where e24 and f24 are integers such that 3e4+2f4 p. Cubing both sides of
(4.25), we get ib8V =- E(X3) if244 (mod 3[1). Hence, b8 =-- f24 (mod 3),
Q.E.D.
Another proof of Theorem 4.18(i) is given in [7, p. 340].

COROLLARY 4.19. Let p =24k + 11, and let X have order 24. Then

T(X) 1/2T(X3) 4(P + 1 + 4a8).

Proof. By Theorem 2.11, 1 E(X2) E(X6) E(X1) and -1 E(X4)
E(xS)=E(x12). By Theorem 2.10, E(x)=E(xI), E(X5)=E(xT), and
E(X3) E(X9). Hence, by Theorem 2.17 and (4.24),

(4.26) 24T(x) p + 1 + 4 Re {E(x3) + E(X) + E(Xs)} p + 1 + 4a8.

By Corollary 4.7,

(4.27) 8T(X3) p + 1 + 4a8.

The corollary now follows trivially from (4.26) and (4.27). Q.E.D.

4.4. Quintic, decic, and bidecic sums. First, we consider the case p
20k + 1. Let A have order 40. Then A has order 20 by Lemma 2.9. As in [1,
Theorem 3.9], write K(A)= a4+ ib4, where a4 and b4 are integers such that
a+ b42 p and a4-----(--1)k+ (mod 4). As in [1, Theorem 3.34], write

K(ha) a2o + ibo, if5 A’ a4,

i(ao+ ib2oX[), if 51a4,

where a2o and bao are integers such that ao+5bo= p, ao a4 (mod 5), if
5 / a4, and ao =-b4 (mod 5), if 51 a4. Put X A2. As in (3.1), write

K(XI) alo -t- bloX/ + ico/5 + 2x/+ idloX/5 2x/.

Then by (3.12) and the remark at the end of Section 3.1,

K(X21) alO- bloX/ -i- ico45 24"5- idlo/5 + 2x/.

THEOREM 4.20.
notation above:

Let p 20k + 1, and let A have order 40. Then, in the

(i) E(X4) -K(xi) -ao+ blox/ iclox/5 2x/- + idlox/5 + 24,

E(Xz) -K(xx) -axo- bxo- ico/5 +2x/- idloX/5 2n/,
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and

E(x)=-a20+i(-1)k+lb2ox/, if 5 X a4,

i(-1)k+la2o + b2ox/, if 5 a4;

(ii) K2(xa)=-K2(x), K2(X2)=-K2(x1), and K:(X)=-E2(x).

Proof. To prove (i), st obsee that by Theorem 2.16,

E(X) E(X2(p+) -K(x) and E(X2) E(Xp+I) -K(xO.

so, by Theorem 2.16,

-K(A) E(A+) E(X), ff 21 k,

E(x’), 2, k.

In the case 2[ k, this yields the desed reset. In the case 2 k, replace by
h above to obtain E(X)=-K(A)=-K(O, by eorem 2.4(i). is
proves part (i).
By Theorem 2.14,

(4.28) K(X) E(x)K(xl)IE(X).
By part (i),

(4.29) E(x) -K(x).

Replacing X by a in (4.29), we ,have

(4.30) E(x) -K(x).
Combining (4.28)-(4.30), we nclude that K2(X) =-K2(x). Similarly, the
other o equalities in part (ii) follow from part (i) and eorem
2.14. Q.E.D.

We next consider the case p 20k + 11. Let X have order 20; thus, X has
order 5. In view of (3.11), (3.12), and the remark at the end of Section 3.1,
write

K(x) a,o + blo+ ico5+ + i1o4-
and

K(X1) alo- blox/+ iclox/5 2,,/- idxo/5 + 2x/.

THEOREM 4.21. Let p 20k + 11, and let X have order 20. Then, in the
notation above:

(i) E(x4) -K(xi) -axo- bo45- ichor +245- ido/5 +/- 24"5,

(ii)

E(Xz) K(2I) ao-bxo- ico45 24 + idox/5 + 2x/,

E(X) (-1)’+K(;);

K2(X4),=-KZ(xi), Kz(Xz) =-K2(2x), and K(X)= p.
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Proof. Part (ii) follows easily from part (i) and Theorem 2.14.
By Theorem 2.16,

(4.31) E(X) E(X+) -K(x).

Replacing X by 3 in (4.31), we obtain

(4.32) E(x’4) = -K(x.),
as desired.
By Theorem 2.15, E(X8) E(xZ)K(x)/E(x4). Thus, by (4.31) and (4.32),

(4.33) E(X) K(),
as desired.
By Theorem 2.15 and (4.33),

E(X9)_K(x) K2(X)
E(X) E(X2) p

By Theorem 2.10, E(X9) E(), and so E2()= K2(xx). Therefore,

(4.34) E(X)=SK(),
where +1. Raising both sides of (4.34) to the fifth power and using
Theorem 2.11, we obtain

(-1)k E(X) 8K(.) 8(p 2)--- -8 (mod 5).

Thus, 8=(-1)k+ and E(X)=(-1)k/K(). This completes the proof of
part (i). Q.E.D.

We finally consider the case p 20k + 9. The quintic and decic sums are
trivially evaluated since 10[(p + 1), and so we evaluate only bideeic sums in
the next theorem.

Let X have order 20. in view of Theorems 4.1 and 4.4, we may write
E(x5)=-a4+ib4, where a4 and b4 are integers such that a24+b,=p and
a4(-1)TM (mod 4). Observe that exactly one of the pair a4, b4 is divisible
by 5, since a+b p 1 (mod 5).

THEOREM 4.22. Let p 20k + 9, and let X have order 20. Then

(i) E(X) a2o + ib2ox/, if 5 X a4,

i(a2o + ib2ox/), /f 5[a4,
where a2o and b2o are integers such that a2o + 5bzo p, a2o=--a4 (mod 5), if
5 a4, and a2o -= b4 (mod 5), if 51a4;
(ii) K2(X) -E2(x).

Proof. Part (ii) follows immediately from Theorem 2.14.
To prove (i), first observe that the subgroup (tr_3) Gal(Q(e2/2)/Q) has

fixed field Q(i). By Theorem 2.10, E(x)=E(Xg). Hence, tr_3 fixes
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E(Xa)/E(x). By the same argument as in the proof of Lemma 4.15, it is
easily shown that E(Xa)/E(x) is a unit in Q(e2.’i/2) f’lfL Hence,

(4.35) E(Xa)=E(x),

where {+1, +i}. Raising each side of (4.35) to the fifth power,.we get

-a4-ib4 E(X15) SE(x5) $(-a4+ ib4) (mod 5f).

Thus,

1. if 5a4,
(4.36) E(X3)=E(X) with

1, if 51a4.
Suppose that 5 Y a4. Then, by (4.36), tr3 fixes E(X), and so E(X) O(ix/),

the fixed field of (tr3)= Gal(O(e2*’i/2)/O). Hence,

(4.37) E(X) a2o + ib2ox/,
where a2o and b2o are integers such that ao+ 5bo p. Raising each side of
(4.37) to the fifth power, we obtain

--a4 E(X5) a2o (mod 5f),

and so a2o -a4 (mod 5).
Suppose next that 51a4. Then, by (4.36), tr3 fixes iE(x). Hence, iE(x)

Q(ix/), and so

(4.38) E(X) i(a2o + ib2ox/),
where a2o and b2o are integers such that ao+ 5b22o p. Raising each side of
(4.38) to the fifth power, we obtain

ib4 =-- E(X5) ia2o (mod 5f),

and so b4m a2o (mod 5). Q.E.D.

COROLLARY 4.23. Let p 20k + 9, and let X have order 20. Then

T(X) {T(x5) + 2a2o} (p + 1 2a4+ 8a2o), ijf 5 Y a4,

T(x5) o(P + 1 2a4), i/* 5 a4.

Proof. By Theorem 2.11, 1 E(X2) E(X6) E(X) and -1 E(X4)
E(X8). By Theorem 2.10, E(x)=E(x9) and E(X3)=E(xT). Hence, by
Theorem 2.17,

(4.39) 20T(x) p + 1 2a4+4 Re {E(x) + E(X3)}.

By Theorems 2.1l and 2.17,

(4.40) 4T(X5) p + 1 2a4.
The result now follows from (4.36), (4.39), (4.40), and Theorem 4.22.
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COROLLARY 4.24.
1 (mod 4).

Let p 20k + 9, and let X have order 20. Then T(X)

Proof. First,

E(X) +E(X6) +E(X11) + E(X16)
p-1

X(1 + b/){1 + X’(1 + b,) + Xl(1 + b/) + Xls(1 + b/)}
b=O

=4 ’. x(l+b/),

where S ={b" O<_b<_p-1, xS(l+b/)= 1}. Since E(X6) 1, E(X16)=-1,
and E(X11) E() by Theorem 2.10, 2 Re E(X) 4 bs X(1 + b/). Thus,

(4.41) Re E(X) 2rE.

Secondly, for each prime p with p =- 1 (mod 4), write p a+ b, where a4

and b4 are integers with a4--() (mod 4), It is then not hard to show that

a4 =-1/2(p 3) (mod 8). (This congruence can be refined; see [1, Theorem 3.16].)
Hence,

1/4(p + 1- 2a,)= 1 (mod 4).

Moreover, if 5 , a4, then t12o is even by Theorem 4.22 and (4.41). The result
now follows from Corollary 4.23. Q.E.D.

COROLLARY 4.25. Let p 20k + 9 a2 -- b u2 + 5122 with a odd. Then
51a if and only if 2Iv.

Proof. We have a:=a b2=b, u2=ao, and v2=bo, by Theorem
4.22. If 51a, then 2162o by Theorem 4.22 and (4.41), i.e., 2Iv. If 5 " a,
then 2la:o by Theorem 4.22 and (4.41), i.e., 21u. Q.E.D.

An analogous result for p 20k + 1 is similarly proved in [1, Corollary
3.35]. Proofs of Corollary 4.25 have also been given by Muskat and
Whiteman [16] and E. Lehmer [13], [14].

4.5 Bioetie sums. Let p 16k + 1. Let X have order 32; then 1 has
order 16 by Lemma 2.9. Put X =X2. As in Theorem 3.5, write

K(X1) t/16 q- bl6x+ ic16x/2 +x/+ id16x/2-x/’,

where a16, b16, 1716, and d16 are integers such that p =a2a6+2b26+2c26+
2d6, 2a16616=d6-c6-2c16d16, a16-1 (mod8), and b16, 1716, and
are even.

THEOREM 4.26. Let p 16k + 1, and let X have order 32. Then, in the
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notation above,

(i) E(x)=-ala-bla/+ i(-1)k+(ca/++da/2-),
(ii) K2(X) -E2(X).

Proof. Part (ii) follows immediately from Theorems 2.14 and 4.1(i).
By Theorem 2.16,

-K(X) E(X+1) E(X2), il 21 k,

=E(18), i 2, k,

In the case that k is even, this is the desired result. In the case that k is odd,
replace h by h7 above to obtain E()=-K(A). Applying Theorem 2.4(i),
we find that E(X)=-K(Ax). Q.E.D.

Let p 16k + 9. Let X have order 16; then X has order 8 by Lemma 2.9.
As in [1, Theorem 3.12], write K(X) 38 + ibsx/, where 38 and b8 are
integers such that a+2b2 = p and a8 =- -1 (mod 4).

THEOREM 4.27. Let p 16k +9, and let X have order 16. Then, in the
notation above,

(i) E(X) -K() -as/ ibsx/,
(ii) K2(X) -p.

Proof. By Theorem 4.1,

(4.42) E(X2) -K(x).

Part (ii) now follows from part (i), (4.42), and Theorem 2.14.
By Theorem 2.15 and (4.42), we have E(X7)=E(x)K(x)/K(I). By

Theorem 2.10, E(X7) E(), and so E2() K2(X1). Thus,

(4.43) E(X) K.(I),

where +1. By Theorem 2.17,
15 7

16T(x) E(X) 8T(x2) + E(X2i+) 8T(x2) + 4 Re {E(x) + E(X3)},
=o =o

since, by Theorem 2.10, E(X7)=E() and E(XS)=E(a). By Theorem
2.4(i), K()= K(). Thus, from (4.43), E(Xa) E(X). Hence,

2T(x) T(X2) + Re E(X)= T(X2) + a8,
by (4.43). By Corollary 4,3, T(X2) 1 (mod 4). Hence, the above yields
2=1+833 (mod4). Since a8---1 (mod4), we conclude that 8=-1.
Hence, by (4.43), E(X)=-K(). Q.E.D.

THEOREM 4.28. Let p 16k + 7, and let X be a character o[ order 16.
Then

(4.44) E(X) a6+ b6x/+ ic6x/2 +x/+ id6x/-2-/,
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where a16, b6, c16, and d6 are odd integers such that a6---(-1)k (mod 8),

(4.45) a6+2b6+2c6+2d26 p,

and

(4.46) 2a6b6 d6-c6-2c16dx6.

Equalities (4.45) and (4.46) determine lax6[, Ibx6], and {Ic61, lda6l} uniquely.
Lastly, K2(X)= E2(X).

Proof. The last statement follows immediately from Theorem 2.14.
To prove the first part, proceed as in the proof of Theorem 3.5. Since the

subgroup (tr7) of Gal(Q(e2*’i/6)/Q) has fixed field Q(ix/2 +x/), and since or7
fixes E(X) by Theorem 2.10, we deduce that E(X) has the representation
given in (4.44), where a16, b16, c16, and d16 are rational numbers such that
(4.45) and (4.46) hold. By Theorem 2.10, E(X)= E(X7) and E(X3) E(Xs).
Also, tr3(x/)=-x/. Furthermore, by Theorem 2.11, 1 =E(x2)=E(x6)
E(X) E(Xx4) and -1 E(X4) E(X8) E(xX2). Using all of this informa-
tion in Theorem 2.17, we find, with the help of (4.44), that

7 7

(4.47) 16T(x) ’. E(X2J+I)+ . E(X2J)=8ax6+p+I.
=o =0

Since T(X) is odd, we have 16 --- 8a6+p + 1 (mud 32). Thus,

(4.48) ax6--- 1 2k --- (-1) (mud 4),

and a6 is an integer.
By Theorem 2.10,

2(a16 + b6x/) E(X) +E() E(X)+ E(X9)
p--1

Y’. X(I + b3,){1 + (b(1 + b3,)} 2
b=0 0:b:p--1

b(l+b’v)---

X(1 + b/) e 2.

Thus, a16+b6x/r’, and so bx6 is an integer. Hence, by (4.44),
c16/2+x/+d6x/2-,crE’. From Lemma 3.4, we deduce that c16 and
dx6 are integers. Thus, al6, b16, C16, and d16 are integers.
From (4.46), c6 and dl6 have the same parity. Suppose that c16 and dl6

are even. Then by (4.46) and (4.48), b6 is even. Hence, by (4.45), p--a6-1 (mud 8), which is a contradiction. Thus, c6 and dl6 are odd, and so, by
(4.46), b16 is odd. Hence, by (4.45), p ma6+6(mod 16). Since p=-
7 (mud 16), we have a6=-I (mud16). Hence, by (4.48), a6m(-1)k

(mud 8). The claim on uniqueness in the theorem was shown by Muskat and
Zee [17]. Q.E.D.
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5. Brewer sums

5.1 Brewer polynomials. For each natural number n and each complex
number a 0, the generalized Brewer polynomial V,(x, a) is defined by [3]
Vx(x, a) x, V(x, a)= x2- 2a, and

v.+(x, a) xV.(x, a)- aV._(x, a), n >- 2.

The ordinary Brewer polynomial V,(x) is defined by [2] V,(x)= V,(x, 1).
Note that V,(x, a) is even or odd according as n is even or odd. In this
section, we present some basic facts about V,(x, a).

PgoPosrrIoq 5.1. For n --> 1, V(y + ay-x, a) y" + a"y-.
Proof. The result follows easily by induction on n. Q.E.D.

PgoPosrrIoq 5.2. For n >-- 1,

V,(x, a)= (X +/xZ-4a)" (.x -/x2-4a)"2 +\ 2

Proof. Letting y =(x +/x-4a)/2 in Proposition 5.1, we readily achieve
the desired result. Q.E.D.

PRoPosrno 5.3. For each odd prime p, x- V,(x) is an irreducible poly-
nomial over 0_.

Proof. By Proposition 5.2, x-V,(x) is an Eisenstein polynomial with
constant term (-1)(P-)/2p. Q.E.D.

PRovosrrIo 5.4. For each pair of natural numbers k and n, V,(x)=
v(v(x)).

Proof. For x =y + y-X, y : 0, the result holds by Proposition 5.1. Hence,
the result holds or all x. Q.E.D.

PRoPosrrIoq 5.5. For each pair of complex numbers a, b, we hare

V,(xx/-, ab)= a"/2V,(x, b).

Proof. The result follows readily by induction on n. Q.E.D.

Define the polynomial F, (x, a) by
F,(x, a)= V,(-./, a).

Put F,(x, 1) F.(x).
PRoPosrno 5.6. We have F,(xa, a)= a"F,(x).

Proof. By Proposition 5.5,

F,(xa, a)= V2,(-, a)= a"V2,(/) a’F,(x).
PROPOSITION 5.7. We have F,(x + 2)= V,,,(x).

Q.E.D.
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Proof. By Proposition 5.4,

F.(x + ,2) (4} + e) v.(v:(4X + 2)) V.(x). O.E.D.

5.1 Theory ot Brewers. In the remainder of the chapter, p denotes
an odd pre, and a is an integer such that p F a. If n is a positive integer,
the generaled Brewer s A,(a) is defined by

,(V(j’p a))n, (a)

The ordinary Brewer sum A, is defined by A, A, (1). These sums were st
imroduced by Brewer [2], [3].
For n 1, define

Put ,(1)=,. Let d =(n, p-l). As i runs tough the elements of
GF(p)*, " runs tough the same elements as ]a does, with the same
multiplicity. us, we can write

(a + a,j-a
io

Recall that is a generator of GF(pa)* and that =ro+)/a. Define
0 zo-, and let (0). us, is a cyclic suboup of GF(p=)* of order
p+l. For 0np-1, we have (l+n)O-=(1-n)/(l+n), and, hence,
the p elements (1 + n)- are distinct elements of . Hence,

={(1-n)/(l+n)" 0np-1}U{-1}.

If x a +b with a, b GF(p), then

(5.2) x + x (a + b) + (a + b) (a + b)+ (a b) 2a GF(p).

Hence, if y , then y +y-=y + yO GF(p). Thus, we can define, for each
natural number n

P /

Let D (n, p + 1). As y runs through the elements of qg, y" runs through the
same elements as yO does, with the same multiplicity. Thus,

(5.3)

Recall that g= /2= zp+l is a primitive root (modp). If y qg, then (zy)p=
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g(zy)-!, and so by (5.2),
(zy)" + g"()-" (zy)" +(zy)"p GF(p).

Hence, we may define

For completeness, we give a proof of the following lemma of Brewer [2].

LE 5.8. For n 1, 2A, ft, +

Proof. Let

S= {meGF(p)" (m-4) 1} and T= {m e..GF(p): (m-.4) =-1}.P P

Then GF(p)=SUTU{-2,2}, and by Lemma 2.5, IS=(p-3)12 and
(p- 1)/2. Let y a +b e -{-1, 1}, where a, b e GF(p). en

(y + y-)-4 (y y-) (y y) {(a + b)- (a b)} 4bg.

Thus, ((Y + y-)-4) -1, and soy +y- T. By Proposition 5.1 it followsp
that

Since (] +]-)2-4= (]_]-)2, we also have

mS m{--2, k p ]

Addition of the above two equalities gives

O+" 2 Z (V(m) 2A. O.E.D.

The following theorem enables one to evuate any ordina Brewer sum
in terms of Eisenstein ss and the Jacobsthal sums 6,(a) and 6,(a) over
GF(p) defined in Chapter 2.

THEOM 5.9. Let n 1, d (n, p 1), and D (n, p + 1). If n is odd, we
have

2A, 0, ff p 3 (mod 4),
2D-1

a(1)+ N(+), if p 1 (rood 4),
0
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where is any character on GF(p) o[ order 4D. I[ n is even, we have
2A, =-1 + za(1), i[ (p + 1)/D is odd,

=-1 +@2a(1)+ E E(X2i+), if (p+l)/D is even,
j=O

where X is any character on GF(p2) of order 2D.

Proof. First, suppose that n is odd and that p 3 (mod 4). Replacing ] by- in (5.1) and replacing y by -y in (5.3), we find that Oa =-Oa and
0o =-0o, respectively, and so by Lemma 5.8, A, 0.
Sendly, suppose that n is odd and that p 1 (mod 4). Clearly, Oa

2a(1). By Lemma 5.8, it remains to evaluate 0o. Let h be a character on
GF(p2) of order 2D(p-1), and let o-)/2. Then has order 4D. By
mma 2.9, @ has order 2. us,

OO (yO + y--D)= O(y)(yZD + 1).

Now, A(z) is a primitive 2D(p-1)th root of uni. Since 0 ro-, A(0) is a
primitive 2Dth root of unity. Since p 1 (mod 4), it follows that Oo(0)= 1.
By the definition of , we then have OO(y)= 1 for y W,. We thus get

2D

h((1 +m)-)

2D p--1

=1 m=O

Finally, suppose that n is even. en d and D e even, and it is easy to
see that
(5.4)

Assume that (p+l)/D is even. Then p3(mod4). Replacing y by
yO+)/z) in (5.3), we see that Oo =-Oo. us. Oo 0, and so by Lena
5.8 and (5.4), we achieve the desked reset. Now asse that (p + 1)/D is
odd. It remains to calculate Oo. Let be a chacter on GF(p) of order
D(p- 1), and let X
has order 2. Hence, we can write

Oo X(y + y-D)= O(y)x(yZO + 1).

Since 0 z-, (0) is a pritive Dth root of unity. us, X (0)= 1. By the
definition of , it follows that XO(y) 1 for y W. Fhermore, since
(2D, p + 1)= D, the sequence (yZO: y } is a permutation of the sequence
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(yD. y e q). Hence,

Oo X(y2+l)= X(yD+I)

D

ye =I
p-I D

2 X(21(1+ m) 2 ((1 +m)o-x)
=0 =1

D p--1

X(2)X-(l+m)

=0

Using the above and (5.4) in Lemma 5.8, we complete the proof.

The following corollary generalizes a result of Robinson [23].

COROLLARY 5.10. Let n be odd. Then

Q.E.D.

2(A2. -A.) -1 + q,2a (1) 24a (1).

Let n be even. If p =-- 1 (mod 4), then

2(A2. A.) 42a (1),
--0,

/f p --= 3 (mod 4), then

if (p 1)/d is even,

if (p-1)/d is odd.

2(A2, A,) =0, if (p + 1)ID2 (mod 4),

j=O
if (p + 1)ID =-- 2 (mod 4),

where d/ is any character of order 4D on GF(p2).

Proof. Let , be odd. Then ()= (-)for each me OF(p)*, and so

()(ma+l) (ma+l) -1+@a(1).(ka(1)= Z,,/o \ "P =o P

Since @2a(1)=dOa(1)+qa(1) by Theorem 2.6, it follows that-l+q2a(1)=
2q)a (1).

All of the remaining equalities given in Corollary 5.10 follow directly
from Theorem 5.9, with the use of Theorem 2.6 in some instances. Q.E.D.
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We now define a sum B,, very closely related to A, by

\ ’19 /.

The evaluation of B2 was first achieved by Brewer [2]. Later proofs have
been given by Whiteman [28], Rajwade [21], and Leonard and Williams
[15]. In [1, Theorem 4.12], B6 is evaluated. Corollary 5.10, in fact, gives a
formula for B,, as the following theorem shows.

T.om 5.11. For n >- 1, B, A2, A,.

Proof. By Proposition 5.4, V2,(x) V,(x:z- 2). Hence,

The rest of this section is devoted to obtaining formulas for the
generaled Brewer sums A,(a) analogous to the formulae for ordin
Brewer ss gNen in Theorem 5.9.

Tno 5.12. For n 1,

A(a) (A -A)+ A.

Pro@ Using Propositions 5.6 and 5.7, we get

’p /

A + B.

The resMt now lollows from Theorem 5.11. Q.E.D.
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Theorem 5.12 is very important, for it indicates that every generalized
Brewer sum A2,(a) can be evaluated in terms of ordinary Brewer sums.
Thus, for the remainder of this section, we need only examine A,(a) for odd
n. Moreover, if g is a primitive root (mod p), we deduce from Proposition
5.5 that V,(gkx, g2kb)= g"V,(x, b), where k is a positive integer. Hence,

(5.5) A,(g2b) (-1)"A,(b).

Therefore, all generalized Brewer sums can be expressed in terms of A, or
A,(g). Thus, it remains to evaluate A, (g), for odd n. We do this in the next
theorem. First, we give, for completeness, a proof of the generalized Brewer
lemma [3]. Recall that g =a-p/I.

LEVtA 5.13. For n>_l, 2A,(g)=f,(g)+O,(g).

Proof. Let

Sg={meGF(p)" (m2 4g)= 1} and Tg={meGF(p)" (m2 4g)=-l}
Now GF(p) Sg tO Tg, and by Lemma 2.5, Is=l- (p- 1)/2 and [%1 (P + 1)/2.
Using Proposition 5.1, we proceed as in the proof of Lemma 5.8 to deduce
that

Similarly,

By addition of the above equalities, the desired result follows. O.E.D.

THEOREM 5.14.

2A.(g) 0,

Let n be odd, d n, p 1), and D n, p + 1). Then

/f p =- 3 (mod 4),

(- 1)("-a)/z4:za (g’i)

p2_) 20-!

+1),+(--1)("-0)/2 (-1)*E($2. / p 1 (mod 4/
j=0

where k is any character on GF(p2) of order 4D chosen such that o(r) --i.

Proof. By Lemma 5.13 and (5.1),

(5.6) +g-i-" (ry)" +(ry)").2A" (g) i*o (ja /+L P
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If p=3 (mod 4), then replacing ] by - and y by -y in (5.6), we have
2A,(g) =-2A,(g), and so A(g)=0. Suppose now that p =-1 (mod 4). Re-
placing j by gO.,-a)/(2a)], we find that the first sum on the right side of (5.6)
becomes

f/.(g) (-I)(--a)/2 (Ja+ga]-a=(-1)o-a)/:ztb:za(ga).
i/0 P

It thus remains to evaluate the second sum O,(g) on the right side of (5.6).
Let X be a character on GF(p:z) of order 2D(p-1) chosen so that

ito0-1)/2() =-i. Let k ito-x)/2. Thus, k (r)=-i, has order 4D, and, by
Lemma 2.9, has order 2. Since It(0) is a primitive 2Dth root of unity,
o(y) 1 for all y qg. Thus,

O,(g) ’, "(ry)(1 +(ry)"(-’)) "()(1+ 0nyn(P-1)).

Since 2D (n(p 1), p + 1), the sequence {y,(O-. y ) is a peutation of
(y- y e ). Thus,

2D

(,)O(g)= ,(l+0"ya) 2 ,(l+0"y) X(y).
j=l

Replacing y by y0-", we get
2D

"(-r)O.(g) (1 + y)
y

Hence,

2D p--1

,(2) ,-2*(’r") =-(1+ m/)
=1 =0

2D

=,(2)
j=l

i--O

As D- 1 ancJ n/D- 1 are both even, n/D- 1 D(n/D- 1) n -D (mod 4).
Hence, since k(rD) -i, (r") "/ "-r’+l i(-1)("-o)/2. Thus,
:zJ+(’r")=i(-1)J(-1)("-r’)/z, and the result follows. Q.E.D.

5.3 Special cases of Brewer sums. In this section, we apply the results
of Section 5.2 to illustrate the evaluation of generalized Brewer sums A,(a)
for certain small values of n. The formulae for A,(a) given here, except
those for As(a), may be found in the paper of Giudici, Muskat, and
Robinson [7]. We do not use the theory of cydotomy as in [7], and our
method is perhaps simpler and more systematic.



SUMS OF GAUSS ET AL. 413

By (5.5), it suffices to evaluate A. A.(1) and A.(g). When n 2k, A.(g)
can be simply determined from A2k and A, by Theorem 5.12. When n is
odd, we need evaluate A. and A.(g) only when p- 1 (mod 4), since when
p=--3 (mod 4), A. =A.(g)=0 by Theorems 5.9 and 5.14.
Let d =(n, p-1) and D =(n, p + 1). Set

$1--
2D-

E(@2+) and S2 E(X2+),
=o :o

where @ and X have orders 4D and 2D, respectively, as in Theorem 5.9. Set
2D--I

S (-1)E(@2+),
i=0

where @ has order 4D, as in Theorem 5.14.
When p 1 (mod 3), write p A+3B with Aa 1 (mod 3). When p 1

(rood 4), write p A]+B] with An 1 (mod 4). When p 1 (mod 12), ite
p A2+B2 with A12 iA4 according as 3 # A4 and 3 A4, respectively
(see [1, Theorem 3.19]). When p 8k + 1 or 8 k + 3, write p A+2B with
A8 (-1) (mod 4). When p 16k + 1 or 16k + 7, write p A+2B6+
2C6+2D6 with Ax6m(-1)k (mod 8) and 2Ax6Bx6=D6-C6-2Ca6D6.
When pl (rood24), write p=A4+6B4 with A24=A8 (mod3).
When p m i (mod 10), write p Ao+5Bo+5Co+5Do with Axom 1
(rood 5) and AaoBxo Do-Co-CxoDxo. The notation in the case p m 1
(mod 20) is more involved, and we defer it until the discussion of As(a).
We proceed to evaluate A,(a) for n 1, 2, 3, 4, 5, 6, 8, 10, and 12.

5.31 The ss Aa(a), A2(a), Aa(a), and An. Trivially, Ax(a)=0. By
Lemma 2.5, AE(a)=-1. Since A3(a)= 2(-3a), it follows rom [1, Theorem
4.4] that for p 1 (mod 4),

(5.7) Aa(a) -2A4,

2A4,

+2 IB4I,

if -3a is a quartic residue (mod p),

if -3a is a quadratic residue but a quartic non-

residue

otherwise.

For a 1, (5.7) was first observed by Brewer [2]. We can alternatively
evaluate A3(1) by the use of Theorem 5.9. (By Theorem 5.14, we can also
alternatively determine Aa(g).) To evaluate A3(1), we thus complete the
table below, where n 3.

p (mod 12) d (b2a(1) D S

1 3 -2A4-4A12 1 2A4
5 1 -2A4 3 2A4 +/- 4 IB41
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The values of t2(1 and t6(1 are found in [1, Theorems 4.4 and 4.8], and
the values of $1 are determined from Theorems 4.1, 4.4, and 4.10. By
Theorem 5.9, we then deduce the following theorem.

THEOREM 5.15. If p 3 (mod 4), A3(a) 0. If p = 1 (mod 4), then

A3 -2A12, /f p --= 1 (mod 12),
+2 IB4I, if p -- 5 (mod 12).

Combining (5.7) and Theorem 5.15, we deduce the following interesting
consequence of the law of quartic reciprocity. When p--= 1 (mod 4), -3 is a
quartic residue (mod p) if and only if p--- 1 (mod 12) and 3 A" a4.

In order to calculate A6, we form the following table for n 3.

p (mod 12) A3 d 4a (1)

1 -2A12 3 -1-2A3
5 .+2 IB4I 1 -1
7 0 3 -1-2A3
11 0 1 -1

The values for A3, tkl(1), and t3(1) are found in Theorem 5.15, Lemma 2.5,
and [1, Theorem 4.2], respectively. Since A6 A3 +ta(1) by Corollary 5.10
with n 3, we obtain the theorem below, due to Robinson [23].

THEOREM 5.16. We have

5.32
n--4.

A6 1 2A3 2A12,

-1 :t: 2

=-1-2A3,

//p 1 (mod 12),

/f p =- 5 (mod 12),
/fp=-7 (mod 12),

if p =-- 11 (mod 12).

The sum A4. To determine A4 we complete the following table for

p (mod 8) d D (p + 1)/D -1 + ka(1) S

1 4 2 odd -2-2A4-4A8 2A4
3 2 4 odd -2 -4A8
5 4 2 odd -2-2A4 2A4
7 2 4 even -2

In the determination of O2a(1), we have used the facts that O4(1)=tk2(1)
when p3 (mod 4), and 8(1)=4(1 when p m 5 (rood 8). The value of
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2(1) is obtained from Lemma 2.5, and the values for q4(!) and qa(1) are
found in [1, Theorems 4.5 and. 4.7]. The values for $2 are obtained from
The6rems 4.1, 4.4, and 4.6, with the aid of Theorem 2.10 in the case p 3
(mod 8). By Theorem 5.9 and the table above, we deduce the next theorem
due originally to Brewer [2]. Proofs have also been given by Whiteman [28]
and Leonard and Williams [15].

THEOREM 5.17. We have

A4 -1-2A8, if p =-- 1 or 3 (mod 8),
-1, i p 5 or 7 (mod 8).

5.33 The sum A12. To calculate A12, we compose two tables for n 6,
the first for p 1 (mod 4) and the second for p =-3 (mod 4).

p (mod 24) A6 d b=a(1)

1 -1-2A3-2A12 6 -4A8- 8A24
5 -1 +/- 2 IB41 2 0

13 -1-2Aa-2A2 6 0
17 1 +/- 2 IB41 2 -4A8

p (rood 24) D (p + 1)/D (mod 4) S A6

7 2 0 -1-2A3
11 6 2 -4A8 -1
19 2 2 -4A8 -1-2A3
23 6 0 -1

The values for A6 are found in Theorem 5.16, and the nonzero values for
tb4(1) and tb2(1) are found in [1, Theorems 4.6 and 4.10]. Theorems 4.6,
4.18, and 2.10 and (4.24) are used in the calculations of S. Using the above
two tables and Corollary 5.10 with n 6, we deduce the following theorem.

THEOREM 5.18. We have the following table of values ]’or A12.

p (mod 24) A16

1
5
7
11
13
17
19
23

-1 2A3-2A12- 2A8- 4A24
-1 +/- 2 IB41
-1-2A3
-1-2A8
-1-2A3-2A2
-1 2A8+ 2 [B4[
-1-2As-2A3
-1
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5.34 The sum Aa. To calculate As, we form the following two tables
for n 4, the first for p---1 (mod 4) and the second for p---3 (mod 4).

p (mod 16) d (p-1)/d aa(1) A4

1 4 even --8A16 -1-2A8
5 4 odd -1
9 4 even 0 -1-2A8

13 4 odd -1

p (mod 16) D (p + 1)/D (mod 4) S1 A4

3 4 1 -1-2A8
7 4 2 8A16 -1
11 4 3 -1-2A8
15 4 0 -1

The values of A4 were determined in Theorem 5.17, and the value of 48(1)
for p= 1 (mod 16) is given in Theorem 3.9. The value of S for p=7
(mod 16) was calculated in (4.47). Using the above two tables and Corollary
5.10 with n =4, we deduce the following theorem.

THEOREM 5.19. We have

A8 -1 2A8-4Ax6,

-1-2A8,

=--1 +4A-6
5.35 The sums As(a), Axo.

if p 1 (mod 16),

if p =-- 5, 13, or 15 (mod 16),

if p 3, 9, or 11 (mod 16),

/f p- 7 (mod 16).

Let n 5. Let X be a character on GF(p2)
of order 40 and let = X/. Then has order 4D. Assume that X is
chosen so that X()=-i, and so, as in Theorem 5.14, o()=-i. Observe
that X has order 4 and that

(5.8) x(g) {X(,r)}(P+l)/a-- (-i)(+)/a’- -i()
As in [1, Theorem 3.9], write

(5.9) K(X) --()A4+ iB4,

where p A+B and A4--= 1 (mod 4). By Theorems 4.1 and 4.4,

U() ()(A4- iB4)
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When p - 1 or 9 (mod 20), write p Ao+5Bo with A2o A4 (mod 5), if
5 , A4, and A2o =-- B4 (mod 5), if 5 A4. In the case p 1 (mod 20), d 5 and
Xl has order 20; thus, we can write, as in [1, Theorem 3.34],

(5.11) K(X.I) i(A2o+ iB2ox/’), if 51A4,

=-()A2o+iB2ox/-, if 5 /A4

In the case p--9 (mod 20), D 5 and has order 20; thus, we can write, in
view of Theorem 4.22,

(5.12) E(qO=i(-()A2o+iB2ox/), if 51A4,

A:m+ iB:m/, if 5 A4.

For p =--1 (mod 4), we have by Theorems 5.9 and 5.14, respectively,

(5.3)

and

(5.14)

2A5 42a (1) +S

2As(g) 42a(ga) + $3.

We proceed to verify the entries in the tables below.

p (mod 20) d 42a(1) D S1

1 5 -2A4, if 5[A4 1
-2A4- 8A2o, if 5 , A4

9 1 -2A4 5

13, 17 1 -2A4 1

2A4

2A4, if 51A4

2A4+ 8A2o, if 5 , A4

2A4

p (mod 20) d tb2a(g) D S3

1 5 -2B4-8A2o, if 5IA4

-2B4, if 5 , A4
9 1 -2B4

13, 17 1 -2B4

2B4

2B4+8A2o, if 5 A4
2B4, if 5 A4
2B4
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The values of tzd(1 are immediately obtained from [1, Theorems 4.4 and
4.13].
We next calculate $1. If D 1, then by (5.10),

Sl= 2()Re E() 2A4,

as desired. Suppose that D 5. Then p9 (mod 20), has order 20, and
E() E(9) and E(3) E(t7), by Theorem 2.10. Thus,

The desired expressions for S now follow from (5.10), (5.12), and the fact
that i/- is fixed by r3 Gal(Q(e/z)/Q).
We next establish the formulas for a(ga). Suppose first that d 1. By

the proof in [1, Theorem 4.4], {ha(g) 2 Re {X(-g)K(2)}, and so by (5.8)
and (5.9), .(g)=-2B4, as desired. Now suppose that d 5. Then p=-1
(mod 20), and X has order 20. By (5.8), (5.9), (5.11), and the proof in [1,
Theorem 4.13], we obtain the desired expressions for bo(gS).

Lastly, we calculate $3. If D 1, then by (5.10),

2B4,

as desired. Suppose that D 5. Proceeding in the same manner as in the
calculation of S above, we get

$3 -2(p2-) Im {2 E()-2E(t3) + E(t5)}.

By (5.10), (5.12), and the fact that ix/ is fixed by tr3 Gal(O(eZ"i/2)/O), we
obtain the desired expressions for $3.
From (5.13), (5.14), and the tables, we obtain new proofs of the following

remarkable theorems of Brewer [2], [3].

We have A5 0 unless p =-1 or 9 (mod 20) and 5 X A4,THEOREM 5.20.
in which case

THEOREM 5.21.
in which case

A5 =-4A2o, if p------ 1 (mod 20),

4A2o, if p----9 (mod 20).

We have A5(g)= 0 unless p =-1 or 9 (mod 20) and 5]A4,

As(g) -4A2o, if p -= 1 (mod 20),

4A2o, if p ------9 (mod 20).

Another proof of Theorem 5.20 has been given by Whiteman [29], [30].
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We finally evaluate A10. By Corollary 5.10 with n =5, we have Alo
As+thal(I). Using Theorem 5.20 to evaluate A5 and using Lemma 2.5 and
Theorem 3.7 to evaluate 4t(1) and b5(1), respectively, we obtain the
following theorem of Giudici, Muskat, and Robinson [7].

THEOREM 5.22.

Alo -1,

-1-4Alo,

-1 + 4A2o,

-1 4Alo- 4A2o,

We have

if p---3, 7, 13, 17, or 19 (mod 20),
or if p -= 9 (mod 20)

if p =-- 11 (mod 20),
or if p -= 1 (mod 20)

if p--9 (mod 20) and 5 X A4,

if p 1(mod 20) and 5 X A4.

and 5 A4,

and 51A4,

6. Jacobsthal sums over GF(p2)

Throughout the chapter, X is a character on GF(p2) and/3 GF(p2)*. We
shall evaluate, for certain natural numbers n, 4n (/3) and qn (/3) over GF(p2).
Because the evaluation of q2, (/3) is usually trivial by Theorem 2.6, we shall
not record any evaluations of q2, (/3). We shall generally express 4, (/3) and
q,(/3) in terms of parameters depending only on p, e.g., a4 and Ib41. As with
Jacobsthal sums over GF(p), sign ambiguities often occur. The same proofs
actually yield "more precise" formulations in terms of parameters occurring
in the formulae for K2(X), e.g., a4 and b4. The ambiguity associated with the
"+" sign does not explicitly occur in such formulations, but there is
generally no simple way of determining the sign of the parameters, e.g., b4,
depending on X, other than by the direct calculation of KE(X). We use the
"more precise" formulations in Theorems 6.16 and 6.18, becaUse more
aesthetic statements of the theorems are then possible; generally, however,
such formulations are more complicated to state.
The Jacobsthal sums (2(1), (3(4), and t4(1) are evaluated over arbitrary

finite fields in Storer’s book [25, pp. 56, 62, and 78].

THEOREM 6.1. Let p 1 (mod 4). Write p a+ b, where a4 is odd. Then

42(/3) 2p-4a42
=-2p+4a,
+4 la4b41,

if [3 is a 4th power in GF(p2),

if [3 is a square but not a 4th power,

otherwise.

Pro@ Let X have order 4. Then X has order 2, and so X(-1)= 1. By
Theorem 2.7,

(6.1) 4() ()K:(x)+x()K:().
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If 19-----1 (mod 8), then by Theorem 4.1,

E2K2(X) (X) --(a4+ ib4)2= p-2a-2a464i.
If 19----5 (mod 8), then by Theorem 4.4,

K2(X) -(a4- ib4)2 19 2a+ 2a4b4i.

The evaluations now follow from (6.1). Q.E.D.

TrEOREM 6.2. Let p 3 (mod 4). Then

(2()--2p, if [3 is a 4th power in GF(p2),
=-2p, if [3 is a square but not a 4th power,

O, otherwise.

Let X have order 4. Thus, X1 is trivial, and (6.1) holds. By
2.14, K2(x)=KE(Xa)=p. The theorem now follows from

THEOREM 6.3. Let 19 =-- 1 or 3 (mod 8) and write p a+2b. Then

44(3) -4(2a- p),

4(2as-p),
"-0,

+8 la8bsI,

if [3 is an 8th 19ower in GF(192),
if [3 is a 4th 19ower but not an 8th 19ower,

if [3 is a square but not a 4th 19ower,

otherwise

Proof. Let 19 8k + 1, and let x have order 8. Note that X(-1)= 1. By
Theorems 2.4(i) and 4.1, K2(xa) K2(X) -E2(x)= -(-as + i(-1)k+lbsx/)2.
Thus, by Theorem 2.7, we get

(4() 2 Re {3(/3)K(x) + 2(/3)K2(x3)}

-2 Re {(3(/3) + (/3))(-as + i(-1)k+lbsx/)}.

The results now follow for p--= 1 (mod 8).
If 19 =-3 (mod 8) and X has order 8, then by Theorems 2.4(i) and 4.6,

Kz(X3) Kz(x)= (as + ibsx/). Here, Xx has order 2, and so X(-1)= (Z)=
-1. Thus, by Theorem 2.7, we obtain

b4(/3) ---2 Re {(3(/3) + (/3))(a8 + ibsx/)2}.

The theorem for p- 3 (mod 8) now follows. Q.E.D.
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THEOREM 6.4. Let p =-- 5 or 7 (mod 8). Then

(4(/3) =4p, if {3 is an 8th power in GF(p2),
=-4p, if {3 is a 4th power but not an 8th power,

O, otherwise.

Proof. Let X have order 8. Suppose first that p =-5 (mod 8). Then X has
order 4 from which it follows that X(-1)=-1. By Theorems 2.4(i) and 4.4,
K2(X3) K2(X)=-p. If p 7 (mod 8), then X is the trivial character, and so
X(-1) 1. By Theorems 2.4(i) and 2.14, K2(X) Kz(X)= p. In either case,
Theorem 2.7 yields

44(/3) 2p Re {(/3)+ (/3)},

from which the desired evaluations follow. Q.E.D.

THEOREM 6.5. Let p --= 1 (mod 6) and write p a] + 3b. Then

3(/3) 2th(/3)(p-2a), if {3 is a cube in GF(p2),
b(/3)(-p +2a+613 [aab3l), otherwise,

where r13 +1.

Proo[. Let X have order 6. If p-= 1 (mod 12), we find from Theorem 4.8
that

K2(X2) -(a3 + ibax/)2.
If p--7 (mod 12), Theorem 4.9 shows that

K2(X2) -(aa iba/)2.

Thus, by Theorem 2.8,

(6.2) $3(/3) 24(/3) Re {xE()K2(’2)}
26(/3) Re {X2(/3)(p 2a+ 2ia3bax/)}.

The results now follow. Q.E.D.

THEOREM 6.6. Let p 5 (mod 6). Then

$3(/3)= 2pb(/3), if {3 is a cube in GF(p2),
=-p4(/3), otherwise.

Proof. Let X have order 6. By Theorem 2.14, K2(X2)=p. Thus, by
Theorem 2.8, 3(/3)=2p((3)Re X2(/3), from which the theorem is easily
concluded. O.E.D.
THEOREM 6.7. Let p 1 (mod 6) and write p a+ 3b. Then

th3(/3) 2p-1-4a, if {3 is a cube in GF(p2),
-p- 1 +2a-6r13 la3b3[, otherwise,

where "03 is as in Theorem 6.5.
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Proof. Let X be as in the proof of Theorem 6.5. Then X(-1)= 1. By
Theorem 2.14, K2(X3) =-1. Hence, by Theorem 2.7, Theorem 2.4(i), and
(6.2),

43(/3) -1 + 2 Re {f(2([)K2(x)}
-1 +2 Re {z(/3)K2(x2)}
-1 +

The result now follows from Theorem 6.5 and (6.2). Q.E.D.

THEOmM 6.8. Let p 5 (mod 6). Then

if [3 is a cube in GF(p2),
otherwise.

Proof. Let X have order 6. As Xl is trivial, X(-1)= 1. By Theorem 2.14,
K(X3)=-I and K(x)=p. By Theorem 2.7, we then get tb3(/3)=
-1 + 2p Re (/3), from which the theorem is immediate. Q.E.D.

In most of the following theorems, the values of tb, (/3) will be displayed in
tables. Columns will indicate the residuacity of /3 in GF(p). Thus, for
example, if an x appears in the column headed by "cubic," it is assumed that
/3 is a cube in GF(p2); if no x appears in the column headed by "8th," then
it is assumed that/3 is not an 8th power in GF(p2).

THEOREM 6.9. Let p 12k + 1. Write p a+ b, where a4 iS odd. Then
we have the following table of values for b6(/3):

square cube 4th

6(p-2a)
-6(p-2a)

0
0

+4 la464[
"+’8 [a4b4[

Proof. Let X have order 12. Then X(-1)= 1. By Theorems 2.4(i) and
4.8,

K2(X) K2(X3) K2(X5) -(an + ib4)2.
Thus, by Theorem 2.7,

tb6(/3) =-2 Re {((/3)+ ,3(/3)+ 5(/3))(a4 + ib4)2}.
Now,

(6.3) X(/3) + X3(/3) + X5(/3) 3, -3, 0, 0, +/-i, +/-2i,
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according as/3 is on lines 1, 2, 3, 4, 5, or 6, respectively, of the table. The
theorem now follows by the consideration of each of the six cases. Q.E.D.

THEOREM 6.10. Let p 12k + 5. Write p a+ b, where a4 iS odd. Then
we have the following table of values for @6(/3)"

(6() square cube 4th

-2(p-2a])
2(p
4(p-2a])

-4(p-2a])
+12 [anbal

0

Let X have order 12. Then X(-1)= 1. By Theorems 2.4(i) and

K2(X) K2(X5) -K2(xa) -(ia4 + b4)2.

Thus, by Theorem 2.7,

()6(/) 2 Re (((/3)- 3(/3) + 5(/3))(2a- p +/- 2ia4b4)}.

NOW,
X({3)-X3({3)+xs({3)=l,-1,-2,2,+/-3i, or 0,

according as/3 is in lines 1, 2, 3, 4, 5, or 6, respectively, of the table. The
result follows. Q.E.D.

THEOREM 6.11.

tk6(/3) =6p,

-6p,

=0,

Let p -- 3 (mod 4). Then

if {3 is a 12th power in GF(p2),

if {3 is a 6th power but not a 12th power,

otherwise.

Proof. Let X have order 12. If p---7 (mod 12), Xl has order 3, and so
X(-1)=I. If p=ll (mod 12), X(-1)=I as X1 is trivial. Now K2(Xs)
K2(X) =p by Theorem 2.4(i) and by Theorem 4.9, if p 7 (mod 12), and by
Theorem 2.14, if p------11 (mod 12). In both cases, K2(X3)-"p by Theorem
2.14. Thus, Theorem 2.7 yields

()6(1) 2p Re {92(/3)+ 3(/3) + ,5(/3)}.
With the aid of (6.3), the results now follow. Q.E.D.

THEOREM 6.12. Let p 24k + 1. Write p a+ 2b82 a4+6b4. Then we
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have the following table for 12(3):

square cube 4th 8th

12p 8a- 16a4 x
-12p +8a+ 16a4 x

--8a28 + 8a4 x
8a-8a224 x

0 x
0 x

+8 lasb8l
+8 lasb8l + 24 la246241

x x
x x

x
x

x

Proof. Let X have order 24. Then X has order 12 and X(-1)= 1. Since
{trs, trT, trxl}c Gal(Q(e2=i/24)/Q) fixes ix/, we deduce from Theorem 4.11
that

K2(X) K2(X5) K2(X7) K2(X11) --(--a24 + (-- 1)k+1b24x/)2.

By Theorems 2.4(i) and 4.1, K2(x3)=K2(x9)=-(as+ibsx/)2. Thus, by
Theorem 2.7, we get

b2(/3) -2 Re {(X(/3) + X5(/3) + (7(/) _[_ Xl(/3))(a24 +/- ib244r)2

q- (X3(/) q- X9())(a8 4- ibsx/)2}

-2 Re {X(/3)(1 + X4(/3))(1 + X6([))(2a4-p 4- 2ia24b24x/)

+ X3(/3)(1 + X6(/3))(2a p 4- 2iasb8x/)}.

The theorem now follows upon the examination of each of the cases. The
last case is facilitated by the observation that cos (Tr/12)=(x/+4)/4 and
sin (7r/12)= (x/-- ,f)/4. Q.E.D.

The next theorem summarizes the values of 4h2(/3) for p 5, 7, 11, 13,
17, 19, and 23 (mod24). The proofs are very similar to the proof of
Theorem 6.12, and so we omit them. Below the residue class designation of
p, we give the quadratic representations (if any) of p used in the evaluations
below. The eight rows of values in the tables correspond in order to the
residuacities of /3 found in the table of Theorem 6.12.

THEOREM 6.13. For p----5, 7, 11, 13, 17, 19, and 23 (mod24), we have
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the [ollowing table of values

p 5 (mod 24)

p 3e4 -t- 2f24

p 7 (mod 24)

P a4+6b4

p 11 (rood 24)
p=a+2b
P 34+ 2ff24

12p 48e4 -4p + 16a224 12p 8a-48e24
-12p +48e4 4p- 16a224 -12p +8a+48e4

24e24 48b4 -8a82 + 24e4
-24e4 -48b4 8a82- 24e4

0 0 0
0 0 0
0 0 +8 lasb81

+24 le24f24[ +/-24 [a24b241 +/-8 labsI + 24 le24f24[

p 13, 23 (mod 24) p -= 17 (mod 24)
p =a+2b

p 19 (mod 24)
p a+2b

12p 12p-8a -4p-8a
-12p -12p + 8a82 4p +8a
0 -8a 16b
0 Sa -16bl
0 0 0
0 0 0
0 +8 laubsI +8 [asbsI
0 +/-8 [asbsI +8 la8b81

THEOREM 6.14. Let p 20k + 1 or 20k + 9. Write p a+ b, where a4 is
odd, and p ao+5bo, as in Theorems 4.20 and 4.22. Then we have the
following table:

(10(), if 5 /a4 (1o(/3), if 51a4 square 4th 5th

10p-4a- 16ao -6p-4a24+ 16a22o x x
-10p +4a+ 16ao 6p +4a- 16a20 x

+/-4 [aab41 +/-4 la4b4[
-4a+4ao 4b42-4ao x x
4a2-aao -4b24+4a22o x

+4 la4641 +/- 20 la=ob=ol +/-4 la4641 +/- 20 la=ob=ol

Proof. Let X have order 20. If p 1 (mod 20), then X has order 10
and X(-1)=l. I p=9 (mod20), then (1 has order 2 and ((-1)=1.
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By Theorems 4.1 and 4.4, K(x)=-(a4+ib4)2. Since ix/ is fixed by
e2,n’i/2o{r3, trT, tr} GaI(Q( )/Q), it follows from Theorems 4.20 and 4.22 that

K(X9) K(X)= K(Xa) = K(X7) e(a2o+ ibox/)2,

where e =-1 or 1 according as 5 , a4 or 5[a4, respectively. Thus, by
Theorem 2.7,

thto(/3) 2 Re {X(/3)(1 + X2(/3))(1 + X6(13))e(2azo-p + 2ia2ob2o’V/)
+ XS([3)(p 2a-+ 2ia464)}.

The evaluations now follow. The last case is facilitated by the observations
that cos (r/5) (x/+ 1)/4 and cos (2r/5) (x/- 1)/4. Q.E.D.

THEOREM 6.15. Let pll or 19 (mod20). Then

4to(1) 10p, i [3 is a 20th power in GF(p2),
=-10p, if [3 is a 10th power but not a 20th power,

O, otherwise.

Proof. Let X have order 20. Then X(-1)= 1. By Theorems 2.14 and
4.21, K(X) =p for each odd integer j. Thus, by Theorem 2.7,

4

4to(/3)=Ep Re ’. X2+t(/3),

and the result follows. Q.E.D.

Let p 10k + 1 and let X have order 10. By Theorems 4.20 and 4.2! and
the remark at the end of Section 3.1, K:(X)=-K-(X). In view of Theorem
3.1, we may write

(6.4) K2(X) -{ao+ bxox/+ icto/’5 -+-2,r + idxo.,/5 2x/}2,

where the integers axo, bxo, Cxo, and d,o satisfy (i), (if), and (iii) of Theorem
3.1.

THEOREM 6.16. Let p 10k + 1. Fix [3 GF(p2)*. Let X have order 10
and assume that X is chosen such that 4(/3)= e2’/5 when [3 is not a 1tilth
power in GF(p2). Then, in the notation above, i]’ t is a i[th power in GF(p2),

ths(/3) =-l+4(p-2ao-10bo) and q,5(/3)=4(/3)(p-2a2xo -10bo);

otherwise,

4,,(13)
-1-p +2ao+ lOb2o-2Oa,obo+ 30boco+ 10(aoCxo + aod,o-b,od,o)
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and

,()

(/3){-p + 2ao + 10bo- 20aloblo- 30bloco- 10(aoCo+ aodlo- bodo)}.
Proof. By Theorem 2.7,

bs(D) K(Xs) + 2 Re {4(D)K(x)+()K(x)}.
By Theorems 2.8 and 2.4(i),

$5() 2() Re {X4()K2(x)+ X2()K(x3)}.
By Theorem 2.14, K(X)=-I. Applying 3e Gal(Q(e’/)/Q) to (6.4),
we have

K2(X3) -{alo-bo+ ichor5 2 ido45 +2}.
The result now follows. The mputations are facilitated by the use of
(3.2). Q.E.D.

Example. Let p 11. Choose 7 e GF(p2)so that 7 2. us, r 2+ 7
generates GF(p2)*. Then ao=-I and [bxo[ 1. If 1, then &5()=-5
and $5()=-4. If D z or z-, then bo =-1, Co 0, Idol 1, (D)=-20,
and $5(D) 19. If =r:, then bo 1, Co 1, do=0, (D)=40, and
$() 1. If D =-, then bo 1, Co=-l, do=0, 5(D)=0, and $(D)
41.

THOM 6.17. Let p 9 (mod 10). en
&5() =-1 +4p, ff is a 5th power in GF(p2),

1 p, otheise,

and 5(D) (D){1 + 5(D)}.

Proof. Let X have order 10. en X is trivial and X(-1)=l. By
Theorem 2.14, Kz(Xs)=-I and K2(x)=p for 1]4. Hence, by
Theorems 2.7 and 2.8, respectively,

6s() -1 + 2p Re {X2()+ X’(D)} and s(D)= 26()p Re {X2()+ X4()}.

The theorem now follows. Q.E.D.

Let p 16k + 1 or 16k + 7. Let X have order 16. If p 1 (mod 16), then
X has order 8 and X(-1)= 1. If p7 (mod 16), then X has order 2 and
X(-1) =-1. By Theorem 2.4(i), K2(X) K2(X7). In view of Theorems 4.26
and 4.28, we may thus write

(6.5)

X(-1)K2(x) X(-1)K2(x7 -{A16 "[- B16x/r + iC16x/2 "+" + iD16/2 x/}2,
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where A16, B16, C16, and D16 are integers such that A6=-(-1)k (mod 8),

p=A6+2B6+2C6+2D6, and 2A6B6=D6-C6-2C16D16

THEOmSM 6.18. Let p 16k + 1 or 16k + 7. Fix f3 GF(p2)*. Let X have
order 16 and assume that X is chosen such that

(/3) e2i/x6, if 13 is not a square in GF(p2),
e2i/8, if f3 is a square but not a 4th power.

Then, in the notation above, we have the following table:

b8(/3) square 4th 8th 16th

8(p 2AZ6 4B6) x
-8(p 2A26-4B6) x

0 x
-32A16B16 x

16(A16D16+B16C16 B16D16)

x x
x x
x

Proof. Applying tr3 Gal(Q(e2i/6)/Q) to (6.5), we have

X(--X)K2(x3) X(-X)Kz(x5) -{A16 B16x/- iC6x/2-x/+ iD6/2+x/}2.

By Theorem 2.7,

68(/3) 2 Re {(/3)(1 + 6(13))X(-1)K(x)}
+ 2 Re {3(/3)(1 + 2(I3))X(-1)Kz(x3)}.

The evaluations now follow. Q.E.D.

Example. Let p 7. Choose / GF(p2) so that /2= 3. Thus, z 1 + /
generates GF(p2)*. If /3 =z or z2, then Ax6 B6= Cx6 1 and D16=-1.
Thus, 8(/3)= 16, if /3 =, and 8(/3)=-32, if/3 =2. Also, ths(/3) 8, -8,
and 0 according as /3 6, 8, and r4, respectively.

THEOREM 6.19. Let p =--9 or 15 (mod 16). Then

b8(/3) 8p, if (3 is a 16th power in GF(p2),
=-8p, if [3 is an 8th power but not a 16th power,

O, otherwise.

Proof. Let X have order 16. If p =-9 (mod 16), then Xx has order 8 and
X(-1) =-1. If p-= 15 (mod 16), then X is the trivial character and X(-1)=
1. By Theorems 2.14 and 4.27, K2(Xi) X(-1)p for odd ]. Theorem 2.7 thus
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yields

and the result follows.

3

Q.E.D.

7. Gauss sums over GF(p2)

In this chapter, we evaluate the Gauss sum

ck e2rt tr(ak)/p

for k =2, 3, 4, 6, 8, and 12. We could similarly evaluate other Gauss
sums, e.g., J24, but we omit these evaluations for brevity.
Generalizations of Theorems 7.1 and 7.2 have been given by Myerson

[18]. Theorem 7.1 was proved by Stickelberger [24, p. 341].

THEOREM 7.1. For each odd prime p, we have 2 G2(4)=(-1)(+l/2P.

Proof. Using Theorem 2.12, we find that

2 {1 + b(ct)}ez’t(/ G2(b) (-1)(+1/2p.

THEOREM 7.2.
(mod 4). Then

Q.E.D.

Write P=a+b24 with a4--() (mode) when p=-1

(44 =--p-2 a4x/p, if p-- 1 (mod 4),

p q- 2(--1)(+1/4p, /f p 3 (mod 4).

Proof. Let X have order 4. Then., since Gz(th)= (-1)(+/2p by Theorem
7.1, we have

(7.1) c4 (-1)(+)/2p d- G2(x) d- G2(f().

First, suppose that p-=-1 (rood 4). Then X has order 2. Hence, by (7.1)
and Theorem 2.12, we find that

from which the result follows by Theorems 4.1 and 4.4.
Secondly, suppose that p =-3 (mod 4). Then X is the trivial character. The

result now follows immediately from (7.1) and Theorem 2.12. Q.E.D.

THEOREM 7.2. Write p=a+b with a4=--(2 (mod4) when p=-I
\p/
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(mod 4). Write p a+ 2b with as-- (-1)o->/s (mod 4) when p 3 (mod 8).
Then

c8 --p 2a4x/-i- 2a8(2p +2a4x/)1/2, if p =-- 1 (mod 8),

-p -4iasp,

--p -I- 2a4p-t- 4i Ib4l p(2p + 2a4xp)-1/2,
3p + 4(-1)+)/8p,

Proo[. Let X have order 8. Then

(7.2) d8 =4 + $8,

if p 3 (mod 8),

if p =- 5 (mod 8),

if p 7 (mod 8).

where $8 G2(X) + G2(2) + G2(X3) + G2(3). We have evaluated d4 in
Theorem 7.2, and it remains to evaluate $8.

First, suppose that p--1 (mod 8). Then X has order 4 and X(-1)= 1. By
Theorem 2.12,

G2(X) 2(2)E(x)G(x) and G2(X3) XI(2)E(xa)G(YI).
Since tr3 Gal(Q(e2/8)/Q) fixes ix/, Theorem 4.1 shows that

E(X3) E(X) -a8 +/- ib8V.
Note that X1(2)= +/-1. Hence,

$8 -2Xl(2)a8{G(x) + G()} +/-2a8(2p + 2a4x/)/2,

as desired, where the last equality follows trom [1, equation (3.10)].
Secondly, assume that p=3 (mod8). Then X has order 2 and

X1(2)=()=-1. By Theorem 2.10, E(x)=E(x3). Thus, by Theorem

2.12, G2(X) -ix/-E(x)= G2(X3). Hence, by Theorem 4.6,

$8 -2i{E(x)+E()} -4iasx/,
as desired.

Thirdly, suppose that p------5 (mod 8). Then X1 has order 4. Hence,
X(-1)=-i and X(2)= +/-i. By Theorem 2.10,

(7.3) E(X3) E(5) E() a4 "" ib4,

as in Theorem 4.4. Thus, by Theorem 2.12, G2(X)=(2)G(x)E(x)
G2(3). Hence,

(7.4) $8 2I(2){G(x)E(x)-G(I)E()} +/-4i Re {G(xx)E(x)}.
Now set R6 G(X)+G(x). By [1, equation (3.10)], R6 +/-i(2p + 2a4xp)/2.
Let D6 G(X)-G(). Thus, D6 is real and 2G(X1)= D6+ R6. Hence, by
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(7.3) and (7.4),

(7.5) $8 +/-2i(D6a4- iR6b4).

We now compute D6. By Theorems 2.2 and 4.4,

R6D6 G2(X1) G2(1) {J(x1) f()}x/ -{K(x) K()}x/- -2ib4x/p.

Thus, D6 =-2ibnxp]R6. Putting this in (7.5), we obtain

S8 +2 ]b4l (2a4x]- -b R)]R6 =+4 Ib,I p/R6,

as desired.
Lastly, suppose that p 7 (mod 8). By Theorem 2.12, G2(Xj) (-1)(+1)/8p

for each odd integer ]. Thus, $8 =4(-1)(P+l)/ap, as desired. Q.E.D.

For the purposes of evaluating 3 and (46, we recall some facts and
notation from [1]. Let p =--1 (m0d 6) and let X have order 6. Then X is a
character (mod p) of order 3, and [1, Theorems 3.3, 3.4]

(7.6) K(X1) a3 + iba4 and 2J(xl) r3 + is3/,

where a3, b3, r3, and s3 are integers such that p a+ 3b, 4p r+3s,
and ra =- -a3 =-- 1 (mod 3). Let (3 n e2rin3/ and define v sgn {sa(G p)}.
Then [1, Theorem 3.7],

(7.7) 2G(xx) G3+ iv(4p G)/2.

Define e3 by e3 +/-1 and e3 =-Ib3[ (mod 3). Define

E6 sgn {(a3 q- e3 Ib31)(G- p)}.

When X1(2) 1, we have sgn b3 =sgn s3 [1, equation (3.1)]; hence,

(7.8) b3v Ib31 v sgn s3 [b3[ sgn (G-p),

when X(2)=l. When X(2):l, define a by a=+/-l and X(2)
exp(2ia/3). In [1], the proof of Theorem 3.8 and the paragraph im-
mediately preceding Theorem 3.5 show that, respectively,

(7.9) av-- 86 and

THEOREM 7.4. If p ------ 5 (mod 6), then 3 2p. I[p =- 1 (mod 6), then, in the
notation above,

3 -a3G3-{sgn (G- p)} Ibl (12p 3G)1/2,

if 2 is a cubic residue (rood p),

1/2G3(a3- 3ca Iba[)-1/2e6(a3 + e3 Ib3[)(12p 3G)/2,

if 2 is a cubic nonresidue (mod p).
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Proof. Let X have order 6. Then

(7.10) N3 G2(X2) + G2(2)= 2 Re G2(X2).

First, suppose that p 5 (mod 6). Then by Theorem 2.12, G2(X2) p, and
the result follows from (7.10).

Secondly, let p =-1 (mod 6). Let b3 and s3 be as in (7.6). Then it can be
deduced from Theorems 4.8 and 4.9 that E(x2)=-a3-ib3x/. Thus, by
(7.10) and Theorem 2.12,

(7.11) (43 2 Re {l(2)G(x1)(-a3 + ibax/-)}

-2a3 Re {Yl(2)G(Xl)}-2baJ Im
If X1(2)= 1, then the use of (7.7) in (7.11) yields

3 -a3Ga.- b3v(12p 3G)1/2.

The desired result in the case X1(2)= 1 now follows from (7.8).
Suppose next that X1(2) 1. Then by (7.7),

(7.12) 41(2)G(x1)=-G3

From (7.11) and (7.12), we have

2c3 a3G3 ava3(12p 3G)1/2 + 3ab3G3+ bav(12p 3G)1/2.

The desired result now follows from (7.9). Q.E.D.

THEOREM 7.5. If p =-- 5 (mod 6), then (46 2p + 3(-1)(P+l)/6p. If p 6k + 1,
then, if 2 is a cubic residue (mod p),

(6 --19 2a3G3,
p 2{sgn (G- p)} Ib3[ (12p 3G)/,

if k is even,

if k is odd;

if 2 is a cubic nonresidue (mod p),

(td6 --19 -I- a3G3-- e6a3(l2p 3G)x/2,
p 3e3 Ibl G- 1316 Ibl (12p 3G)1/2,

if k is even,

if k is odd.

Proof. Let X have order 6. Then

(7.13) (46 (4d2 "- (13 q- 56,

where S6 G2(X)-I- G2() 2 Re G2(X).
First, suppose that p---5 (mod 6). By Theorem 2.12, G2(X)=(-1)(P+I)/6p.

The result thus follows from (7.13) and Theorems 7.1 and 7.4.
Secondly, let p 6k + 1. Let b3 and s3 be as in (7.6). It can be deduced

from Theorems 4.8 and 4.9 that E(x)=(-1)k+l(a3+ib3x/). Thus, by
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Theorem 2.12,

(7.14) S6 2(--1)TM Re {FI(2)G(X1)(a3 + ib3v))

2(-1)+1a3 Re {(2)G(x)}+ 2(-1)b3Vr5 Im {(2)G(x)}.
By (7.11), (7.13), (7.14), and Theorem 7.1, we then get

36=-p-4a3 Re{I(2)G(x)}, if k is even,

p -4b3vrj Im {(2)G(x1)}, if k is odd.

The desired evaluations now follow from (7.7) and (7.8), if X(2)= 1, and
from (7.9) and (7.12), if X1(2) 1. Q.E.D.

TIaEOREM 7.6. If p --= 1 (rood 4), write p a24 + b, with a4-- _(p2_) (mod 4).

If moreover p 1 (mod 12), write p a2+ b2, where a2 is as given at the
beginning of Section 4.2. If p---5 (mod 12), define e2 by e2 +1 and
e2-a4 Ibl (mod 3). Let q33 and 6 be as given in Theorems 7.4 and 7.5,
respectively. Then

12 c6 --2()a4p--2()a12((--2p)/, if p =12k +1,

(46 -- 2(--1)k+1c3 + 2(-1)gp,

5p +6(--1)+lp,

Let X have order 12. Then X(-1)= 1 and

if p =12k +5,

if p 12k + 7,

if p 12k + 11.

Proof.
(412 (46 "" (44 42 " S12 where S,2 2 Re G2(X)+ 2 Re G2(X5).

We have already evaluated 32, d4, and 6, and so it remains to evaluate S2.
First, suppose that p 12k + 1. Then X has order 6. Since s =i, we

deduce from Theorem 4.8 that E(XS)=E(x)=-a2+ib12. Thus, by
Theorem 2.12,

G2(X) (2)G(xI)E(x) and G2(X5) X,(2)G()E(x).

Hence, as desired,

S,2 --4a,z Re {(2)G(x,)} -2()a12(G32- 2p)/,Cr,

where we have used the value of 3(X) from [1, Theorem 3.7(ii)].
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Secondly, let 19= 12k+5. Then Xx has order 2. By Theorem 2.10,
E(X) E(Xs). Hence, by Theorem 2.12,

G2(X)= ()x/-E(x.)= G:z(xs).

Thus, by Theorem 4.10, we obtain the desired result

S2=4()xpReE(x)=4()e2Ib4[x/P
Thirdly, let p 12k + 7. Then Xx has order 3. Write K(X) a3 + ib3 as

in (7.6). Then by Theorem 4.9,

(7.15) E(X) (-1)k+(-a3 + ibax/).
Now, by Theorem 2.10, E(Xs) E(7) E(). Thus, by Theorem 2.12,

G2(X) I(2)G(xx)E(x) and G2(X5) X(2)G()E().

Therefore, using (7.11) and (7.15), we obtain the desired result

S2 4 Re {(2)G(x)E(x)} 2(-1)+d.
Finally, let p 12k + 11. Then by Theorem 2.12, G2(x)=(-1)k+Xp for

] 1, 5. Thus, S2 =4(-1)k+p, as desired. Q.E.D.

8. The Hasse-Davenport relation

In this chapter, p is any prime, q pr, is a character on GF(q) of order
l> 1, and X is an arbitrary character on GF(q) such that ; is nontrivial. As
usual, b is the quadratic character on GF(q). Define

(8.1) rl(X)
x’()G(x) G(x,l,)
G(x’) = G,(,I,)

By using Theorem 2.1, we may write rl=(X) in the alternative form

n,(x) x’() X )

=x L(x, g,)"

A remarkable theorem of Hasse and Davenport [4], [9, p. 464] asserts that
l(X) 1 for each possible choice of X. (We shall abbreviate this statement
by "1 1".) This theorem is proved by the use o Stickelberger’s prime
ideal factorization of Gauss sums. An elementary proof that rl 1 is much
desired.
The proof of Theorem 8.1 below gives an elementary proof that rl 1

under the assumption that rh 1 for all primes dividing I. Since an
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elementary proof that lz 1 is well known (see the proofs for r 1 in [1,
Theorem 2.3], [9, p. 465] and the remarks immediately preceding Theorem
2.3 in this paper), we thus obtain an elementary proof that h 1 whenever
is a power of 2. Moreover, the problem of providing an elementary proof
that "tit 1 is reduced to the (apparently unsolved) problem of providing an
elementary proof that 1, 1 for each prime t.

THEOREM 8.1. Assume that 1 for each prime dividing I. Then it

follows elementarily that "tit 1.

Proof. Since all Gauss sums in the proof are over GF(q), we suppress the
subscript r.

If is prime, there is nothing to prove; thus, assume that is composite.
As the induction hypothesis, assume that h 1 for each integer u, 1 < u < 1.
Define to be the smallest prime divisor of I. We have

I--1 l/t--1 t--I

I-I I-I l-I
k--0 j---o i---0

Since ,(Xj) 1 by the induction hypothesis, it follows from (8.1) that

Since rh/,(X’)= 1 by the induction hypothesis,

l/t lit

II ’) l-I
/=o

Thus,

By (8.1), it remains to show that
l--1 t--1

)]l l/t--ff
n=l /=I

By (2.1), when p > 2, G()= ioq /2, where i (-1). For any character
on GF(q) of order m, it follows that

-x 1, if m is odd,(8.3) q(1-,),z I-I G(.")=
ioA"("-2)/8(-1), if m is even.

It follows that both sides of (8.2) equal q(t-)/2 when is odd. Thus, let be
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even, and so 2 and p > 2. By (8.2) and (8.3), it remains to show that

(8.4) i0#,(-2)/8(-1) tbu2-(2)i2, if 1/2 is odd,

tll/2-1(2)ito/2+l if 1/2 is even.

First, suppose that 1/2 is odd. Then (8.4) holds because i=tb(-1)
u2(-1).

Secondly, suppose that 1/2 is even. Then i tb(-1)= u2(-1)= 1. It thus
remains to show that tb(2) u4(-1). Hence, we must show that

(8.5) 6(2) 1, if 81(q- 1),

-1, otherwise.

By an extension of the argument in the proof of Lemma 2.9 tb has order
2/(2, (q- 1)/(p- 1)). Hence,

(8.6) (2)- 1, if 21(q- 1)/(p- 1), i.e., 21 r,

(p2_), otherwise.

I 21r, then q is an odd square, and so 81(q-1). Thus, (8.5) follows from
(8.6) in the case 2 r. Assume now that 2 , r. Since 2 ,t" (q 1)/(p 1), q 1
and p-1 have the same number of factors of 2. Since //2 is even and
(q- 1), it follows that 4 divides both q- 1 and p- 1. Thus, 8 divides q- 1

and p-1 if and only if ()=1. Thus, (8.5)follows from (8.6). Q.E.D.

The authors are very grateful to Joseph Muskat for many helpful sugges-
tions.
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