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CHEVALLEY GROUPS AS STANDARD SUBGROUPS, II

BY

GARY M. SEITZ

Introduction

This paper continues the work that was begun in [13]. Our situation is
that A is a standard subgroup of a finite group G and fi A/Z(A) is a
group of Lie type having Lie rank at least 3 and defined over a field of
characteristic 2. Our goal, in this paper, is to show that under the hypotheses
of the main theorem of [13], either (a), (d), or (e) of that theroem holds, or
there is an involution Co(A) and a t-invariant subgroup, Go -< G, such
that Go satisfies (b) or (c) of the main theorem. Once we prove the existence
of such a group Go, all that will remain in the proof of the main theorem is
the verification that Go E(G). That verification will occur in part three of
the series.
Our construction of the group Go is as follows. Using the results of 4 of

[13] we find a subgroup X-< A so that 02’(CA(X)) is a standard subgroup of
Co(X) and tO: Z*(Co(X)). By induction, Hypothesis (,), or by appealing to
the literature, we have the structure of E E(Co(X)). The group Go will be
(E, EW), where w is a suitable element of the Weyl group of A. The
structure of Go is obtained by developing sufficient commutator information
in order to apply the work of Curtis [5]. However, there are some difficulties
in obtaining the necessary commutator relations. This is due, in part, to the
fact that root subgroups of A may be properly contained in root subgroups
of Go, and in some cases not even contained in root subgroups of Go.
Another difficulty occurs when X is taken as an abelian Hall subgroup of a
group, J, generated by two opposite root subgroups of A, and we find that J
does not centralize E(Co(X)).
Throughout the paper we operate under the following assumptions:

IZ(A)I is odd, K Co(A) has cyclic Sylow 2-subgroups, and fi: Sp(6, 2),
U6(2), 0+/-(8, 2)’, or L,(2a). The omission of A L,(2a) is justified by the
corollary in [ 14]. Let R Syl2(K) and (t) f/l(R).

5. Preliminaries

If X is any subgroup of G we set XA ((O2’(A fq X))X). So XA --X.
We will need a slight generalization of (1.3) of [14].

(5.1) Let X be a finite group, P a standard subgroup of X with Cx(P) of
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2-rank 1 and IZ(P)[ odd. Let S Syl2(N(P)) and let be the involution in
Cs(P). Suppose that there is an element g N(S)-S with g2 S and tg

PCx(P). Then [P, O(X)] 1. So if L is a t-invariant 2-component o X with
P <-L, then L is quasisimple.

Proof. This is just (1.3) of [14] with slightly weaker hypotheses. These
hypotheses are precisely what was needed to prove that result..

(5.2) Let X< Y<Z be finite groups o]’ Lie type defined over a field of
characteristic 2, and each generated by its root subgroups. Suppose that r is an
involutory automorphism of Z and o]’ Y and X= E(Cz(r)). Then there is an
even integer n and q 2a, such that (, ’, :) is either

(PSp(n, q), PSU(n, q), PSU(n + 1, q))
or (PSp(n, q), PSL(n, q), PSL(n + 1, q)).

Proof. First note that by the Borel-Tits Theorem ((3.9) of [3]) r must
induce an outer automorphism of Z. Checking centralizers of outer auto-
morphisms (see 19 of [1]) we obtain the result.

Next, we discuss national conventions. Let X be a group of Lie type
defined over a field of characteristic 2 and having root system E. Then
IZ(A)I is odd. Let {a,...,
Once we have chosen a Borel subgroup, B, of X and fundamental reflec-
tions Sl,..., s, of the Weyl group of X we often write X= (K,,..., K)
where each K, is generated by the root subgroups corresponding to the
roots +a,. Let B be the opposite Borel subgroup.
Now suppose that is an involutory field, graph, or graph-field auto-

morphism of X defined with respect to the root system E. So

K’,{K,,...,K.} for each i=l,...,n.

Then OZ(Cx(t))= Y is a Chevalley group with root system determined by
and we write Y= (Jol,..., Jo.) where

{J,,..., J.,I={O2’(C(t)fq(K,, K))" i= 1,..., n}.

(See Theorem 33 of [15].) Note that CB,(t) and CB,o(t) are opposite Borel
subgroups in C(t).
We will have occasion to use the fact that the set {J,..., J.} in some

sense determines {K,,...,
(5.3) Let X= (K,, Kn) and Y= (JI, Jt..,) be as above. C1, C

be t-invariant opposite Borel subgroups of G for which permutes the corres-
ponding root subgroups. Let L,,,..., L,. be the associated subgroups, corres-
ponding to K,..., K.. Assume that Cs,(t) Cc,(t), Cs,o(t) Cc0(t), and,
fori=l,...,n,

Oz(C(t) f3 (K,, K,)) Oz(C(t)fq(L,, L,)).
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Then {K,,, K,.} {L,I, L,.}.

Proof. Let bars denote im_ages_in X/Z(X). For each a c there is a root
subgroup On of .., with U,<_B1 if ace+ and 0,_<" if aE/. Use
Theorem (1.4) of I-4] to construct a group Y such that Y/Z(Y), and Y is
a group generated by isomorphic copies of the group U and having a
presentation that involves only the commutator relations that exist among
these root subgroups. Then can be regarded a..E.san a___utomorphism of Y.
Now, if we start from root subgroups that are in C1LI C, then with suitable
labeling of the elements, the same commutator relations exist and we are led
to the same group Y. We conclude that there is an automorphism, tr, of
such that the following hold" trt ttr (viewing c Aut (..)), /= (1, ’-C---, and K,- ,, for 1,.. n. Then, for j 1,..., m, we have

Y= Yt,, (B f’IJ,) C fq J, and (B fq J,) Cl fq J,.
But we have assumed that Cs(t) Cc(t) and CslO(t) Cco(t). it follows that
cr normalizes

BlfqJz, and Bt3Jz, for ]=l,...,m.

Let be the subgroup of Aut (.) generated by " together with all
diagonal automorphisms of ... We can write o-= trier2, where 0"2 .. and
is the product of a field and a graph automor_phism of X, defined with
respect to the Borel subgroups / and of X, and centralizing t. Then
tr2t= ttr2 (an equation in Aut (..)) and rl stabilizes the set {K,..., K.},
inducing a graph automorphism (possibly the identity). Now tr: acts on
] Oz(C:(t)), and from the choice of r, we see that r2 normalizes each of

]t,, B f"lJt3,, and Bl f’l Jt,,
for i= 1,..., m. So tr2 induces a diagonal automorphism of J (with respect
to the Borel subgroups BfqJ, BfqJ), and since tr2cC.,t(t), we use
the Bruhat decomposition to see that tr2 is in the Cartan subgroup of
that normalizes each of the root subgroups, U,, for acE. Then
{K,,..., K.} {K,,..., K.}, proving the lemma.

(5.4) Let Y= PSL(4, 2), PSL(5, 2), PSU(4, 2), PSU(5, 2), PSp(4, 4) or
PSp(4,2)x PSp(4,2). Let tr be an involutory automorphism o Y with
Cc()- PSp(4, 2). I[ X is a tr-invariant subgroup o Y with C.(tr) <X< Y
and C.(tr) X Y, then Y PSU(5, 2) or PSL(5, 2) and X’ PSU(4, 2) or
PSL(4, 2), respectively. We omit the details.

Proof. If YPSp(4, 2) PSp(4, 2), then this is easy. In the other cases
the result follows from Sylow’s theorem together with an analysis of the
action of X on the underlying vector space defining Y. We omit the details.

(5.5) Let fi O+/-(n, 2)’, I <- A, and let P< A satisfy

PZ(A)/Z(A) =,- PSO/(8, 2).
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Suppose that P= E(CA(I)) is a standard subgroup o CG(I) and that

R e Syl2(CG(P) N CG(I)).

Finally assume that when A is regarded as acting on the subspace of the usual
F2-module, V, of O+/-(n; 2) we may write V= V1-L V2, with dim (V1)= 8, P
fixes each 1-space of V2, and V1 is P-invariant. Then C6(I)--M(22).

Proof. Suppose otherwise. Then C(t)f’lE(C6(I))-Aut (0+(8, 2)’) (see
Table 1, p. 441 in [2]). Let x be a 3-element centralizing and acting as a
graph automorphism of order 3 on P. We know that x C(t)<_N(A).
However from the embedding of P in A we see that this is impossible.

6. Notation and the subgroup E

Write A (U+/-,I,..., U+/-,,), where for a E (the root system of A), U. is
the corresponding root subgroup. Set V, f;(U,) and J, (V+/-,). Then for
each a ,, J, -SL(2, q) for some q 2a. For i= 1,..., we may choose
the fundamental reflection si ./,. Choose r/ such that r is long and
Vr <-Z(U) and set J= J,. We set J, (Us, U_).
At this point we assume that Hypothesis (,) holds and that the theorem is

true for all pairs (A, G1) with IA I<IAI, By [14] we may assume that
fi PSL(n, q). Also we have of Lie rank at least 3, but PSp(6, 2),
PSU(6, 2), PSO+/-(8, 2). We adopt the notation of [13].
Choose X<_A and D= E(CA(X)) as in (4.1) of [13]. Set E= E(C(X)).

(6.1) The pair (13, fi) is one o the following (up to isomorphism)"
(i) (O+/-(n-4, q)’, O/(n, q)’), n even,
(ii) (L6(q) E6(Q)),
(iii) (O+(12, q)’, ET(q)),
(iv) (ET(q), Es(q)),
(v) (PSp(6, q), F4(q)),
(vi) (PSU(6, q), :ZE6(q)),
(vii) (PSp(n- 2, q), PSp(n, q)), n even,
(viii) (PSU(n- 2, q), PSU(n, q)).

Proof. This follows from (4.1) and (4.3) of [13].

(6.2) R (t) and one of the following holds"
(i) ///, with interchanging the factors.
(ii) is a finite group of Lie type defined over a field of characteristic 2,

and induces an outer automorphism of . (a field, graph, or graph-field
automorphism ).

Proof. The structure of / is given by induction, Hypothesis (,), or by
application of the theorems in [11], [12], [14], and [20]. In addition, we use
(5.5) in case /3 0+(8, 2)’. To see that R =(t) use (3.2) of [16].
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The group D is generated by certain of the groups J,, i= 1, I. Indeed,
for all cases except (6.1)(i), D is generated by all but one of the groups
There is a unique root s/ such that V <-Z(U tqD) and Vs consists of
root involutions in E. However, there are cases where root subgroups of A
contained in D are not contained in root subgroups of E. This can occur if
induces a graph automorphismof the Dynkindiagram of E. In the accompanying
table we list the possible configurations that occur in (6.2)(ii). Indicated are
the groups /),/, the Dynkin diagram of/, and the type of automorphism
that induces on /.
We remark that except for cases (10) and (11) above we always have s r

in W, so Js J in A. When we discuss the pair (/),/) we will always refer to
one of the entries in the preceding table with the given embedding of root
systems. So, for example, we distinguish between (PSp(4, q), PSU(4, q)) and
(PSp(4, q), PSO-(6, q)), even though PSU(4, q)- PSO-(6, q).

(6.3) Assume that the root system, ,1 ,, of D is not.o[ type C2, B2, B3,
A3, B4, or D4, and also assume r--- s in W. There is an involution w A such
that J’ J (see (4.1) or the definition o J and Js). If J, <- C(J), then there
is a root ot such that J, <-C(J)fq C(J) O C(J,,). If W is not of type F4,
then a can be chosen conjugate to r.

Proof. This is proved by direct check. The following table gives the
relevant information. The first column gives the type of W, the second gives
the element w. The third column lists the roots, ai, with J,-< CUr), and the
last column gives the corresponding roots a.

E6 ($355)s4s2 011, 0[3, 0[4, 0[5, 0[6

E7 ($255)s4s3sl 0[2, 0[3, 0[4, 0[5, 0[6, 0[7

E8 ($3s2)s4sSs6sTs8 011 0[7

4 $2sl 012 013 0[4

D. ($351)s2 0[3 0[n

Cn $1 012 0[n

B. (s3sl)s2 0[’3 0[rt

0[3,

0[2,

’0[3,

0[3,

0[2 q"

We will also consider roots not conjugate to r. If 5; has roots of different
lengths, let 3’ be the short root in E+ of highest height. Let be the short
root of highest height in the root system of D. So J -< D and J Jv in A.

(6.4) Suppose A F4(q). Let P E(CA (Jr)). Then

P (Jotl, Jot2, Jot3) Sp(6, q), P E(CA(Y))
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for Y a (q + 1)-Hall subgroup of J SL(2, q). Also Z (J1+2.3, Js)
Sp(4, q).

Proof. This follows rom the act that a graph automorphism of Fa(q)
interchanges J and J.

(6.5) Suppose A PSp(n, q) with n >-6. Let

P O2’(CA (Jv x J)) and Z O2’(CA (P)).

Then P=(J,., J,)<-D, Z=(J,I, Js)Sp(4, q), and P=E(CA(Y)), where
Y is a (q + 1)-Hall subgroup o]’

J, x J. SL(2, q) SL(2, q).

Proo]’. This can be checked using the natural module V for the group
Sp(n, q). The involutions in J and J are of type a2 in the notation of 7 of
[1]. One shows that JvxJ, induces the identity on a non-degenerate
(n- 4)-subspace of V. The result follows.

(6.6) Let A PSU(n, q) with n >- 6. Let

P= O2’(CA(J)) and Z= O2’(CA(P)).
Then

P=(.,,, J,._,..., J,), Z=(J,,, J)=SU(4, q) and P= O2(CA(Y)),
where Y is a (q2+ 1)-Hall subgroup o]’ J. SL(2, q2).

Proo]’. As in (6.5) this is checked using the natural module V for
SU(n, q). We may regard the group J as acting on V. Then Jv is trivial on a
non-degenerate (n-4)-space of V and acts faithfully on a non-degenerate
4-space, Vo, of V stabilizing complementary isotropic 2-spaces. The group
Y is fixed-point-free on Vo. From the structure of SU(4, q) we see that no
involution in SU(4, q) centralizes an element of order q2+ 1. It follows that

O2’(CA(Jv))= O2’(CA(Y))SU(n-4, q).

Since the commutator relations imply that (.,,... ,J,,)-SU(n-4, q) is
contained in CA(Y) we have P=(f,,,...,J). Similarly (J,I,J)<-
O2’(CA(P)) and CA(P) must stabilize Vo. The result follows.

(6.7) Let fi, 2E6(q). Let

P= oz(c,,()) a z=
Then P= (L2, Jl, J) 0+(6, q)’ PSL(4, q), Z= J, and P O:(C(Y)),
where Y is a (q2+ 1)-Hall subgroup of J. SL(2, q2).

Pro01 Jv =(Uv, U_v), so we first look at CA(Uv). Using (4.6) of [6] we
consider the structure of the parabolic subgroup (B, sl, s2, s3)=/. This group
satisfies O2’(I) QD, where Q O2(1) and D (J, J,2, J) 0-(8, q)’.
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Moreover, Q contains a subgroup Q1 <I such that Q1 is elementary of
order q8 and D preserves a non-degenerate quadratic form on Q1. Then Q
becomes an orthogonal space and in this space Uv is an anisotropic
2-space. Since Q -< Z(Q), C(U) f’l QD QD where D 0+(6, q)’. But
(J2, Jl, J) centralizes Uv, so DI (J2, Jl, J). Therefore

P= O2’(C(Jv)) O2’(C(U))n O2’(C(U_v))=(J,, J,, J).
Next we check that 02’(C,(P))= Jr, as follows. We know that

Also, 0/2"" 01 0 r in W. We can then check

c, (].) n c,, (L) n c(7)

to get the result.
Finally consider Y-< Jv and CA (Y). Clearly P <- CA (Y), Also the 2-central

involutions in P are root involutions in A and so also in CA(Y). If u is a
root involution in CA (Y), then we can use the information in (4.6) of [6] to
see that CA(Y) n CA (U) Cp(u). Now Cp(u) is the centralizer of a transvec-
tion, when P is regarded as SL(4, q). It follows that u is a 2-central
involution in CA(Y) and that the Sylow 2-subgroups of CA(Y) are isomor-
phic to those of SL(4, q) P. Setting Z (pcA(Y)), we use Theorem 1 of [17]
to conclude P Z O2’(CA (Y)).

7. Generating subgroups

In this section we will construct certain subgroups of G. In later sections
these subgroups will be shown to generate a subgroup Go-< G such that (o
is isomorphic to one of the groups in the main theorem. To this end we will
establish some commutator relations among the constructed subgroups.

Let X, D be as in 6.

(7.1) Let bars denote images in C(X)/XO(C(X)). Then D is a stan-
dard subgroup of C(X) and D C(X).

Proof. This is (4.9)-(4.12) of [13].

(7.2) (i) D<-E(C(X)).
(ii) R (t) E(C(X)).

(iii) is odd.
(iv) The pair (D,E(C(X))") is one of the pairs listed in the main

theorem.

Proof. Look at the group C(X)/X and apply (5.1) and (6.2). This gives
the structure of E(C(X)/X). Now apply (3.1).
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Let E E(C(X)). The action of on E shows that tfq tD# {t}. Conse-
quently we may assume that we are not in the situation of (3.5)(ii) of [13]. In
particular, we may now assume X to be of odd order.

(7.3) Notation. Recall, that if A is an orthogonal group, then
Otherwise Yr J. Except for the case ---0+(8, q)’, X is a (q+ 1)-Hall
subgroup of J. For each a / with a--- r in W, choose w W with a rw,
and regarding w G set J,, J’, X, X and E E’. Fix notation so that
w=lifc=r and w is as in (6.3) if cz=s.
For each of the possible pairs (/,/) there is a subgroup Ks of E, such

that J <_ Ks, K is t-invariant, and

Ks SL(2, q2), SL(2, q) or SL(2, q) x SL(2, q).

Indeed, if /fi,fi,, set Ks to be the group generated by the root
involution in the projections of Js to the components of E. Otherwise, one
checks that the involutions in Js are root involutions in E and we set Ks to
be the group generated by the involutions of the root subgroups of E
containing Vs and

Finally, we note that Ks Js -SL(2, q) only if D Sp(n, q) for n even and
/ is one of L,(q), L,/(q), PSU(n, q), PSU(n + 1, q), or PSO+/-(n + 2, q)’.

(7.4) Suppose fi, 0(8, q)’ or 0+/-(10, q)’, and also suppose that (), #_.) is
not (PSp(n, q), O*(n + 2, q)’), with n >- 4. Let a 2, be conjugate to r. Then
L -< C(E), so E E(C(L)).

Proof. It will suffice to prove this for a r. Here X Xr and E Er E,.
The structure of/ is known by (6.2) and Table 2. Let s be as in the remark
following (6.2) and Js =(Vs, V_s)E. By (4.3), D<_C(J).
Suppose (/3,/) # (PSp(4, q), VSU(4, q)), (VSp(4, q), PSL(4, q)). We claim

that tgZ*(C(]r)). Suppose otherwise. Since ., and -s are conjugate by an
element of A, we have eZ*(C(]s)). Hence, eZ*(Y(t)), where Y=
CE(Js). But a direct check shows this to be false. Thus the claim holds, and,
consequently, DO(C(J))C(J). Now argue as in the proof of (6.2) and
then use (5.1) to obtain the structure of E(C(J)).
Now C(J,)_< C(X) and D is standard in each.of E(C(J)) and E(C(X))=

E. By (5.2), either (7.4) holds or (/3, E(C(]r)), ) is one of

(PSp(n, q), PSL(n, q), PSL(n + i, q))
or (PSp(n, q), PSU(n, q), PSU(n + 1, q)).

Suppose one of the latter holds and let w beas in (6.3). Then w inter-
changes X x L and XWx]r. So OZ(C(X]s))--.O2’(C(]XW))
Comparing centralizers of Js in C(X) and in C(J) we obtain a contradiction.
Suppose, now, that

(D,/) (PSp(4, q), PSU(4, q)) or (VSp(4, q), PSL(4, q)).



Then Y=J,,x I, where I/Z(E)-Zq+ or Zq_, respectively. Let Xo be a
(q+ 1)-Hall subgroup of J,,. Then Xo--a X and J,<C(Xo). In fact, J,
E(E(C(Xo))fqC(X)) (recall that q>2 here). Consequently, N(J,)_>
(D, I)= E, and the result follows.

Hypothesis (7.5). (i) s---r in W.
(ii) fi O+/-(n, q)’, with n 8, 10, or 12.
(iii) (/3, ) (PSp(n, q), O+(n + 2, q)’), with n >- 4.

Remark. As stated in 6 we distinguish the pairs

(PSp(4, q), PSU(4, q)), (PSp(4, q), 0-(6, q)’)

and also the pairs

(PSp(4, q), PSL(4, q)), (PSp(4, q), 0+(6, q)’).

So in each case the first pair is not ruled out in Hypothesis (7.5).

(7.6) Assume Hypothesis (7.5). Then K <- C(Es).

Proof. This is clear from (7.4) if K J SL(2, q). So suppose J < K.
Assume first that q >-4. Then there is an easy argument as follows. Since

K SL(2, q) or SL(2, q) x SL(2, q), there is a subgroup -< Ks such that
is an abelian Hall subgroup of K and ., J is an A-conjugate of_the

subgroup X<-J. Moreover X centralizes a (q+ 1)-Hall subgroup of J if
>J. So <-Nc,(E) (recall the definition of E). But Ks =(J,.,), so
Ks <-- N6(E). As J :a C6(E) Ks :K we must have K <- C6(E) as de-
scribed.
For the remainder of the proof we assume q 2. Recall that fi O+/-(n, q)’

for n=8, 10, or 12. Let r= s, where w is as in (6.3). Choose a with

J_, <-CA(L). Then j,w,<_ CA(L). By (6.3) there exists a root ct such that
J,, <-C(J) C(Js)fq C(j,w,). Suppose, for the moment, that W is not of type
F4. Then, by (6.3), we may take a-- r. From the definition of K one checks
that J <- C(K). We claim that j,,w, <_ C(K). Clearly K, J, <- C(J,,). Also,
J,JW,<-E =E(C(J)). This is because E and E are conjugate by an
element of W (considered as an element of A). If Ks.a3xs3, then
KL2(4) and we must have K-<E (since K<-N(KtqE,) and
K fqE >- J). Suppose K E. Then Ks $3 $3 and//x/. Because
of our standing assumptions on A we see, from the structure of E, that either
] Sp(6, 2) or K-< Cv.(])(. As we are assuming K E C(Y)>, we
must have )=Sp(6, 2). Since K <-N(K fqE,,) and J--<K tqE,, we must
have K =(K, tqE,,)(u), where u is an involution satisfying [u, t]= v and
(v) V. Since Aut (Sp(6, 2))= Sp(6, 2), v interchanges the Components of
E,,. So tu stabilizes each component of E,,. In particular, tu stabilizes the
intersection of O3(K) with each component of E. But then v=(tu)2

centralizes O3(K), a contradiction. So we necessarily have K <-E.
Let L O2’(CA (LLY)). Considering T C(L]L) as a subgroup of C()
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we have O2’(T)=/s, where/s Ks or Ks x K, according to whether or not
J Js or Js > Js. Let Y E(C.,(J)). Then from the structure of E-E we
check that

OZ(C. (Y)) Oz(C. (L))
As Ks <- Oz(C.(L)),and as Ja,<-Y, we conclude that J,<-C(Ks). Thus,
the claim holds.
We show that this also holds if W is of type F4. Consider the possible

values of s, using the table in (6.3). If i=2 or 3, then J,=J, and
J, <-C(Ks) (view this in E). Suppose i= 4. The corresponding value of a is
a a2--r, and the above arguments apply here. So in all cases we have, <- C(Ks).
At this stage we have

Co(Ks) >- (C.(Ks), J,,,: J,, <-- E) (Cn(Ks), DW) Y1.
Since we know the structure Of N(Ks)f3 C(J) we can apply induction and
(5.2) to see that Y1 Es. It follows that Ks <-C(Es), as desired.

(7.7) Assume Hypothesis (7.5).
(i) If ,, is not an orthogonal group, then for al, a. e A, [J’,, j2] 1 i[ and

only i] [K,, K’2] 1.
(ii) I fi is an orthogonal group, then or al, a2 in A [KI, Ks]= 1,

provided [J, J’] 1.

Proof:. This is clear if Js Ks, so suppose Js < Ks. Also, since Js <- Ks it
will be sufficient to assume [ja,, ja] 1 and to prove [K’, K] 1. So set
a= a2a-f A and assume [L, J] 1. Then J-< C(L), so J <- Es <- Co(Ks)
by (7.6). So Ks <-Co(J). Also, J <-E(Co(J)) so as in (7.6) either Ks <-
E(Co(J-)) <- C(K’) (by (7.6)),. or E(Co(J-)) /3 x/) and K
(Ks tq E(C(J-s)))(u), where [u, t] v V. In the latter case argue as follows.
By (7.6), C(Ks)tq C(J’)>_ Es fqC(J’). But this does not coincide with the
structure of C(.)N C(Ks) obtained from the embedding of Ks in C(]).
Therefore, we must have [Ks, K]= 1, as required.

(7.8) Assume Hypothesis (7.5).
(i) Ks <-- Co(Es).
(ii) I]’ Ks > :Is, KsS3 $3, and i[ fi is not an orthogonal group, then

Ks E(C(Es)).
(iii) II’ w N (regarded as an element of W) and J7 Js, then K7
Proof. Consider 02’(C(Es))>-J. We may assume that Ks > J. (i) follows

from (7.6). Assume A is not an orthogonal group. We have
02’(C(Es)). If Js $3, then Js is a standard subgroup of C(Es). Using the
main theorem of [10] and (2.1), we obtain (ii). Suppose Js $3 and let
Vs < I Syl2(Ks). We are assuming that Ks $3 x $3, so Ks L2(4). We claim
that I Syl2(E(C(Es))). Otherwise, there is an element x E(Co(Es)) with
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xI, x2I, and x normalizing I(t). Since tC(Es), tdC(Es) and hence
tI. But then x and x I(C(t) iq C(Es)) IJs(t), a contradiction. From

here we obtain KsO(Co(Es)) L(Co(Es)), and arguing as in the proof of
(5.1) we have the result.
Suppose w N and Js Js. Assume A is not an orthogonal group. We

have w J x CA(L). So we may assume w CA(Js), for, otherwise, replace
w by wl=gw with gWFIJs. Then CA(Js)=E(CA(Js))<-Es<-C(Ks) (by
(i)). So K’= Ks and (iii) holds. Suppose that fi is an orthogonal group.
Write s rwl where wl s283s182. Then

we(JxD)w,=jxJ,3xDwl.

Now J3--< C(Ks), so we may assume w Dw -< E71 Es and again the result
follows from (i).

At this point we know that, given Hypothesis (7.5), we can define a
subgroup K, for each a E with a-- r. Namely for such a root a choose
w W with s a. Then regard w as an element of A and set K KT. By
(7.8)(iii) this is well defined. Also, K K,,. Moreover, (7.7) gives certain
commutator relations among the K,,, For example, we have:

(7.9) Assume Hypothesis (7.5) and that fi, is not an orthogonal group. Let
a, [3 , and a [3 r s. Then [K,, Kt] 1 if and only if [J, Jt] 1.

(7.10) Assume that Hypothesis (7.5) holds. Let fi -PSp(n, q) with n >-8,
PSU(n, q) with n >-6, or PSp(6, q) with -PSp(4, q2), PSU(5, q), or
PSp(4, q)x PSp(4, q). Then the following hold"

(i) There exists g E with t g C(Z) (notation as in (6.5) and (6.6)).
(ii) Co(Z) contains P= (.,, J,_.,..., J,) as a standard subgroup,

PO(Co(Z)) Co(Z),

and (t) Sy/2(Co (Z) fq Co(P)).
(iii) ,-tcz< E, and (lcz3 E(C(Z)) unless fit PSp(8, 2)

Proo[. To get (i) we consider the action of on E and use the results of
19 of [1]. In most cases it follows that if v D is a transvection, then t tv
by an element of E. Otherwise t tv for v a product of two commuting
transvections. Since

(z)

we may choose v so that g tv satisfies (i). Also, it is easy to check that
(t) e Sy/(C(Z) Co(P)).
Suppose that fi -PSp(n, q) or PSU(n, q), with n_>8. Notice that if

fi PSp(8, q), then (7.5)(iii) shows that /L6(q) or U6(q). Let r---rl E
and choose r/ such that [J,Z]= 1. Let L= 02’(CA(JZ)). Then
PSp(n-6, q) or PSU(n-6, q). Then L xZ<_E and we check that
tO: Z*(C(Z)(t)). Consequently, t Z*(Co(Z)). This proves (ii). As J,,-< E
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and C(Z) -< C(J) -< N(E), certainly ,_,tc(z3, <- E. If . PSp(8, 2), then J, -<
C,(Z) and an easy argument gives the rest of (iii).

In the remaining cases let V be theusual module for Sp(6, q), $U(6, q),
or SU(7, q) and consider As acting, projectively, on V as (AS)-. Since
g E C(Jr), Jr<A g. As Z<N(Ag) and Z (J,Z), we must have Z<_Ag. Also,
g C(J) implies that V is a root subgroup of A for a long root. So the
elements of V are transvections in their action on V. Cz(Vr)= Q(Js x Ho),
where Q= 02(Cz(Vr)), Cz(V,) acts irreducibly on the elementary group
Q/V, and Ho- 1 or Zq/t, depending on whether Z Sp(4, q) or SU(4, q).
Consider CA,(V,). This group has as normal subgroup 02(Cx(V))I, where
I Sp(4, q), SU(4, q), or SU(5, q). Moreover, we may assume J <-/. From
the structure of the parabolic subgroups of X (see 3 of [5]) we conclude
that O -< 02(Cx(V)).
Now we claim that Z stabilizes a non-degenerate 4-space of V1. From the

embedding of J <-Ag we see that Jr Js must stabilize a non-degenerate
4-space, V2, of V. Moreover V2 V3_L V4 where V3 and V4 are non-
degenerate 2-spaces, J trivial on V4, and J trivial on V3. Let {vat, v32} be a
hyperbolic pair. for V3 chosen so that IV, V3]=(v31). Then 02(Cx(V)) is
trivial on 1)31I/)31. Apply the 3-subgroup theorem to J, Q, and (v32). We
have

[J, (v32), Q] 1 and [J, Q, (v32)] [Q, (v32)].

Since QJs normalizes [Q, (v32), Js](V31), we conclude that

So Q stabilizes V2 and hence Z (J, J, Q) stabilizes V2, proving the claim.
From here we see that CA,(Z) contains D-Sp(2, q), SU(2, q), or SU(3, q)
as a normal subgroup. In the first two cases q > 2, and so [D, t]= D. As
D<_ C(Z), we see that t_Z*(Co(Z)(t)). This also holds for fi---UT(q), if
q > 2. If fi U7(2) and Z*(Co(Z)(t)), then

D SU(3, 2) and [D, t] O3(D)-< O(Co(Z)).

Viewing Co(Z)<-Co(J)fq Co’(J), we see that this is impossible. This proves
(ii), and (iii) follows.

(7.11) Assume that the hypothesis of (7.10) hold and choose notation as
in (6.5) and (6.6). Then

02(E nE)= C(Y),, C(L xL),, C(Z),.

Proo] We have Y-< Z and J x J _< Z. So

Co(Z)A <-- Co(J, x J)A and Co(Z)A <- Co(Y)A.

By (7.10)(ii), P is a standard subgroup of Co(Z) and PO(Co(Z)) Co(Z).
From (6.5) and (6.6), P is standard in Co(Y), and by direct check we have P
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standard in. Co(J Js). By (5.2) we conclude that

c (Z x :rs),,

unless, possibly, E(C,(Z))" PSp(n, q), E(Co(Z))" - PSU(n, q) (respect-
ively PSL(n, q)), and one of E(Co(Y)) or E(C(Jr x Js))" is isomorphic to
PSU(n + 1, q) (respectively PSL(n + 1, q)). Suppose that this exceptional
case occurs. Let I= Y or Jr xJ, so that E(Co(I))-’PSU(n+I, q) (or
PSL(n + 1, q)).
Let r. Then considering C(J:)> Z we see that

C(J() Cl C(Z))A C(J,) C( Y))A C(J) n C(J,J))A.

Reading this in the groups C(Z)A, C(Y)A, and C(J,J)A we see that n 2.
But then PO(Co(Z)) J,,30(Co (Z)) --- Co(Z), a contradiction.

Finally, Er Co(J), and E Co(Js)A, so Er f3 Es -> Co(J x J)A. Check-
ing the embedding of J in Er we get the equality, completing the proof of
(7.11).

(7.12) Assume that fi, Fa(q). Let Y, Z be as in (6.4). Choose X1 a
(q+ 1)-Hall subgroup of J and Y1 a (q+ 1)-Hall subgroup of J,, where

al +a2+ a3. Then:
(i) X x X1 and Y x Y are (q + 1)-Hall subgroups of Z.
(ii) Q (J,2, J,) is a standard subgroup o Co(Z) with

(t) e Syl2(Co(Z) f’l Co(Q)).

(iii) (C(Xx XX))A is Z-conjugate to (Co(Yx Y1))A.
(iv)

(Co(Z))A (Co(X x X1))A (Co(YX Y1))A = (Co(J x J))A
x

provided tO: Z*(C(Q)) or t Z*(C,o(Q)), here o E(C(Y)).

Proof. By order considerations (i) holds. So by Wielandt [18], X x X1
and Y x Y are conjugate. This proves (i) and (iii). We have (ii) by inspec-
tion. We have Z containing each of the groups X x X1, Yx Y, Jr x Js and

J x J,. Therefore (iv) will follow as in the proof of (7.11), once we show that
tC: Z*(Co(Z)).
NOW Qg--Z oi" g= s1s4s2s3s251s3s4EA. So it suffices to show that

tZ*(Co(Q)), and each of the conditions in (iv) immediately implies that
this is the case. This completes the proof of (7.12).

8. fi E. (q), D. (q), and 2D. (q)

We are now in a position to construct the subgroup Go. The method for
all the groups is essentially the same, although there are certain differences.
The hardest cases are when the Dynkin diagram of A has a double bond.
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(8.1) Suppose that fi -E,,(q), n 6, 7, or 8. Let wl W be the element
$2S4S3, SlS354, $85756 r.espectively. Let Go (E, E’,). Then Go is semi-simple,
IZ(Oo)l is odd, and Go E.(q) or E. (q) E. (q).

Proof. We give the proof for n =8, the other cases being similar.
/---ET(q2) or ET(q) ET(q) and E (KI,..., K,) (see Table 2). Then

Ewl (K,..., K,,)= (K,, K,, K, K7, K8),

by (7.8). So Go (K,.,..., Ks).
First assume that E -E7(q2). Here we claim that o-Es(q2). To do this

we must first know the commutator relations existing between Ks and the
groups K,,..., K. By (7.9), [K8, Ka,]= 1 for i= 1,..., 6. Also

(K,,, K,)w, (K,, K,,) SL(3, q2).

So we can label the elements of (K, K8) by elements of Fq:. However this
must be done in such a way that the elements of K,, have the same labeling
in E as in (K, K). This can be done by relabeling (K,, K) using a field
automorphism (see 11 of [7]). Once this has been done Theorem 1.4 of
Curtis [4] shows that Go is a homomorphic image of a certain group G*,
where *----Es(q2) and G* is generated by groups isomorphic to
K,,...,K, subject to certain relations determined by the groups
(K,, K,,), 1--< i, j--< 8. This proves the claim. Also, note that IZ(Oo)l is odd,
because otherwise C(A) would contain a klein subgroup.

Next, suppose E ET(q) x ET(q) and write E EIE2 with E2 E, E a
perfect central extension of ET(q), and [El, E2] 1. For i= 1,..., 7, write
K, K, N E1 and K, K,, N E2. Then K,,, K, x K, and K, (K,)’ for
i= 1,..., 7. Also for i= 1, 2 we have Ei =(K,,..., K,,,).i
Now (K, K,)= (K, K,) x (K, K,)- SL(3, q) x SL(3, q). Conjugat-

ing this by w we get a similar decomposition for (K,, K,,)= (K,, K)wl

Y. Write Y Y x Y2 where K,-< Y and K,-< Y2. Then set K K fq Y
for i= 1, 2. Finally for i= 1, 2 write Gi (K,,..., K). We have G G2
and arguing as before we have [G1, G2] 1., Go GG2, 1 2 Es(q),
and IZ(Go)l odd. This completes the proof of (8.1).

(8.2) Let fi -O+/-(n, q)’ with n >- 14 and n even. Let

W1 $2S3S4S1S2S3"

Then Go=(E,E’,) is semi-simple, IZ(Go)l is odd, and doO+(n, q2) or
do-xA.

Proof. The argument is similar to that of (8.1). Write

A <L,,
so A f’l E (J,,..., J3). Now

=O+(n-4, q2) or /E3x/.
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In the wreathed case we write E =(K,,..., K,,3), where J, Cr., (t) and
K, J, x J,. For ft, O/(n, q)’ or O-(n, q)’, label the Dynkin diagram of E

respectively. Then write

E=(K,.K,K,_,,...,K,) or

respectively. Here,

K,=K,,,_., and Kt=K,,
and

J, C(t) Cl KKo if

We then have Ew, (..., K,?, K) and

if fi- O+(n, q)

A-O-(n,q)’.

Go=(K,,Ko,...,K,3, K,,K,,) or (K,,,...,K,,K,,),
depending on whether / O+(n- 4, q2)’ or/ x/.
From (7.8)(ii)we have

S=K, Ks:s3s4=Ka2, K’=K and gS=K.
g s=(K,K) First, re-Therefore (K4, g 3s4 (K, K) and (K,

label elements in (K, K) so that elements of Ka3 are labeled the same in E
and in (K, K). Once this has been done relabel the elements of (K, K)
so that the labeling of K agrees with that in (K, K).
We can complete the proof as in (8.1) once we check that certain

commutator relations hold. Suppose first that O+(n,q)’. Then the
necessary relations follow from (7.7)(ii) (such as [K,, K] 1). Suppose that
AO-(n,q)’.

First assume that O+(n-4, q)’. Then the relations not obtainable
from (7.7)(ii) directly are

[K, K,] [K, K] [K, K,] [Km K] 1.

Consider the group Y=(K, K, K,_.). Then L4(q) and induces a
graph-field automorphism on Y, with Cv(t)=(J,,J,_.). It follows that
(J,, K,_.)= Y. So we need only show that

(J,, K,_,) C(K) n C(K).
However,

Li C(Kotl) N c(go2)
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as L,_<znz, and

K,_, <-- C(K,) n C(K2
by (7.7)(ii).

If -DD the same arguments apply. Here use the facts that
(K,, K,_,) (J,, K,_,,) <- n C(K). This shows that [K,, K,]
[K,, K2] 1, the desired relations. The proof of (8.2) is then complete.

To handle the orthogonal groups of lower dimensions we must work a bit
harder.

(8.3) Let fi, -O+/-(10, q)’ or O+(12, q)’ and set

W $2S3S4S1S2S3

Then Go=(E,Ew,) is semi-simple, IZ(G0)l is odd, and (ofixfi,
O/(10, q2),, or O+(12, q2)’.

Proof. Choose notation for E as in (8.2). The diculty here is that (ii) of
Hypothesis (7.5) does not hold. Consequently, we cannot apply (7.7). Let
K K and K, g

Let I Jr J Jr be cyclic of order q + 1 and such that I corresponds to
the centralizer of a non-degenerate (n- 2)-subspace of the usual module for
O(n,q) (n=10 or 12). We may choose IX. Then E(C(I))
O(n-2, q)’. Let P=E(Cg(I)). It is easy to check that P is a standard
subgroup of C(I) and

t) e Syl2(C(I) n C6(P)).

Aso EC(n, so tZ*(C(n). As tX, (C(nOC(X))=E so y
induction and (5.5), E(CG(I))O+(n-2, q)’ or x . Except for the case
E(CG(I))x.O-(n-2, )’x O-(n-2, )’ the Dynkin diagram
E(C6(I)) is of type D for k (n- 2) (or the union of two such diagrams).
Let r and note that JJ JxJ. Also

t Z*(C() E(C6(I))(t)).

Consequently tZ*(CG()). It follows from (5.2) that E=E(C(X))=
E(CG()), so J CG(E). Define a subgroup, L E, as follows. If
O+(n, ), set L K4xK or Kx K, depending on whether n 10 or 12.
If O-(n, q)’, set L =KxK or K4xK, depending on whether
n 10 or 12.
From the embedding of L E E(C6(I)) we have the structure of

z (E(C(n) C(L)).

If E(CG(I)) O+(n 2, q)’, then O+(4, q)’ or 0+(6, q)’, depending on
whether n 10 or 12. Then Cz(t)O(4, )’ or O(6, ), according to

O(n, q)’, and depending on whether n 10 or 12. Similarly, we have
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the structure of Z and Cz(t) if E(C(I)) is wreathed. Now, C(L)>_
(J, Cz(t)). Also, (J, Cz(t))= CA(LfqA) (use the Lie structure or argue as in
the proof of (2A) in Wong [19]). There exists a A such that Laf’l A J,
and L -> Ks. Then

Co(Ks) Co(L) >- (CA (L hA), Z)= (C,($), Z).
So E(C(s)) is standard in Co(L) and tZ*(Co(L)). From (5.2) and the
fact that CG(L) <- C(Js) we conclude that Ks <- L <- C(Es). Once we have
this, we can prove (7.7)(ii) and complete the proof as in (8.2).

In dealing with the orthogonal groups 0+/-(8, q)’, q >_ 4, we must introduce
a certain subgroup as follows. Let I be a (q-1)-Hall subgroup of -r
Jsl x J, normalized by sl, and I <-H. Let 11 "( I be such that

1I" I[ q- 1 and C(11) >-(J,,...,
If ft. 0+(8, q)’ we may take 11 X, where X is as in (4.1) of [13].

(8.4) Let 0+(8, q)’ with q >- 4; set F E(C(I1)) and F Fsls. Then
G0=(F, Fs) is semi-simple, IZ(G0)l is odd, and

(o 0+(8, q)’ or 0+(8, q)’ 0+(8, q)’.

Proof. We have O(CA(I1))=(Js,,Js,Js) and tgZ*(C(I)) by (4.7) of
[13]. So

p___ 0+(6, q2), or 0+(6, q)’ 0+(6, q)’.

We label F= (Ks2, Ks3, Ks4), as usual. So, Js,-< Ks, for i= 2, 3, 4.
Now C(I) f’l (Js2, Js3, Js4)= Js3 x Js4. It follows that

02’(Cry(I)) Ks3 x Ks,.
As C(I)<-Ca(I1) we have KsXKs,=E(C(I)). In particular, sl nor-
malizes Ks x Ks,, and since sl centralizes Js and JS4 we have K, Ks and
K: Ks4. Let Ks, sls:

Next, we note that there is a subgroup Z <_ A such that Z(A)Z/Z(A) is
cyclic of order q-1, E(CA(Z))= (Js,, Js, Js), and Z centralizes 11. To see
this, just choose Z Cn((Js,, J, Js)). Then CF(Z)-> (K:, Ks), so
tg Z*(C(Z)) and

E(C(Z))-L4(Q2) or L4(Q) L4(Q)

depending on whether (Ks, Ks)- L3(qz) or L3(q)x L3(q). In any case we
write

E(C(Z)) (ff:s, Ks,
where /s, >- Js,, [/s,, Ks] 1, and (/sl, K)---- (K, K). But then ,

K, and [K, K,]= 1 Similarly, [K,, K,]= 1 We now have all2

necessary commutator relations to determine the structure of
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(Ktll KO2, KO3, KOt4)"--" G00, We conclude that Goo Go and (8.4) follows.

(8.5) Let A 0-(8, q)’, with q >-4. Choose I and 11 as in the remarks
preceding (8.4), and set F= E(C(I1)). Then Go=(F, Fsis2) is semi-simple,
IZ(Go)l is odd, and

to 0+(8, q2), or 0-(8, q)’x 0-(8, q)’.

Proof. F= (J., J). As in (4.5) of [13] we argue that tO. Z*(C(I)) (use
the fact that tge tV3 for some g e E). So

p____ 0+(6, q2), or 0-(6, q)’ 0-(6, q)’.

We write F (K, K,a, K) or (K3, K), respectively, Here, labeling corres-
ponds to the Dynkin diagram

or

3 2.

respectively, and in the wreathed case we really mean a union of two
diagrams.

It follows from the above that E(Co(I))= K, Ka or K,, respectively. Let
g N(V) fqKK or g N(V3) f3 K, with g tv and v e V. Consider
Ct3(tg)N(Ag). We have .rc(tg), so r=)N(Ag)()=Ag. Also, g
centralizes I, so the embedding of I in Ag is the same as that of I in A.
Consider Ag acting on the subspaces of the usual module, M, for 0-(8, q).
Writing

I (I fh J) x (I fh J),

we see that M contains 4-spaces, M1 and ME, such that M M1 +/- ME, I fqJ
and I fq J fix all the 1-spaces of M and the preimage of I t’)J and I fq J in
O-(8, q) acts fixed-point-freely on ME. Now JI<-C(IJ) and J<-
C(I th J), and these facts imply that J and J stabilize MI and ME. So J
stabilizes ME. Hence E(CA,())=E(CA,(I))-LE(q2). As in the proof of
(4.5) of [13] this implies that tZ*(Co(,)). As Co(,)<--C(I), we have
E(C(Jr)) K x Kt or K3. Now set K, = --2Kss and Kr .,2kss. Then

Also, there is an abelian subgroup if> I with

/I Zq+l X Zq+ or Zq_l X Zq_l,

depending, on whether F= (K, K, K) or (K, K). Then
Now I normalizes Co_(I), so K, f’l Kr fh C(E(C(I))).is a normal subgroup ot
K, x Kr containing Jr. We must have

K,, x Kr <- C(E(Co(I))).
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This says that [KI, K]= [KI, K0] 1 or [Kay, K3]= 1, depending on
whether F= (K,,, K0, K,,=) or (K3,

Suppose F (K, K0, K) and write s3 sso for s,, K and so K0. Then
KSSK __

so by the above,

(Ka Ka,)"" (K, Kal)----,---Ot21’*x8251
So in this case we have all necessary commutator relations to conclude that
Goo (F, K,) satisfies (o0 0+(8, q2),. As A -< Goo we have Goo Go.
Now suppose that F= (K3, K:). All that is needed here is to show that

(K, K,)- L3(q) x L3(q).
$3Let L (.1o,, Jo,) CI C(Jo, x Jo,). Then ,L]L f3 Z((J,,,, Jo,=)) is cyclic of order

q+ 1. Regarding (J,,, J,/ as 0-(6, q) acting on its usual module, L acts
trivially on a non-degenerate 4-space of index 2. Since the (q+ 1)-Hall
subgroup of J, /4 centralizes J,,x J, we conclude that L <-J,Z(A), so
[L,J,]= 1. Now from above we have E(CA(L))"-O+(6, q) and so
E(C(L)) {J, J,, J).
The group L is conjugate to a subgroup of X, so tZ*(CG(L)) and,

necessarily, E(CG(L))- L4(q) L4(q). Consequently,

where / -> J=,/,, >- J,,, each /, is t-invariant and

f(,, , L2(q) x L2(q).

We also have L<_J,,<_K,<_C(K,,,), so K,,, <- E(Co(L)) and we must have
K=/. But then,

R Rs? K and

showing that (K, K,,)" L3(q)x L3(q). This completes the proof of (8.5).

9. fi, PSp(n, q) or PSU(n, q)

In this section and the next we assume that A PS.p(n,fl) or PSU(n, q).
In the present section we also assume that either E D x D or that the pair
(/3,/) is of type (7), (12), or (13) in Table 2. This implies that the Dykin
diagram for E is the same as that of D (or the union of two such, in the
wreathed case). Let fi have Lie rank 1.

For any root a E with U-<E we have associated a root subgroup,, <-E such that U-< ( is a direct product in the wreathed case).
Moreover J <--L <--(, 0_,,)=/,. It the components o E are not odd-
dimensional unitary groups, then / K. In the exceptional cases, a---s
and / -SU(3, q) or SU(3, q)xSU(3, q). With this notation, we have
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Set K, =--2Ks’s2, E= Es2, and Go (E, E). We will show that

Oo=(g,, K,_,,,...,
and that Go satisfies the necessary commutator relations.

(9.1) Suppose that n>_8. Then Go is semi-simple, [Z(Go)l is odd, and
either

doAXA
or

fi PSp(n, q) and (o PSp(n, q), PSU(n, q), or PSU(n + 1, q).

Proo] By (7.11),

c(z) c(L L),, </,, K,_.,,..., K)= P.

In particular, s J, C(P) and it follows that

E= <,..., K,, K, K,>.
Also we have

[J,, K] 1.

In particular, s3 C(K). This implies that

(K,)(K, K)= (K, __z,,--z’s, K)= (K, K).
Finally, we have the relation

[,] tzars4 r] [,, ,a [,]
With the above clations wc argue as in g that

0oo <g,, ,_,,,...,
is semi-simple lZ(Goo)] is odd, and

oo x , PSp(n, q=), PSU(n, q), or PSU(n + 1, q).

Since A Goo, we have G0o Go, and the prool of (9.1) is complete.

(9.2) Suppose that PSp(6, q) or PSU(6, q), with q 4, or that
PSU(7, q). Then Go is semi-simple, IZ(Go)I is odd, and either

oAXA
oF

A eSp(6, q) ana o esp(6, q=), esu(6, q), or esu(7, q).

Proo[. The argument is similar to that o (9.1) although we must work
more to get some of the commutator relations. As in (9.1) we need only
show that Goo <, K, K,> satisfies the necessary commutator relations.
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First we claim that. [/3, KI]= 1. Note that

[J3, K,I] [J, K"’I-..-rrs::, K::] [L, K::] 1L3

If PSp(4, q) and PSU(4, q), then =J so the claim holds.
Consider the other cases. Using (7.8)(i) and the above we have [K, K,]
1. So we may assume >K; that is

(f()--PSU(3, q) or PSU(3, q)x PSU(3, q).

By (7.11)/= C(Z)A E(C(Z)). Let Y= Co(/,,). Then Z is a standard
subgroup of Y.
We first show that tZ*(Y). Suppose otherwise. If //x/) then

Kr --< Y and t. Z*(Kr(t)). So suppose that / PSU(5, q). If q > 4, let I
CE(ff3oJ). Then I/Z(E) is cyclic of order (q+ 1)/d for d=(5, q+ 1). If
q 4 and

O2(C(L)/C(LE)) PSU(5, q),

set I 1. Finally, if q 4 and

O:(C(L)/C(JE)) PGU(5, q),

then we may choose I (x) where I <-C(J) and I induces an outer diagonal
automorphism of E of order 5 and centralizing /3oj,. Since i centralizes
J x J, and since we are assuming that ZO(Y)-Y, we have [Z, I]<_ O(Y).

Also, /3 contains a subgroup 11, with [J, 1.1] 1, II>-Z(/), and
I1/Z(R) is cyclic of order (q + 1)/e, where e (3, q + 1). Note that for this
case ft, PSp(6, q), so q >- 4, q + 1 > 3, and 11 # Z(/). Now [H1, Z]-< O(Y)
and H1 acts on E(C(J))= E1, centralizing JxJs. It follows that H1
induces a group of inner automorphisms of E’, of order dividing q+ 1.
Consequently, there is a subgroup I0 <-H1 with Io <-C(Es:) and Io :g Z(E).
So I centralizes J x E.

In particular I’, --< C(/) Y. Since Ig’, also centralizes J x J we have
I <-O(Y). We want to have I, <-C(Z), and to get this it will certainly
suffice to show that [Z, O(Y)]= 1. Let O= O(Y) and let v e V be an
involution. Then

O= Co(t)fo(tv)Co(v).

Now Co(t)<-N(A)f3C(J,,3)<-N(Z), so [Co(t!,Z]<_ZCIO(Y)<_Z(Z) and
Co(t)<Co(v) Also there is an element g e g: with g= tv. Co(tV) nor-
malizes A g and, as q->4, Cz(tV)XJ,,<-A g. Since Co(tV)<-O(Y) we con-
clude that Co(tV)<-Co(v). We then have veC6(O(Y)), so Z<_(v’) <
C6(O(Y)), as needed. In particular, I)sI<-Co(Z), which implies C6(I):s) >
(Z, J,:, J,)= A. So Is Io, whereas I <-C(E) and Io C(E). This con-
tradiction shows that te! Z*(Y).
Let Q E(Y). As Y <- C(J,,.)--- C(J) and since (C(J) f’l Y)A K we
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apply the theorem of [9] and obtain

O---PSU(4, q) or PSU(4, q) PSU(4, q),

depending on whether E PSU(5, q) or PSU(5, q) PSU(5, q). So we may
write Q (K, Ks), where

K SL(2, q2) or SL(2, q2) x SL(2, q2)
and K-> J,l. Now K <-c(f(3)<-C(J3)., so K-<Esis2. Since K also cen-
tralizes C(J,,)CI f(, (which is just 11 if E PSU(5, q)) we conclude from the
action of PSU(5, q) on its usual module, that K K,,,. In particular, we
have now proved that [K,,1,/3] 1.
What remains is the structure of (K,,2, K,,). For this start with (J,:, J,) and

notice that since q >- 4, C CA ((J2, J,)) : Z(A). So we consider C(C).
Then (J,2, Jl) is standard in C(C) and

<t> sy(c(c) c c(<, ,>)).
Choose v e V. Then there is an element geK, with s tv. Then C
normalizes A s and it is not difficult to see that C(C) is not 2-constrained.
From here the argument in (4.5) of [13] shows that t Z*(C(C)).
Apply the main theorem of [12] and conclude that

E(C(C)) L3(q) or L3(q) x L3(q) if A PSp(6, q)

and

E(C(C)) L3(q4) or L3(q2) x L3(q2) if

fi --PSU(6, q) or PSU(7, q).

Now C_<H and so C< N(Jr)N C(J,). Viewing this in N(Jr) we conclude
that C <-C(K). It follows that

and otherwise E(C(C))"L3(q2). We know that K<-E(C(C)), so we
must have E(C(C))= <K, K,,>. From here we easily derive the necessary
commutator relations. This completes the proof of (9.2).

10. . PSp(n, q) or PSU(n, q)(continued)

We continue the assumption that ft, PSp(n, q) or PSU(n, q). Here we
also assume that the pair (/3,/) is of type (5), (6), (8), (9), (10), or (11) in
.Table 2. Set E= Es’ and Go <E, E>.

(10.1) Assume that fi PSp(n, q) with n >- 8 and that O-(n, q)’.
Then Go is quasisimple, IZ(Go)[ is odd, and o---O+(n +2, q)’.

Proof. Write E <K,, K), where l n/2 and J, <- K, SL(2, q2)
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and Js, Ks, for i= 2,..., l- 1. We choose the Ks, satisfying the usual
commutator relations for PSO-(n, q). In particular, (Ks,, Ks,_,,)= PSU(4, q)
and [Ks,, Ks,] 1 for i= 2,..., l-2. We point out that (7.4) fails to hold in
this case.

Let e at + 2at_ + + 2a3 + 2 and 7 e + a2 + aa. Then

CE(Jax Je)= (K,, Ka4).
So tdZ*(C(JxJ)) and hence tZ*(C(J,xJ)) (because ,= and
e T). It follows from (5.2) that

(Y as in (6.5)). On the other hand, C6(Y)a C(XX1)a CE(X), and
from the embedding of D in E we have CE(X)a O+(n-2, q)’. Conse-
quently, we write

CG(JJ)A L (J, Jz, Jt-, J)
where Jz J SL(2, q), [L, Jz] 1, (L, Jt-)- L3(q), and [L, L,] 1 for

3,..., 2. Finally C(t) LJz J,.
It will suce to show that [J, J] [Jz, J] 1, for once these relations

are checked we have (J, Jz, J,:,,,..., J)= Goo satisfying the defining rela-
tions for O+(n+2, q)’. Since GooA we have G0o=Go, completing the
proof. There is a subgroup PJ x Jz such that P is a t-invariant (q+ 1)-
Hall subgroup of J x Jz and Po Cp(t)= Xs’ ...s,_,. Notice that JJz (P, J,),
so it will suce to show that P C(J=).
We have P C(Po)= C(X)w, where w Sl"’" st-. Also

E L,>
and P centralizes J, x J x (J,_,,..., J) L Consider the group O-(n, q)’
acting on its usual module M. There is a homomorphism from E onto
O-(n, q)’. Then (I) has as its fixed space an anisotropic. 2-space of M.
From there we can determine C.(I). If l# 5 (that is, n# 10) then C.(I) is
cyclic of order q + 1. If l= 5, then

CE(/) Zq+ x L2(q) and Cz(I)> -T$4sSs4

For l 5 set I1 I and for l= 5 set I I x ]s4sSs4 Since P centralizes I we
must have P EwC(EW), and, the projection of P to E must centralize 11.
Now (I) defines a unique non-degenerate (n-2)-subspace, M0, of M, on
which the stabilizer in O-(n, q)’ induces O+(n 2, q)’. We already know that

C(P)A O+(n 2, q)’

and the commutator, relations imply that ,,_lt’-’’’-’, J,_,, J) Q satisfies
OO+(n-2, q) and (Q) acts on Mo. It follows that PC(Q). In
particular, P C(J), as required.
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(10.2) Assume that fi PSp(6, q) with q >_ 4 and 0-(6, q)’. Then Go
is quasisimple, IZ(Go)[ is odd, and to 0+(8, q)’.

Proof. Let C be a (q-1)-Hall subgroup of Jr. Then
oz(c,, (c)) (L,

Also, CS’S2<-J,3<-K3, where E={K,3, J,). So C(C,) involves 0-(4, q)’
L:(q:) and so tZ*(Ca(C)). Since

F= C(C) n C(X:,)

satisfies l L:(q:) we must have Ca(C),= 0+(6, q)’. Write

c c),, L, r,
where [J, J 1, J J, (J, J)- L3(q), and
One checks that Ct(J,Jz)/Z(I) is cyclic of order q-1 and contained in

JZ(I). So, let C1 C(J,Jz)fqJ, and let P be the t-invariant (q-1)-Hall
subgroup of J,,J with Cp(t)= C1. Then

O CG(CS’S:)A (J,’, JSd’, J,) and A f3 O (js, j,).

Now, P normalizes Q, and since P centralizes C x C we conclude that
P-< QCa(Q) and P projects into a Cartan subgroup of Q normalizing J,. It
follows that JJ (J,,, P) <_ N(J,) and hence JJ <_ C(J,).
We now conclude that if Goo =(J, J, JJ,), then A <-Goo and oo-

0+(8, q)’. Then Caoo(X), Ca(X)-’, so E -< Goo and we have Goo Go. This
completes the proof of (10.2).

Similar methods will be used to handle the case (/3,/) of type 10).

(10.3) Assume that fi PSp(n, q), n >- 8, and O/(n, q)’. Then Go is
quasisimple, IZ(Go)I is odd, and o- O-(n + 2, q)’.

Proof. Write E (J, Jz, J,-.1, J2), where l= n/2, J J, [J, J]= 1,
J, C(t) fq (J J), (J, J,_.,)- L3(q), and [J, J,] 1 for 2,..., l- 2.
Let

e a + 2at_ + + 2a3 + o2

as in the proof of (10.1). Then

C(L L)= (L, r, L,_,,,...
Consequently, tZ*(Ca(J2xJ)) and so tt/-_Z*(Ca(J,,xJ,/)).
Now Ca(J,J) < Ca(Y), where Y is as in (6.5). As Y---XX, in A, we

have
Ca(Y)/A" Ca(XX1)X C(X1)X O-(n 2, q)’.

By the above and (5.2), E(C(J,,1J))=E(C(Y)), Set P= E(C6(J,J.)).
Then P-O-(n-2, q)’ and we write

P=(,,,J,,_,,, ,J,,),
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where J,-</, L2(q2), [/,, J,] 1 for 3,..., l- 2, and

((,, J,,-,1)- PSU(4, q) 0-(6, q)’.

If we can show that [/,, J=]= 1, then Go0 (P, J=, Jl) will satisfy the
defining relations of O-(n + 2, q)’. It will then follow that Goo Go, and the
proof will be complete. So it suffices to show [/,, J=]= 1. Let I= I’ be
cyclic of order q + 1, with

I <-- N(C(V,,)3 go,) f’) N(C(V_,,) f3 ff,).
Then I normalizes each of the root subgroups of P in the natural root
system for P and it follows that I must centralize

(]2,_,, ,_,, ,_.,..., )= F.
So Co(I) >_ J, x J x F.
On the other hand, I is conjugate in /, to a cyclic subgroup of J, of

order q+ 1, which in turn, is conjugate to X. So E(Co(I))- O+(n, q)’. As
E(C6(I)) n C(t)-> J,. x j x F, we have E(Co(I)) <- A. Regard A as
O(n + 1, q)’. Then A acts on a module M of dimension n + 1 over F and fi
preserves a quadratic form. Also there is a unique 1-space, M0, of M with
(Mo, M)=0. It is easily checked that (F, J,,)-O+(n, q)’ and that (F, J)
stabilizes a unique complement, M, to Mo. Moreover, M is the unique
complement to Mo stabilized by JxJ, x F. It is also easy to see that
E(Co(I)) must stabilize a complement to Mo. Consequently E(Co(I))=
(F, J). In particular, J <- Co I). So C(J,)>_(J,,, I)=/,, as needed.

(10.4) Assume that fi, - PSp(6, q) with q 4 and 0+(6, q)’. Then Go
is quasisimple, IZ(Go)l is odd, and o 0-(8, q)’.

Proof. As in the proof of (10.2), let C be a (q-1)-Hall subgroup of J.
Then O2’(CA (C)) (J3, J,). We claim that

E(Co(C))- 0-(6, q)’ U4(q) or Us(q).

(For consider CSlS2<-J3. From the known structure of E(Co(X)), we have

E(Co(XCI)) L2(q) x L2(q) and t Z*(Co(XCSl)(t)).
So tC:Z*(Co(C)). Also, since (J,J) is standard in Co(C) and X,-<
JS<-Co(C), we use the above and induction to get the claim.)Write
E(Co(C))>-(,,, J), where J-</L2(q2) and (/3, J,)- U4(q).
There is a subgroup I/3 such that I is cyclic of order q + 1, and I is in a

Cartan subgroup of (/3, J) normalizing each of the root subgroups in the
root system spanned by +/-a2 and +/-ct3. Then Co(I)>_J,Jx C. Now I is
conjugate in K to X, so E(Co(1))-O+(6, q)’. As centralizes

JxJx C we must have t C(E(Co(I))). For otherwise, induces a graph
automorphism on E(Co(I)) and [C, E(C(I))]= 1. But then

Sp(4, q) 02’(CA (I)) <-- 02’(C (C)) (J, J) Sp(4, q),
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whereas [/, J3] 1. Now argue as in the proof of (10.3) to obtain

E(C(I)) (J,,
Therefore C(JI >- (J,,3, I) >- ,,, and so (, J:, J)- 0-(8, q)’. It follows
that Go (, J, J), and the proof of (10.4) is complete.

(10.5) Assume that A PSp(n, q) or PSU(n + 1, q) with n 8 and that
PSL(n- 1, q) or PSL(n- 1, q2), respectively. en Go is quasisimple,

IZ(Go)l is odd, and

o PSL(n + 1, q) or PSL(n + 1, q2).

Proof. Write E (K:,..., Kay, Ko..., K), where each of the generat-
ing subgroups is isomorphic to SL(2, q) or SL(2, q2), depending on whether

PSp(n, q) or PSU(n + 1, q). Notation is chosento correspond with the
following labeling of the Dynkin diagram:

c

Also, for i= 2,..., l- 1, L, C(t)0 K,Kv, and L, C(t)0 (K,, K,). Fi-
nally, K, K, for i= 2,..., I.

Set K z, K zs: and Goo (E, K, Kv). Then A < Goo, so
oo o. We will show that oo satisfies the necessary commutator rela-
tions. Apply the results of 7. Set r and K the corresponding subgroup
of E (so K K0). Then y (7.8), K C(E). Setting K K we have
K and K C(E). Next, we apply (7.11) to get

In particular, s Z, so centralizes C(Z) and

Set P=(Ko,,...,
Then C(P) (Z, Ko, K) (Z, J,) (J, J, J,) and

(z, J)- eSp(6, q) or PSU(6, q),

depending on whether PSp(n, q) or PSU(n, q). We also know that

C(P) (Ko, J, K)= (Ko, J,, K) where s’ r’’’.

In particular, t Z*(C(P)). Since C(P) C(J) C(P) we conclude that
E(C(P))- PSL(6, q) or PSL(6, qa), depending on whether PSp(n, q)
or PSU(n + 1, q).
Choose notation so that E(C(P)) (K, K0, J,, K, Ko), corresponding

to the labeling
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of the Dynkin diagram of E(C(P)). Here Ka K and J,,= C(t)fqK,,Kt.
Also, notice that Kox K.<_ C6(P). As Ko< E <- C(K), we have
[Km K] 1, and hence 1 rzt..o K] [Ko, K]. Similarly, [Kv, K] 1
We next note that

so (K,, K)- L3(q) or L3(q). Similarly, (K,, K)- L3(q) or L3(q2). With
these facts we conclude that (K, K,Kv,)E(Co(P)) and is a covering
group of PSL(4, q) or PSL(4, q2). Since (Kay, K, K,) C(K,) we have

K. K.
By (5.3) we have {K,, K,,}= {K, K}.
Suppose K Kv, and K=K,. The looking in E(CG(P)) we have

SIS2SK K. But K=.. Ko. This is impossible. Therefore Ko= K
and Kv Ko.
Therefore

(K,, K)-(K, Kv,)- PSL(3, q) or PSL(3, q2)
and

[Ka,, K] [K, Kv,] 1.

From the structure of E we have [K,, K] 1. Write s3 xy, with x K,
and y x Kv Then K= K, implies K:y: w,: and y N(K)
Therefore,

[K,, K] t*-rzs"o, _gs,sl_ [K;, K] [K;, K]

We now have

So [K,, K]= 1. Similarly, [K,, Ko] [K,, K] 1. At this point we have
sucient information to determine the structure of Goo. This completes the
proof of (10.5).

(10.6) Let PSp(6, q) with q 4 or PSU(7, q). Assume that
PSL(5, q) or PSL(5, q), respectively. Then Go is quasisimple, IZ(Go)l is odd,
and o PSL(7, q) or PSL(7, q) respectively.

Pro@ The argument is similar to that o (10.5). Write E=
(Ko, Km, K, K), with notation chosen to correspond to the Dynkin
diagram

O-- -.--

3

Set D (Ko, K). Then E contains a subgroup I such that C(D)= s x [
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where bars denote images in E and I is cyclic of order (q-1)/d or
(q2_ 1)/d, respectively, where d (5, q- 1) or (5, q2_ 1). So I Z(E).
Consider Co(D). We claim that tZ*(Co(D)) and that E(C,(D))= Z.

First note that from the structure of E(t) we have tv with v CA (Z) and
vZ(A) a transvection in fi (see (19.8) of [1]). From here we see that the
proofs in (7.10) and (7,11) go through, showing that E(CA(D))>-Z. But also
E(CA(D)) <--E(CA(J,3))= Z. This proves the second statement of the claim.
We note that Sl Jl <- Z <- C((Kt, K)).

If fi PSU(7, q), then Ks -PSL(2, q2) and t Z*(Cn(D)). Consequently,
the claim holds in this case. Suppose now that A =-PSp(6, q) and that
tZ*(C6(D)). Let bars denote images in C6(D)/O(C6(D)). Then ,=
E(C6(D)). Since I <-C6(D) and I centralizes J x Js, it. follows that I 1. So
[Z, I]<_ O(C(D)). Let 11 O(Co(J)). Then I1 <- C(J,,x Js) and
I1Z(D)/Z(D) is cyclic of order (q- 1)/e, where e (3, q- 1). Now apply the
argument that occurs in the proof of (9.2) in order to get a contradiction.
We use q-1 in place of q + 1, but otherwise the argument is the same.

Continue the assumption that fi PSp(6, q). The argument of (9.2)
actually shows, that E(C6(D))- must contain a non-trivial cyclic subgroup of
order dividing q-1 and centralizing .Jr x Js. Checking the possibilities for
E(C6(D))- we have E(C6(D))--PSL(4, q). If fi PSU(6, q), then since
[J, Ks] 1 we must have E(C6(D))--PSL(4, q2). Choose notation so that
E(C6(D)) (Ks, Ks, K) corresponding to the labeling

of the Dynkin diagram of E(C(D)). Also, K K and Jl C(t)f3 KK.
Note that (Ks, Ks, K)<-- E(C(J)) = Ess (K,, K3, K, Kvl), where

KI wss: and Kv Ks It is easy to see that in the usual action on the
subspaces of a 5-dimensional -space (or q-space) for Es:, Ks K acts
on the unique 4-space preserved by J. From here it follows that
(Ks, Js, K)= (K, Js, K), so by (5.3), (Ks, K)= (KI, Kw). We may choose
notation so that Ks K and K K.

In the (B, N)-decomposition for D=(K, K) let t3, v3 be involutions
generating the Weyl group of D and Chosen so that v3 t. Here v3 Km
and ta K3. We then have

Similarly

(K,, K)(K, K), (K,, Km) (K, K) and (K,,
At this point we have the necessary commutator relations to conclude that
Goo (K, K:, Km, Kv, K, Kv) satisfies too PSL(7, q) or PSL(7, q)
and A <-Goo. It follows that G0o Go and (10.6) holds.
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(10.7) Let fi -PSp(n, q) or PSU(n, q) with n>_8 and assume that =-
PSL(n-2, q) orPSL(n-2, q2), respectively. Then Go is quasisimple,
is odd, and to PSL(n, q) or PSL(n, q2), respectively.

Proof. The argument here is very similar to that of (10.5). The differ-
ences are only notational. Write

E K, K,_,, K,,,, K,_,, K.),
where each of the generating subgroups is isomorphic to SL(2, q) or
SL(2, q2), depending on whether fi PSp(n, q) or PSU(n, q). Notation
corresponds to the following labeling of the Dynkin diagram:

Proof.

Also, Kv, Kb, for i= 2,..., l- 1, J, C(t)fq K,Kv, for i= 1,..., l- 1, and
J, C(t)fqK,,. Set P= (K,,..., K,,..., K,) and proceed as in (10.5).

Our final result of 7 is the following.

(10.8) Let fk=PSp(6, q) or PSU(6, q), with q>-4. Assume that
PSL(4, q) or PSL(4, q2). Then Go is quasisimple, IZ(Go)I is odd, and
o= PSL(6, q) or PSL(6, q2).

Write

with

E= (Ko ,

K: K, J C(t) CIKK and J C(t) CI K.
Now J =-I, and by (7.8), K < E(Co(E)). So

[K;,:, K][Km, K] 1.

K’ Then [K,, K] 1 and, similarly,Set K, ..w and Kw __.
[K,, K]= 1.
The group A contains a subgroup I such that IZ(A)/(A) is cyclic of

order q- 1 or (q + 1)/(3, q + 1) (depending on whether A PSp(6, q) or
PSU(6, q)) and such that

I c((L,, ng.

We claim that (J,, J) is standard in C(I),

and tgZ*(C(I)). The first two assertions are routine. For the other part
first note that from the structure of N,(t} it is clear that t tv, where
v e Jff,. Write tv . Then I Ca (J,), so I normalizes A. It follows that
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CA,(I) is not 2-constrained. From here we argue as in (4.5) of [13] to get the
conclusion. Now, we will argue as in (9.2).
Apply the main theorem of [14] and conclude that

E(C(I)) L3(q2) or L3(q) L3(q) if fi PSp(6, q)

and that

E(CG(I)) L3(q4) or L3(q2) x La(q2) if fi PSU(6,

Now I normalizes J and centralizes J,,2. Viewing this in N(J)= N(Kr) we
conclude that K2x K.2<-E(C(I)). Consequently

E(C(I)) L(q) x L3(q) or L3(q) x L(q:).

Similarly, I normalizes J3 jls2, and we look at EslS2 to conclude Klx
Kw<--E(C(I)). It follows that

E(Co(I)) (Kt,, K,_)o(K,,, K.) or (Kt,, K,)o(K.,,
r,"s,2= Ko,. This isIf the latter case holds, then re-sly2= K, whereas --02

impossible. So the first case must hold, and setting

we have, as usual, A-< Goo Go, and the result holds.

11. fi F4(q)

In this section we assume that fi -Fa(q). To get the necessary com-
mutator relations we must consider the groups E=E(Co(X)) and also
E= E(C(Y)) (notation as in 6). Recall, P= E(CA(Y)). Once we show
that E and E "pair up" in an acceptable way we set Go (E, E) and show
that Go has the desired properties.

(11.1) One of the following holds.
(i) t/)x/)/.
(ii) PSp(6, q:)- o.
(iii) / PSU(6, q) and ,o___ 0+(8, q)’.
(iv) PSL(6, q) and ,o 0-(8, q)’=- P.
Proof. We know the possibilities for the structure of E and E, and the

respective embedding of D and P. Since

(C(Xx X1))A and (C(Yx Y1))A

are Z-conjugate (see (7.12)), we know that the embedding of (J,2, J,) is the
same in each of (C(Xx XI))A and (C(Yx Y1))A. Checking possibilities,
we have the result.

(11.2) Assume that (ll.1)(i) or (ll.1)(ii) holds and set Go=(E,E).
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Then Go is semisimple, IZ(G0)[ is odd, and o fi.x fi, or F4(q2), respec-
tively.

Proof.

where
SL(2, q2) if (ll.1)(ii) holds. Moreover,

(K, K,,)- PSp(4, q)x PSp(4, q)

and

Write

E=(K,,K,,K,.,),

J,,, _< K,,, K,,- SL(2, q) x SL(2, q) if (11.1)(i) holds, and

or PSp(4,

So tO: Z* Cv, K, K,)).
By (7.12)(iv) we conclude that

(K,, Kay}-" (CG(X x X))A (Cc(Y X Y1))A CE(Y)A

So we write E (/,,/,,,/,,) where J,---/,,/,- K, for e {1, 2, 3} and
] {2, 3, 4}. Then

(K,, K,)= Cc(YY)A C(XX) (K,,
so by (2.3) we have K,= K,, and K,,= K,,. So

Go (K,,,, K,_, K,,, Ka4).

At this point we need only show that [K,, K] 1. For once we have this
commutator relation, the arguments in 8 give the structure of Go. Now
[K,, K] [K,, K4s,] and s3 normalizes K, as K, and K, commute. So it
suffices to show that [K,, K,]= 1 and for this we need only show that
s4 N(K,). However this follows from (7.8)(iii) once we interchange the
roles of X and Y. We have now completed the proof of (11.2).

(11.3) Assume (ll.1)(iii) holds. Then Go=(E,E) is quasisimple,
[Z(Go)[ is odd, and o -2E6(q).

Proof. We write E (J,, K, K,,) where K-K, SL(2, q2), j_<
K3, J,,,<-- Ka4, [J,2, K4] 1, (J, Koa)" PSu(4, q), and (Kaa K,)’-
PSL(3, q2).
The group E can be expressed E= (J, J2, J, J) where J, J, Jm, J

are conjugate in E and the ordering corresponds to the ordering
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of the Dynkin diagram of E. Now

E=(P, (C(Y Y1))a)

and (C(Yx Y1))a is Z-conjugate to (C(XXO)a=(J2, K,3). As

A<-(J,J2, K3, K,,4),
we conclude that Go (J, J, K, K,).
As in (11.1) it will suce to show that [J, K]=[J, K,]= 1. Since

K=--4K4 and since s3 and s4 centralize J, we need only show that
[J, K4] 1. Let I be a ( + 1)-Hall subgroup of K,, normalizing each of
V, V, Q, where V is the Sylow 2-subgroup of K containing

r" and J.V, and similarly for Q4- Then I centralizes each of J, J5,
Also, I is inverted by t, so normalizes E(C(I))E(C(Y)). Checking
centralizers (see 8 and 19 of [1]), we see that must centralize E(C(I)), so
that E(C(I)) A. Let S= E(C(I)). Then PSO+(8, q)’.
We only need [L J] 1, since Ka4= (J,, I). Therefore if J S, we are

done. Suppose, then, that J S. As above we have

P= Ja2X J% X-fSaS4 X L <
and consequently we may write

[l’s" C)- La(q).lS3S4 C), where (L, C)- (J;, C)-,
We will first handle the case q > 4. We have HP isomorphic to the

direct product of four copies of Zq_l. Thus H H P. Also, HNs(C).
From the Theorem in [4] we conclude that C is generated by a pair of
opposite root subgroups, U, U_, for a X. As U U:, a is a long root
and an easy check shows that a a. Thus J C S, as needed. If q 4,
essentially the same argument applies. However, one must go to the proof of
the theorem in [4] and check that for F4(4) all the arguments go through.
Now suppose that q 2. Let P0 O3(P) and let A F4(4) with A <A,

under the natural embedding. So for each root a e there is .a unique root
subgroup, U, of A with U < U. For a, let J (U, U_). We then
have the groups P and S, containing P, S, respectively. With this notation, T
is a Cartan subgroup of P, and hence of A. Also, TN(C) implies
T N(C). It now follows that P is generated by all the long root subgroups
in a root system of A. Consequently,

S(L,L,J,I,) in A,

and this conjugation can be performed by an element, g, normalizing each of
rs" L. But then g P (check normalizers in F4(4)) and soL,,,

In particular, J S. So J J A S A S, completing the proof of
(.3).



(11.4) Assume (ll.1)(iv) holds. Let Go (E, E). Then Go is quasisimple,
IZ(Go)l is odd, and o E6(q).

Proof. PSL(6, q) and we may write E (Ko, Ko, Ko,, Ko,, Ko)
where each Ko,SL(2, q) and notation is chosen to correspond to the
Dynkin diagram

viewed as a subdiagram of

So [KIll, K134] [KIll, K[5] [kill, K6] 1, (K, K4)- PSL(3, q), etc. The
group (t)D is embedded in E(t) in such a way that

L: K4 L C(t)(Kx K), L4 C(t)(Kx K6),
K=Ko and K=K0.

Let I be a (q + 1)-Hall subgroup of J, and I a (q + 1)-Hall subgroup of

Kx K, containing L with I t-invariant. Then I normalizes Co(I)A
E(C(I)) and centralizes L xK,=gxJ. Writing I=Yw, for w=
S4S3S2S3SlS2S3 we have

P Co(I)a (E) (L, L, C),

where L(q) C is t-invariant, and Cc(t)=-t Then

oz(c(j))= c.
In particular, CE. Let I be a (q + 1)-Hall subgroup of C, chosen such that
I is t-invariant and I normalizes each of the root subgroups, U,,
Then I must centralize J,, J, J,. Viewing this in C(J) we see that H and

are each in E and project to (q+ 1)-Hall subgroups of Ca(J). In fact,
I C E. Considering the group (2,, I), we have (J,, I) C
Using the Bruhat decomposition and the fact that C(J)=(J, J,

one checks that E(Ca((J, J,))) (J, J,). So

It follows that

t Z*(C((L,

so by the main theorem in [14], L E(C((J, J,))) satisfies LE and
L3(q), L3(q)x L3(q), or q= 2 and J. However, in the last case
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CE(t) contains an involution x acting on (J3, J,) as a graph automorphism.
But x cannot act on A. So/ L3(q2) or L3(q) La(q).

Suppose that/ L3(q2). Then induces a field automorphism on/. Let F
be a cyclic subgroup of L inverted by and such that FZ(L)/Z(L) has order
(/3+ 1. Such a subgroup exists and in E we see that Cs(F) is cyclic 0t order.
dividing q6_ 1 and AutE (F) Z6. Let (a, t) be a klein group in NE<,>(F),
with a E. Then a inverts F and it follows from consideration of the usual
module for SL(6, q), that a is of type ]3, in the notation of 4 of [1]. Since
CE(t)-- PSp(6, q) we know that centralizes a conjugate of F. Therefore,
t--- ta. By the results in 7 of [1] we have a being conjugate to an involution
in V#2 V#,,, so t--. tala2, where a V#2 and a2 Va#,. Conjugating by an
element in K01 we have t--. ta. Finally, conjugate by an element of Cn(t) to
get t---tv for v V#. All of the conjugation above takes place in E(t).
However by (19.8) of [1] t7c tv in E(t). This is a contradiction. Therefore,
L3(q) L3(q). Let M be the usual module for SL(6, q) and view
SL(6, q) as a covering group of/. Let (J3, J,) be the preimage of (J,,.J4)
in SL(6, q). Then (J3, J,) stabilizes two complementary 3-spaces of M,
indu.cin,g contragredient representations on the subspaces. Therefore,
(J3, J,) stabilizes precisely two proper sub.spaces of M. On the other hand,
it is easy to see that the preimage of L in SL(6, q) must also stabilize
complementary 3-spaces in M. It follows that L =(KI, Km)(K,, K). In
particular K, K, K,K all centralize J.

It follows that (E,J,)-E6(q) and A <_(E,J,). From here we get
(E, J)= Go and (11.4) holds.

Proof.
follows:

12. fi 2E6(q)

For this section assume that fi 2E6(q). Then

D (J, J, J) and D =- PSU(6, q).

Therefore, / PSU(6, q) PSU(6, q) or PSL(6, q2).

(12.1) Assume PSL(6, q2) and let E E. Then Go (E, E) is
quasisimple, IZ(Go)l is odd, and (o’ E6(q2).

Assume /PSL(6, q2) and label the Dynkin diagram of E as

Then write E= (K, Km, K, K, K) with each /, SL(2, q) and com-
mutator relations as usual. Here

J,=C(t)fhK,, J= C(t)fq(KmxK), and L, C(t)f’l(K,xK).
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Define Kol by Kol= K. Then Ko>-J,, and by (7.8), KI<-C(E,). We
next show that Ko, Ko4, Ko,, and Ko are each in E. Consider Y3, a
(q2+ 1)-Hall subgroup of J,,3 inverted by s3. Then Y3 is contained in a
subgroup 3 of K3 x Ks with ’3-" Y3 x Y3 and "’3 inverted by s3. Now 3
normalizes (C(Y3))A. Also C(J,,,)>Kt3, so tZ*(C(J,)), and hence
tC:Z*(C(J)). By (6.7) E(CA(J,,))=E(CA(Y3)). Since C(J,,)<-C(Y3),
(5.2) implies that C(J)A C(Y3)A. Now (J, "’3) Kox Ko,, so

x<_
and since J,,<-C(C(J,3)A) we must have Kmx Kos centralizing C6(J3)A. In
particular, Kox K, centralizes J. Similarly, Ko4x Ka centralizes J. So
each of Ko, Ko,, Ko,, and Ko are in C(J)A E<_ C(Ko).

Let t3 e Ko3 be defined by [t3, t]= s3. Then 3 e C(Kt3,) and so SL(3, q2)
(Ka3, Kay)-s18’ (Kay, Ka)-. At this point we argue as usual to conclude that
(E, Ko, (E, E) Go and (12.1) holds.

(12.2) Assume that PSU(6, q) x PSU(6, q). Set E E8 and Go
(E, E). Then Go is semisimple, [Z(Go)[ is odd, and o=- x.

Proof. Write E (K t2, KO39 KII4 with J,-< K,, K, J, x J, for
1, 2,3. Set K= ..:r(88, so J,,<K,,_ The argument in (12.1) shows that
[K, Kj [K, K4] 1. We still need the structure of (K, K) in order to
complete the proof.

Consider Jv as in (6.7). Then

p O2(CA (J,)) (.I, J,I, JS 3,, and -- L4(q).

We argue as in (12.1) that for i= 1, 2 K,,-< C(E,), so K,,, K,, are in C(Jv).
Also s3 normalizes J so we have C(Jv)>(K,K,,,,K,,). By the main
theorem in [14] we conclude that E(C(J.))- L4(q) L4(q). Then

Oz(C(J) r"l C(J,)) LE(q) x L(q).

Since K<_ C(J) (by 7.8), we have KS Oz(C(J)f’l C(J)). Let E and
E be the components of E, D1 and D the components of C(&/). We may
assume that KFIE KS f’lD, for i= 1, 2. Conjugating by s3, we have
KC1E=KFID, for i=1,2. At this point the structure of
(K,, K, K,,,, K,,) is determined, using the usual arguments. This completes
the proof of (12.2).
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