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THE LOCALLY FREE CLASSGROUP
OF THE SYMMETRIC GROUP

BY

M. J. TAYLOR

1. Introduction and statement of results

Let S, denote the symmetric group on n letters, and let C1 (ZSn) be the
classgroup of finitely generated locally free ZS, modules. C1 (ZSn) has been
studied in [5], [6] and [11]. (See also [12]). By use of two sets of
homomorphisms on C1 (ZS,) namely those developed by A. Fr6hlich in [1],
and those developed by the author in [9], we are able to describe C1 (ZSn),
up to a two group, in terms of two groups of polynomials.

I should like to express my thanks to S. Ullom who originally suggested to
me that the representation theory of the symmetric group might be particu-
larly applicable to the calculation of the locally free classgroup.

Let Z denote the ring of rational integers and let Q be the field of
rationals. If is a prime of Z, we define Z to be the ring-of/-adic integers
and Q to be the rational/-adic field. If F is a finite group we let Rr be the
ring of virtual characters of F. For any ring R we denote the group of units
of R by R*.

Let A( be the additive group of symmetric polynomials of degree n over
Z, in the m variables xl, XZ’’’X,n.
We have a homomorphism of groups A(/)--* A( given by setting

x,,+ =0. We let An lim,_ A( (the limit being taken with respect to the
above projective system). For each rational prime we set An. Z(R)zAn.

In the usual way we identify the conjugacy classes of Sn with the partitions
of n (via cycle structure). If 7r is a partition of n then denotes the
number of elements in the conjugacy class r. For a Z, r denotes that
conjugacy class to which the ath powers of elements of r belong.

If r is a partition of n, n r +...+ rk, then we define the symmetric
polynomial try’) A(y by setting

k

1-I (x}+.
i=1

We set tr lim.__ tr").
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688 . J. TAYLOR

For l# 2, we define

{a(rao’A,,,;aQ,;foreach,rr,(
If l= 2, we define

la . a,)sZ}
rl

n,2

We let s(l) denote the number of /-singular conjugacy classes of S. (i.e.
those 7r such that r r). Our main result is:

THEOREM 1. There is an exact sequence o1’ abelian groups

1 H C1 (ZS.) -- "’x 1

where G (resp. H) is an elementary two group (resp. an abelian two group) of
rank less than or equal to the number o]’ coniugacy classes of

In Section 5 we firstly show how to calculate the order of certain
elementary symmetric polynomials in the quotient group A../=_.,, and then
we show that A../.. can be interpreted as the classes of certain induced
Swan modules.

Remark. For actual computation it is worth remarking that for any
k -> n, the natural projection A. --* A is in fact an isomorphism of abelian
groups, so that A../.. can be turned into a quotient of two polynomial
groups in a finite number of variables.

2. Components of C1 (ZS,,)

We now recall certain results on classgroups. The main reference is [1],
and in general we preserve the notation of [1] and [9]. From Appendix II of
[1] we have an isomorphism of groups

1-I Horn (Rs., Z*)
(2.1) C1 (ZS.) -- 2_<.

Hom (Rs., +1) 1-I Det (ZtS.*)

(where we regard + 1 as embedded diagonally in l-I. Z*).
Remark. In going from the isomorphism given in [1] to 2.1 we are using

two facts. Firstly that all complex representations of S. can be achieved over
Q (see 13.1 of [7]). Secondly that D(ZSn)= C1 (ZS.), because the classgroup
of any maximal order of QS. is the product of several classgroups of Z.
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For l 2 (resp. for l= 2) we define rt (resp. r2) to be the reduction mod/
(resp. mod 4) homomorphism given by the composite

Det (ZtS,*) - Hom (Rs, Z*) -- Hom (Rs, F) if l 2

(resp. Det (Z2S,*) Hom (Rs., Z2*) -- Hom (Rs, +12) if 2 where 12 de-
notes the "one" of Q2; we make this distinction between "ones" because in
this section we shall need to distinguish between 12, and 1 diagonally
embedded in I-[ Z*).
For l 2 we set

Cl=Hom (Rs,, F), Cz=Hom (Rs., 1 +
Im (r) Ker (r)

and if l= 2 we define

C21
Hom (Rs, +/-12) C22

Hom (Rs, 1 + 4Z2)
Im (r2) Ker (r2)

Let G be the sub-group of Hom (Rs., +/-1) which corresponds to Im (r2)
under the canonical isomorphism Hom (Rs., +/-l)-Hom (Rs., +/-12), and let
G (resp. G) be the natural projection of G into

1-I Hom(Rs,Z*) (resp. n Hom(Rs,)).
For brevity we let

H=Hom (Rs., 1), H=Hom (Rs, 12), D Det (ZS).
Projection into Hom (Rs, Z) and reduction mod (4) yields a commuta-

tive diagram

1 Ker (r2) x G D, Hx , D, H, 1
2< n a

1 H H 1.

So by the Snake Lemma we have an isomohism
H D
" Ker(r)xG D.
H1 2<ln

However, or each l 2, we have D Ker (r)xIm (r) (since Im (r) has
order prime to l, whilst Ker(r) is a pro-l-group). is decomposition
induces an isomohism

H D
H x G7 H
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Similarly we have an isomorphism

II Hom (Rs., Z*)

H
-= Horn (Rs., 1 + 4Z2) i-i Horn (Rs., 1 +/Z,) x 1-1 Horn (Rs., F*).

2<lrt

So from (2.1) we have an isomorphism

o (zs.) I-[
(3"2

where G2 denotes the image of G 1-I2<, Im (r) in 1-12<, C1). Because G2
is an elementary two group whose rank is bounded by the Z-rank of Rs. (i.e.
by the number of conjugacy classes of S,), in order to prove Theorem 1 it is
sufficient to show:

THEOREM 2. For each prime <- n,

(i) if l:p 2 then C) (F)((),
(ii) if : 2 then C2) A,t/E,t,

whilst if l= 2 we have an exact sequence

1 -- H C(22) -- A,2/-..2 --where H is an abelian 2-group of rank at most the number of con]ugacy
classes of S..

3. Proof of Theorem 2(t)

We now recall certain facts and definitions from the theory of modular
representations. The main reference is [7]. Let F be an arbitrary finite
group. We define Rr. to be the Grothendieck group of finitely generated
FtF-modules. From 15.2 of [7] we have the decomposition homomorphism
d" Rr,o, Rr, where Rr,o, is the Grothendieck group of QF-modules.

We define Pz, (resp. P,) to be the Grothendieck group of finitely
generated projective ZF (resp. FF) modules. Reduction mod/ yields an
isomorphism 0" Pz, --% P,,.
From 15.3 of [7] we have an injective homomorphism

e: PI5 Rr,o,.
It is well known that Im (e)fqKer (d)= (0) and that

(Rr.o,: Im (e)/ Ker (d)) 1N for some N-> 0.

So because (IF’I, l)--1 we have an isomorphism

(3.1) nom (Rr.o,, F’[’) nom (Ker (d), F’)Hom (Im (e), F’).
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Now Fr6hlich has shown in Appendix III of [1] that under the homomorph-
ism given by the composite of restriction to Ker (d) and reduction mod l,
Det (ZF*)-- 1. Thus

(3.2)
Hom (Rr,qL,.F.) _.%

Hom (im (e), I’)
r(Det (ZF*))IRr.o, r(Det (ZF*))lIme,)

Hom (Ker (d), F’).

From 16.1 of [7] we have that the Cartan homomorphism c d e is an
injection,

(3.3) c: PF, -- Rr..
and further c has a finite cokernel of/-power order. (Rr.: Im (c))= M say.
We now suppose that all complex representations of F are achievable over

Q; we may identify Rr with Rr.o,. It is well known that

Ker (d) {X Rr.o, X(?) 0 for all regular /e F}.

Hence Ker (d) is a free abelian group of rank equal to the number of
/-singular conjugacy classes of F, s(l). Therefore we have an isomorphism of
abelian groups

(3.4) Hom (Ker (d,), F’’ (F’)’’.

So in order to prove Theorem 2(i), from (3.2) we are required to show

(3.5) r(Det (Zlr*))[m, Horn (Im e, F’).

Let {N} represent the distinct isomorphism classes of simple Ftr-modules.
We may view the Ni as a Z-basis of Rr.. From (3.3), lMNi Im (c) for each
i, and so we may view the lNi as projective FtF modules. We set

P O-l(l’N) and we let X be the complex character associated to the QF
module Q(R)z,P (i.e. e(lNi)= X). We define T to be the sub-group of Rr
generated by the Xi. Then we have for some M’>_0 that (Im (e): T)=
and so we are reduced to showing

(3.6) rt(Det (ZtF*))Ir Hom (T, F*).

We now use Wedderburn’s theorem on the structure of semi-simple rings to
prove (3.5). Let be the radical of the ring FF. Then by Wedderburn’s
Theorem (see [3] Chapter XVII) we have an isomorphism of rings

(3.7)

where

F., End,r(N) and M.,(F.)= Endo,(N).
Let reF* and choose s l., such that Nv,,,/v,(s)=r (the norm from to
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F*). We choose &i,rFtF such that under the isomorphism (3.7),

1

0
has image

0

1

in M.,(F), ]i,

0

1

in

We choose ai,r ZtF Such that a, 5, under the surjection ZtF --* FtF. We
consider Detx (ai,):

Detx, (a,,)=det of ct,r viewed as a Zt endomorphism of O-I(1MN)
=-det of ti, viewed as an Ft endomorphism of lM, mod (l).

However, because t, commutes with Fq, action it is easily seen that det of
t, viewed as an Ft endomorphism of lN, is equal to the /Mth power of

Nrq,, (det of 5.r viewed as an Fq, endomorphism of N). Thus, by our
choice of

Det,(ai,) ’1,
frt’, ], by choice of si,

[ 1,

and so (3.6) is shown.

, ii,

4. Proof of Theorem 2(ii)

Firstly we recall some facts on the representation theory of the symmetric
group. Our main references for this are [2] and [4]. From page 13 of [2] we
have an isomorphism of additive groups 0" Rs.- A.. Under this isomorph-
ism the irreducible characters of S. map to the Schur functions attached to
the various partitions of n. If r is a partition of n, then 0-(tr,) is the virtual
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character which takes the following values:

(4.1) 0-(tr=)(/) n!][’n’l if V w,

0 if / r.

0 then induces an isomorphism

(4.2) Hom (Rs., 1 + 1Z)=Hom (A,, 1 +/Z),

We define the /-adic logarithm log: Z* lZ{ .via

log (x)
(1 X[--1)

for x Z.
(Analogously, of course, one can define an/-adic logarithm for the units of
the integers of any finite extension of Q.) It is easily seen that

log:l+lZIZ, 12,

log: 1 + 4Z2 4Z2, 2,

are isomorphisms. Hence (1//)log for l 2, and (1/4)log for l= 2, induce
isomohisms

" Hom (Rs., 1 +/Z) Hom (A,, Z) for 2,
(4.3)

2: Hom (Rs., 1 + 4Z2) Hom (A,, Z) for 2.

If {A} denotes the Z basis of A, given by the Schuffunctions, then the map
ff(X). X yields an isomorphism

(4.4) K" Hom (A,, Z) A,.
By means of a classical polynomial identity (see Chapter 1.3 of [2]) we have
that in A, @zA,,

E E
So because K is given by evaluation in the left hand factors of (4.5), K is
also given by

(4.6) K([) J[ [() ,.
Setting Ko ,we have

: Hom (Rs., 1 +/Z) A,., 2: Hom (Rs., 1 + 4Z2) A,.2.
The main aim of this section is, of course, to calculate (Ker r).
For X Rs., and for an integer m, we say X0 mod (m) if, and only if,

X()0 mod (m) for each S,. Define (X) to be the central function of
S, given by (X)()= X() for S,. Because (X) can be expressed as a
polynomial in exterior powers of X, (X)Rs (see [2] for details).
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From [9] we have:

THEOREM 3. Let X Rs. with X =-0 mod (/r), then for z ZS.*,

log (Detx_.,.(z)) --- 0 mod (lr+l).

Remark. In [9] the result is proved only for /-groups, but the proof
extends to arbitrary finite groups without difficulty.
We now introduce some further notation. We define a partial order

relation >- (resp. -> for a fixed prime l) on the conjugacy classes of Sn as
follows" For conjugacy classes rl, r2 of n, we say rl--> 7r2 (resp. rx >--t /’2) if,
and only if, for some integer m-->0, r’ r2 (resp. r 7r2). Let G (resp.
G) be the directed graph whose vertices are the conjugacy classes of S,, and
where there is an edge from r to 7r2 if, and only if, for some prime
19, "t/’ 71"2 (resp. r ’]T2) and r "/]’2" G is a connected graph (since
r" 1 for some m). We let {,i}i denote the connected components of G.
We set r 0-1(try), for each partition r, For a fixed prime we set

From 4.1,

(4.7)

We define .(l) E Z0,

LE 1. Q@zA.(/)=Q@zRs..

Proof. Let . Z; it is well known that (A.: .) <; so it is
sucient to show that for each there exists a non-zero integer m such
that

(4.8) mr a. (l).

Suppose lies in the connected component , of G. We suppose
initially that w is maximal in G (i.e. ’ ’= ). en we have
(r) =0, or, r, according as w, or, w= w; and so p =/1[ , or,

(1-1) respectively.
So now we assume that is not maximal. By careful choices of it is

easily seen that inductively we may assume that (4,8) holds for all ’ such
that ’>
w. So if w, by induction m,%, A.(l) for some non-zero m,Z. Thus

(4.9) p=/

where the value 0, or, 1 is taken according as w, or, w. (4.8) now
follows.
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We define v to be the homomorphism vt" Hom (A,, Zi+) --> l-I Z} given by

v,(f) l-I f(0(O.)) for

where the product is taken over distinct partitions 7r of n.
(4.10) By Lemma 1, (Rs.: A.(/))<o% so because Z is torsion free, v is

injective.
We now suppose that l 2.

PROPOSITION 1. V (Ker r) 1-I n Z.
Proof. Because [rl =0modn! (from (4.1)), by Theorem 3 we have,

for z ZS,*, log (Detp, (z))=-0 mod ln! Zt. Therefore

v (Ker r)
_

I-I n Z,

so now we must show 1-L n! Z
_
v o(Ker r). To do this we exhibit various

Det (y) Ker (r) such that
=0 if

(4.11) log (Detp,, (y,)) u ln! if r’
=v,ln if vr>r’

where u Z,*, v,Z. Firstly we need a lemma on the logarithms of
determinants. For any finite group F, we denote the radical of the ,ring ZF,
by (ZtF).

LEM 2.
Then

Let X be a virtual character of a finite group F. Let a (ZF).

log (Det (1-a))=
n=l]

Proof. By additivity it is clearly sufficient to prove the Lemma when X is
afforded by a representation, T say. Let {a,} be the roots of the polynomial
det (T(X-a)). Because a (ZF), the a, all lie in the maximal ideal of the
field to which they belong. We have

Det, (1 a) l-I (l- a,),
and so

a?=
m=l m m=l m

We now return to the proof of Proposition 1. Let be an element of the
conjugacy class r. We can write / uniquely in the form / /’/’’ where
/’ has order prime to !, / has /-power order and where /’ and
commute. We set
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(Clearly / 1 if, and only if, r r.) We observe that y- 1 ,(Z(&)) in
both cases, and thus Det (y.) Ker (r). We now show that Det (y) satisfies
(4.11).

Case 1. 7r= 7r (i.e. r is minimal in G). Then

However, from (4.1), if 7ri >r, then we have r,l<v,>=0 (zero character).
Hence,

log (Deto, (y=)) (l- 1) og (Det, (1- l/=))

and, by Lemma 2,

log (Det, (1-l/=))----l%(/=) mod Z12n! I’a’[-1

= lntlr1-1 mod Z,12ntll-.
Thus log (Deto (y=))= uln! for u Z*. If r > r’, then, from Theorem 3,

log (Deto, (y)) =- 0 mod Zln !.

On the other hand if rr’, then by (4.1), , I<>= O, and further for each

such that (TRY)= 7r’, ,, (/) 0. Thus p, (/)= 0, and so

log (Deto, (y))= 0.

Case 2. r: 7r (i.e. 7r not minimal in G). Arguing as in Case 1 we see
that if 7r > 7r’, or if, r 7r’ then (4.10) holds. So now we suppose that r’= r,
and we are required to show

(4.12) log(Deto (y))= uln! for some uZ*.
Because r m 0r =/lrl -Y,,,= I,r,I , with ri : r for all i. Thus by

(4.1), for each i, log(Det,, (y))=0. So it is sufficient to show
log (Det (y))= u’n! for some u’ Z*. By Lemma 2,

log (Det. (y))=
1

a=l a

We set Ta /’a(1-/)a-). By the Binomial theorem- (/- 1) /r.T V’ (-1)’
r=O r
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But for all 1 < r < l- 1, ’./ generate the same subgroup of S,, viz (/);
whence they are S, conjugate to T,. Thus we have

(W ) (-1)=
r=l

and since ()=0, (T)=-n ]]-x.
We now consider (T) for a > 1. Define m to be the integer such that

lma(1-1)<l(m+l). Because a> 1, we have m 1. Again by the
Binomial theorem (1-)t=l-+/a for some a eZ(), and more
generally

(4.13) (1-)- a(1-)+/’ae for

If (a, ord ()) 1 then the element (1-)(-x) belongs to the group
ring of a proper sub-group of (). So by (4.1) we have

(4.14) .(T) 0.

So now we assume that (a, ord ())= 1. From (4.12),

(4.15) (T.) .("(1-)a) mod Zl.n
for some a3eZt(). We now consider v((1-)) for various inte-
gers r.

If (r, l)# 1 then (+)() and ()(). So by (4.1),

.(’(1-)) 0.

’- ( ) () So both ’- " ’"t+If (r, 1)= 1 then ( )= ’-’"+ and are
S, conjugate to and thus again

So from (4.14) and (4.15) we have shown that for all a > 1,

’,(Ta)---- 0 mod l"on! I1- z,.
It is clear that for a > 1, ma -> vt (a) + 1 where vt is the usual/-valuation. So
for a > 1, we have shown that

__1 -,(T) --- 0 mod lrttlzrl- za

and hence

log (DeL (y))---n! I1- mod/n! 17r[-1. Z,

as was required.

PROPOSITION 2. V K-l(n,l) H’n" /’[! Zl
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Proof. Let f Hom (A,, Zt). From the definition of ,.t we have Kt(f)
F,,. if, and only if, K(f)= ar= where, for each ,

la a, mod Z.
i i

From (4.6), a [l n l- f(g). So Kt(f)e N.,t, if, and only if, for each

n! f(lo’,) n!-1 [’rr, f(r,) mod Z,,,
i i

i.e. if, and only if, for each , f(O(p))O mod nI Z. Thus K?(,.) consists
of those f Hom (A,, Z) such that u (f) n Z. However, from Proposi-
tion 1, Im (u) n! Z; so that

v K;(..0 n Z.

We now prove Theorem 2(ii) for the case 1 2. By (4.10) v is injective, so
from Proposition 1 and Proposition 2, (Ker (r))=K?(.,). Because K is
an isomorphism with =Ko, we have .,= (Ker(r)). So we have
shown that t yields an isomohism

CZ) Horn (Rs., 1 +/Z)
Ker (r)

as was required.
We now outline the proof of Theorem 2(ii) when 2.

PROPOSITION 1’. I-I 1/2n! Z2
_
v2z(Ker r2).

Proof. As in Proposition 1, Theorem 3 implies that

Remark.

vo O2(Ker r2)
___

I-I 1/2n z2.

It would be of great interest to know whether

v2 2(Ker (r2))_ l-I 1/2n! Zz.

I cannot show this as I have not been able to find elements of Z2S which do
the job of the y in the case 1 2.

PROPOSrrION 2’. Let f Hom (A,, Z2). Then K2(f) ,,, if and only if,

(Proof essentially that of Proposition 2)
By Proposition 1’, v2o2(Ker (r2))nt Z2, so from Proposition 2’ we

deduce that K2o2(Ker (r2)) .,2, i.e. 2(Ker (r)) .,2. e group

H=
=(Ker (r))
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is a finite abelian two group of rank less than or equal to the number of
conjugacy classes of S,. (This follows from the fact that Det (Z2S,) is of
finite index in Horn (Rs, Z*).) Thus we have an exact sequence

An 2 An 2

rl2(Ker (r2)) E..2
But r/2 induces an isomorphism from C22) to An,2/rl2(Ker(r2)), so that
Theorem 2(ii) is shown when l= 2.

5. Induced Swan modules

We denote the quotient group A.,t/.,t by Y..t. In this section we explain
how to calculate the orders of certain elementary symmetric polynomials in

Y..t. Then we interpret Y.,t in terms of induced Swan modules.
We define the rth homogeneous power sum hr Ar by

Let ,, denote the set of partitions of n, and let r . be the partition
n rl +" + r. Then we define h,, A, by h I’I=l hw The {h}, r ,,
form a Z basis of A,, and further the characters O-l(h)Rs. have a
particularly nice description. (See Chapter 3 of [2] for details of what
follows.)
By splitting the numbers 1, 2,..., n into disjoint sets of order {r}=l, and

by considering the symmetric group S, on each set of r numbers we may
view =lSr (=S, say) as a sub-group of S.. If e denotes the identity
character of S, then 0-1(h) Indg; (e). Further, it is clear that
does not depend on the particular choice of sets of numbers, as the various
resulting S are all S.-conjugate.

Let r, r’.. We define N(Tr’) to be the number of elements of S
which lie in the conjugacy class of r’.

PROPOSITION 3.

Proof. From (4.1), Ir’[(n!)-1 -, is the characteristic function of the
conjugacy class 7r’. Thus

o-l(h,,.) Ind,; (e=)(’y=,)I’i (n!) ,,,
where T, denotes an arbitrary element of the conjugacy class r’.

It is immediate that for any X Rs., X(/,) (X, ,) (where
standard inner product of Rs); so by Frobenius reciprocity

Ind- (e=)(,/,,,)= (e,,, "r,,, S,,)= n! I,n-’l- N,,(’rr’)IS,I-.
is the
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COROLLARY. Let A be the Z ideal generated by the numbers

r Ir =r’

]:or all zr’ .. Then the image o]’ h in Y.. has order

Card(Z+AZ/ (resp" (Z2+2A/ 2).ffl#2 Card ffl=

In particular consider the trivial partition n n. Then 0-() e (the
identity character of S.), and n , [’1 ’. Later we will show that the
image of h. in Y., corresponds to the class of a certain Swan module.

Example. The image of h2 in Y2, is non-trivial when l# 2.

Proof. Let ’ be the partition 2/= 1+...+1+/ (l l’s). Then
(2/)(/ l)-, ’’ and ’ is not the/th power of any other conjugacy class.
If we let h2 a then

la,- a,= l/(lt).

Since is divisible by l, A2 l-Z, and we are done by the corollary above.
The reader may wish to verify that lh2t ,.
Remark. The existence of a non-trivial element of Y., may also be

deduced from eorem 1 and the following result.

THEO (S. Ullom). An odd prime divides If1 (ZS)l i, and only
n/2.

(For proof see (3.9)(ii) of [12] and (3.8) of [11].)
Let m be an integer prime to n and let .. Following R. Swan in [8]

we let Ira, E] denote the class of the locally free, right ZS-module

(5.1) From (6.1) of [8] we see that the class Ira, E] depends only on the
class of m mod Is l.
We now consider integers m such that

(5.2) m 1 mod n!Zv or primes l’ l, l’ n,

mlmod(l) illS2,

lmod(4) if/=2.

We let T(S) be the group given by the classes of these modules. From
(2.4) of [11] using (5.1), we have that the class [m, E] is represented under
isomohism (2.1) o [10] by the homomorphism rom Rs to H,Z given
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by

(5.3) tb--->rn6" at l,
--> 1 at primes l’# l,

for tb Rs.
We denote the group of classes in C1 (ZS.) obtained by induction from

Tt(S), by Indg; (Tt(S)).

THEORE 3. rl induces an epimorphism .Indg; (T(S))---> Y,,, and
further, for 2, this map is an isomorphism.

Proof. From (5.3) and from Appendix VII of [1], the class of the induced
module Ira, E](R)zsZS. is represented under (2.1) by the homomorphism

(5.4) X -> rnxls’) at l,
--> 1 at l’# l,

or X Rs,. From (5.4) and (5.2) it is immediate that this class is represented
by an element of C2). We recall that for 14:2 (resp. l= 2), rl induces an
isomorphism (resp. an epimorphism) h" C2)--> Y,,. Now by Frobenius
reciprocity

(XIs, e)= (X, Ind,: (e))= (X, O-(h))
Let C., denote the projection into Hom(Rs., I+/Z) if 1#2
(resp. Hom (Rs., 1 + 4Z2) if 2) of the homomorphism given in (5.4). Then

1
rl(C,.,) log (m)(x, O-(h))O(x) if l 2,. 1/4 log (m)(x, O-l(h))O(X) if l= 2,

where the sums are taken over the irreducible characters X of S,. Thus we
have

1
rl(C,.) log (m)h. if l 2,

-4--log(m)h if 1=2.

However, if rn 1 mod (/2) when l 2 (resp. rn 1 mod (8) when 2), then
(1//) log (m) (resp. 1/4 log (m)) is an /-adic unit, and so we are done because
A., is generated over Zt by the {h}
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