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CHEVALLEY GROUPS AS STANDARD SUBGROUPS, i

BY
Gary M. Serrz!

Introduction

This paper continues the work that was begun in [13]. Our situation is
that A is a standard subgroup of a finite group G and A =A/Z(A) is a
group of Lie type having Lie rank at least 3 and defined over a field of
characteristic 2. Our goal, in this paper, is to show that under the hypotheses
of the main theorem of [13], either (a), (d), or (e) of that theroem holds, or
there is an involution te€ C5(A) and a t-invariant subgroup, G, = G, such
that G, satisfies (b) or (c) of the main theorem. Once we prove the existence
of such a group G, all that will remain in the proof of the main theorem is
the verification that G,= E(G). That verification will occur in part three of
the series.

Our construction of the group G, is as follows. Using the results of §4 of
[13] we find a subgroup X =< A so that O%(C4 (X)) is a standard subgroup of
Cs(X) and t£ Z*(Cgs(X)). By induction, Hypothesis (*), or by appealing to
the literature, we have the structure of E = E(Cg(X)). The group G, will be
(E,E"), where w is a suitable element of the Weyl group of A. The
structure of G, is obtained by developing sufficient commutator information
in order to apply the work of Curtis [5]. However, there are some difficulties
in obtaining the necessary commutator relations. This is due, in part, to the
fact that root subgroups of A may be properly contained in root subgroups
of Gy, and in some cases not even contained in root subgroups of G,.
Another difficulty occurs when X is taken as an abelian Hall subgroup of a
group, J, generated by two opposite root subgroups of A, and we find that J
does not centralize E(Cg(X)).

Throughout the paper we operate under the following assumptions:
|Z(A)| is odd, K= Cg(A) has cyclic Sylow 2-subgroups, and A# Sp(6, 2),
Us(2), O%(8,2), or L,(2%). The omission of A=L,(2%) is justified by the
corollary in [14]. Let R € Syl,(K) and {t) = Q,(R).

5. Preliminaries

If X is any subgroup of G we set X, =((0O*(ANX))*). So X, =X.
We will need a slight generalization of (1.3) of [14].

(5.1) Let X be a finite group, P a standard subgroup of X with Cx(P) of
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2-rank 1 and |Z(P)| odd. Let S e Syl,(N(P)) and let t be the involution in
Cs(P). Suppose that there is an element ge N(S)—S with g>€ S and t®¢
PCx(P). Then [P, O(X)]=1. So if L is a t-invariant 2-component of X with
P=L, then L is quasisimple.

Proof. This is just (1.3) of [14] with slightly weaker hypotheses. These
hypotheses are precisely what was needed to prove that result.:

(5.2) Let X<Y<Z be finite groups of Lie type defined over a field of
characteristic 2, and each generated by its root subgroups. Suppose that o is an
involutory automorphism of Z and of Y and X = E(C,(a)). Then there is an
even integer n and q =2, such that (X, Y, Z) is either

(PSp(n, q), PSU(n, q), PSU(n +1, q))
or (PSp(n, q), PSL(n, q), PSL(n+1, q)).

Proof. First note that by the Borel-Tits Theorem ((3.9) of [3]) o must
induce an outer automorphism of Z. Checking centralizers of outer auto-
morphisms (see §19 of [1]) we obtain the result.

Next, we discuss national conventions. Let X be a group of Lie type
defined over a field of characteristic 2 and having root system 2. Then
|Z(A)| is odd. Let {ay,...,a,} be a fundamental system of roots for 3.
Once we have chosen a Borel subgroup, B;, of X and fundamental reflec-
tions sy,...,s, of the Weyl group of X we often write X=(K,,, ..., K,,)
where each K, is generated by the root subgroups corresponding to the
roots +a;. Let BY be the opposite Borel subgroup.

Now suppose that t is an involutory field, graph, or graph-field auto-
morphism of X defined with respect to the root system 2. So

K. e{K,,...,K,} foreach i=1,...,n

Then O*(Cx (1))=Y is a Chevalley group with root system determined by 3,
and we write Y={(Jg,,..., Jg ) where

{Jgp - - -, Jo, } ={O*(C() N(K,, KL): i=1,...,n}
(See Theorem 33 of [15].) Note that Cg (t) and Cg,o(t) are opposite Borel
subgroups in C().

We will have occasion to use the fact that the set {Jp,...,Jg,} in some
sense determines {K,,,..., K, }.

(5.3) Let X=(K,,...,K,) and Y=(,,...,Js,) be as above. C;, C}
be t-invariant opposite Borel subgroups of G for which t permutes the corres-
ponding root subgroups. Let L, ..., L, be the associated subgroups, corres-
ponding to K,,, ..., K, . Assume that Cg(t) = Cc,(1), C,o(t) = Cco(t), and,
fori=1,...,n,

O*(C(t) N(K,, Ki) = O*(C(t) N(Lq, L)
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Then {K,,,..., Ky} ={Lop .- .» Lo, }-

Proof. Let bars denote images in X/Z(X). For each a e 2 there is a root
subgroup U, of X, with U,=<B, if ae3* and U, <B? if ag3*. Use
Theorem (1.4) of [4] to construct a group Y such that Y/Z(Y)=X, and Y is
a group generated by isomorphic copies of the group U, and having a
presentation that involves only the commutator relations that exist among
these root subgroups. Then ¢t can be regarded as an automorphlsm of Y.
Now, if we start from root subgroups that are in 'C,UCY, then with suitable
labeling of the elements, the same commutator relations exist and we are led
to the same group Y. We conclude that there is an automorphism, o, of X
such that the following hold: ot = to (viewing te Aut (X)), B{=C,, BY =
CY%, and Kg=1L,, for i=1,...,n Then, for j=1,..., m, we have

Jg=Js (BiNJg)*=CiNJg and (BSNJg)" =CINJ,,

But we have assumed that Cg, (f) = C,(t) and Cgo(t) = Cco(t). It follows that
o normalizes

B;NJs and Bt’ﬁJ,Bj for j=1,...,m.

Let X be the subgroup of Aut(X) generated by X together with all
diagonal automorphisms of X. We can write o = 0,05, where o,€ X and o,
is the product of a field and a graph automorphlsm of X, defined with
respect to the Borel subgroups Bl and BY? of X, and centralizing t. Then
o,t= to, (an equation in Aut (X)) and o, stabilizes the set {K s s Ko b
inducing a graph automorphism (possibly the identity). Now o, acts on
J = O?(Cx(1)), and from the choice of o, we see that o, normalizes each of

Jss BiNJg, and BiNJ,,

for i=1,..., m. So o, induces a diagonal automorphism of J (with respect
to the Borel subgroups B;NJ,B{NJ), and since o,€ Cx(t), we use
the Bruhat decomposition to see that o, is in the Cartan subgroup of X

that normalizes each of the root subgroups, U,, for a€3. Then
{Kop---» K, ) =4{K,,, ..., K, }, proving the lemma.

(5.4) Let Y=PSL(4,2), PSL(5,2), PSU4,2), PSU(5,2), PSp(4,4) or
PSp(4,2)x PSp(4,2). Let o be an involutory automorphism of Y with
Cy(o)=PSp(4,2). If X is a o-invariant subgroup of Y with Cy(0)<X<Y
and Cy(0)E X £Y, then Y=PSU(5,2) or PSL(5,2) and X'=PSU(4,2) or
PSL(4, 2), respectively. We omit the details.

Proof. If Y=PSp(4,2)x PSp(4,2), then this is easy. In the other cases
the result follows from Sylow’s theorem together with an analysis of the
action of X on the underlying vector space defining Y. We omit the details.

(5.5 Let A=0*(n,2),I<A, and let P<A satisfy
PZ(A)/|Z(A)=PSO™*(8, 2).
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Suppose that P = E(C,(I)) is a standard subgroup of Cs(I) and that
R e Syl,(Cg(P)N Cs(1)).

Finally assume that when A is regarded as acting on the subspace of the usual
F,-module, V, of O*(n,2) we may write V=V, 1V,, with dim(V,)=8, P
fixes each 1-space of V,, and V, is P-invariant. Then Cs(I)™ % M(22).

Proof. Suppose otherwise. Then C(t) N E(Cg(I))=Aut (O (8,2)") (see
Table 1, p. 441 in [2]). Let x be a 3-element centralizing ¢ and acting as a
graph automorphism of order 3 on P. We know that xe C(t)<N(A).
However from the embedding of P in A we see that this is impossible.

6. Notation and the subgroup E

Write A =(U.,, ..., Usq,), Where for a €2, (the root system of A), U, is
the corresponding root subgroup. Set V, =Q,(U,) and J, =(V.,). Then for
each ae3, J,=SL(2, q) for some q=2° For i=1,...,] we may choose
the fundamental reflection s; €J,. Choose reX* such that r is long and
V,=Z(U) and set J=1J,. We set J, =(U,, U_,).

At this point we assume that Hypothesis (*) holds and that the theorem is
true for all pairs (A, G;) with |A;|<|A|. By [14] we may assume that
A% PSL(n, q). Also we have A of Lie rank at least 3, but A% PSp(6,2),
PSU(6, 2), PSO*(8,2). We adopt the notation of [13].

Choose X=A and D = E(C,(X)) as in (4.1) of [13]. Set E = E(Cg(X)).

(6.1) The pair (D, A) is one of the following (up to isomorphism):
() (O*(n—4,q), 0%(n,q)), n even,
(i) (Le(q), Ee(q)),
(iii) (0*(12, q)', E4(q)),
(iv) (E4(q), Eq(q)),
(v) (PSp(6, q), Fu(q)),
(vi) (PSU(6, q),*Ee(q)),
(vii) (PSp(n—2, q), PSp(n, q)), n even,
(viii) (PSU(n-2,q), PSU(n, q)).

Proof. This follows from (4.1) and (4.3) of [13].

(6.2) R =(t) and one of the following holds:
(i) E=Dx D, with t interchanging the factors.
(i) E is a finite group of Lie type defined over a field of characteristic 2,

and t induces an outer automorphism of E (a field, graph, or graph-field
automorphism).

Proof. The structure of E is given by induction, Hypothesis (*), or by
application of the theorems in [11], [12], [14], and [20]. In addition, we use
(5.5) in case D= 0"(8,2)". To see that R =(t) use (3.2) of [16].
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The group D is generated by certain of the groups J,, i=1,..., l. Indeed,
for all cases except (6.1)(i), D is generated by all but one of the groups ja.-
There is a unique root s€X* such that V,=Z(UND) and V# consists of
root involutions in E. However, there are cases where root subgroups of A
contained in D are not contained in root subgroups of E. This can occur if ¢
induces a graph automorphism of the Dynkin diagram of E. In the accompanying
table we list the possible configurations that occur in (6.2)(ii). Indicated are
the groups D, E, the Dynkin diagram of E, and the type of automorphism
that ¢ induces on E.

We remark that except for cases (10) and (11) above we always have s ~r
in W, so J;~J, in A. When we discuss the pair (D, E) we will always refer to
one of the entries in the preceding table with the given embedding of root
systems. So, for example, we distinguish between (PSp(4, q), PSU(4, q)) and
(PSp(4, q), PSO™(6, q)), even though PSU(4, q)=PSO™(6, q).

(6.3) Assume that the root system, 3., <3, of D is not of type C,, B,, B3,
A,, By, or D,, and also assume r~ s in W. There is an involution w € A such
that T =T, (see (4.1) for the definition of J, and I,). If J,, < C(J,), then there
is a root a €3 such that J,=<C(J,)NCJ,)NCJY). If W is not of type F,,
then a can be chosen conjugate to r.

Proof. This is proved by direct check. The following table gives the
relevant information. The first column gives the type of W, the second gives
the element w. The third column lists the roots, «;, with J, = C(J,), and the
last column gives the corresponding roots a.

Eq (5385)%% ay, a3, 0, 05, Qg g, a3, a3t aytas, as, as

E, (5,85)%%% Qy, O3, Oy, As, Qg Oy ay, Oy, 0yt a3+ ay, 0, O, Oy

Eg (838,)%%%7% Qpyeeny Oy as, ay+az+2a,+as, az, aztostas,
o3, 03, O3

F, s oy, 03, 0y ayt+ 203, aytas, o,

D, (s351)% gy, O Qpy Qs v v vy Oy Oy o+ O+ 0, 0, 0y

C, 51 Qpyovny Oy ..., O 0,20, 1 t+2a, 5,
a, +2a, 4

B, (s387)% Qgy.ney O QpqyevesQu_1,0,_1+20ay, 0, 1ta,

We will also consider roots not conjugate to r. If 3 has roots of different
lengths, let y be the short root in 3" of highest height. Let § be the short
root of highest height in the root system of D. So J;<D and J; ~J, in A.

(6.4) Suppose A=F,(q). Let P=E(C,4 (J,)). Then
P = <Ja,9 Jaz, Ja;) = SP(6, Q)’ P = E(CA(Y))
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for Y a (q+1)-Hall subgroup of J,=SL(2,q). Also Z={J, sapray Js)=
Sp(4, q).

Proof. This follows from the fact that a graph automorphism of F,(q)
interchanges J, and J,.

(6.5) Suppose A =PSp(n,q) with n=6. Let
P=0%(Ca(J,xJ,)) and Z=O0%(C,(P)).
Then P=(J,, ..., . )=D, Z=(J,, J,)=Sp(4, q), and P = E(C,(Y)), where
Y is a (q+1)-Hall subgroup of
J,XJ,=SL(2, q)xSL(2, q).

Proof. This can be checked using the natural module V for the group
Sp(n, q). The involutions in J, and J,, are of type a, in the notation of §7 of
[1]. One shows that J,xJ, induces the identity on a non-degenerate
(n—4)-subspace of V. The result follows.

(6.6) Let A=PSU(n, q) with n=6. Let
P=0%(Cs(J,) and Z=O*(C(P)).
Then

P=(Jos T s Ty Z=(Lo, J)=SU(4,q) and P=O0*Ca(Y)),
where Y is a (q*+1)-Hall subgroup of J,=SL(2, q°).

Proof. As in (6.5) this is checked using the natural module V for
SU(n, q). We may regard the group J, as acting on V. Then J, is trivial on a
non-degenerate (n—4)-space of V and acts faithfully on a non-degenerate
4-space, V,, of V stabilizing complementary isotropic 2-spaces. The group

Y is fixed-point-free on V,,. From the structure of SU(4, q) we see that no
involution in SU(4, q) centralizes an element of order g+ 1. It follows that

0%*(Ca(J,) = O*(Ca(Y))=SU(n—4, q).

Since the commutator relations imply t}}at (fa”, oo Jyy=8U(n-4,q) is
coqtained in C,(Y) we have P=(J,,...,J,). Similarly (J,,J)=
O?(C4A(P)) and C4(P) must stabilize V. The result follows.

(6.7) Let A=2Eq(q). Let
P=0%(Ca(J,)) and Z=O?*(Ca(P)).

Then P=(J,,,J,,,J2)=0"(6,q)=PSL4,q), Z=1J,, and P=0*C(Y)),
where Y is a (q°+1)-Hall subgroup of J, = SL(2, q°).

Proof. J,=(U,, U_,), so we first look at C,(U,). Using (4.6) of [6] we
consider the structure of the parabolic subgroup (B, s,, s,, s3) = I. This group
satisfies O*(I)= QD, where Q= O,(I) and D=(J,,J,,J.)=0"(8,q)".

1?2
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Moreover, Q contains a subgroup Q;<I such that Q, is elementary of
order q® and D preserves a non-degenerate quadratic form on Q;. Then Q,
becomes an orthogonal space and in this space U, is an anisotropic
2-space. Since Q,=2Z(Q), C(U,)N QD = QD,; where D1 0O*(6,q)'. But
Jaz> Jap» J,) centralizes U,, so Dy =(/J,,, J,,, Ji3). Therefore

P=07%(C{,)) = O*(C(U,)) N O*(C(U-,)) = (Jo, Jo, T2
Next we check that O*(C4(P))=J,, as follows. We know that
O*(Ca(J) = Taps Ty Jo)-
Also, a,~ a;~ay~r in W. We can then check
Cala,) N CaUa)NCAUZ)

to get the result.

Finally consider Y=J, and C,(Y). Clearly P= C,(Y). Also the 2-central
involutions in P are root involutions in A and so also in C,(Y). If u is a
root involution in C,(Y), then we can use the information in (4.6) of [6] to
see that C,(Y)N C,(u) = Cp(u). Now Cp(u) is the centralizer of a transvec-
tion, when P is regarded as SL(4,q). It follows that u is a 2-central
involution in C,(Y) and that the Sylow 2-subgroups of C,(Y) are isomor-
phic to those of SL(4, q) =P. Setting Z = (P“~¥), we use Theorem 1 of [17]
to conclude P=Z = O?(C,(Y)).

7. Generating subgroups

In this section we will construct certain subgroups of G. In later sections
these subgroups will be shown to generate a subgroup Go= G such that G,
is isomorphic to one of the groups in the main theorem. To this end we will

establish some commutator relations among the constructed subgroups.
Let X, D be as in §6.

(7.1)  Let bars _denote images in Cg(X)/XO(Cg(X)). Then D is a stan-
dard subgroup of C5(X) and D 4 C4(X).

Proof. This is (4.9)-(4.12) of [13].

(7.2) i) D=E(Cs(X)).

(i) R=(1)+E(Cs(X)).

(ili) |Z(E(Cg(X)))| is odd.

(iv) The pair (D, E(C5(X))™) is one of the pairs listed in the main
theorem.

Proof. Look at the group Cs(X)/X and apply (5.1) and (6.2). This gives
the structure of E(Cs(X)/X). Now apply (3.1).
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Let E = E(Cg5(X)). The action of ¢t on E shows that t© N tD# {t}. Conse-
quently we may assume that we are not in the situation of (3.5)(ii) of [13]. In
particular, we may now assume X to be of odd order.

(7.3) Notation. Recall, that if A is an orthogonal group, then J, = J, X Jo.
Otherwise J,=J,. Except for the case A=0%(8,q), X is a (q+1)-Hall
subgroup of J,. For each a € 3" with a ~r in W, choose we W with a =r",
and regarding we G set J, =J¥, X, = X" and E, = E*. Fix notation so that
w=1if a=r and w is as in (6.3) if a=s.

For each of the possible pairs (D, E) there is a subgroup K, of E, such
that J,=K,, K, is t-invariant, and

K, =SL(2, g%, SL(2, q) or SL(2, q)*xSL(2, q).

Indeed, if E=AXA, set K, to be the group generated by the root
involution in the projections of J; to the components of E. Otherwise, one
checks that the involutions in J; are root involutions in E and we set K, to
be the group generated by the involutions of the root subgroups of E
containing V; and V_,.

Finally, we note that K = J, = SL(2, q) only if D = Sp(n, q) for n even and
E is one of L,(q), L,..(q), PSU(n, q), PSU(n+1, q), or PSO*(n+2, q)'.

(7.4) Suppose A% O*(8, q)' or O*(10, q)', and also suppose that (D, E) is
not (PSp(n, q), O*(n+2,q)"), with n=4. Let a €3 be conjugate to r. Then
J,=Cg(E,), so E, = E(Cs(],)).

Proof. It will suffice to prove this for « =r. Here X=X, and E=E,=E,,.
The structure of E is known by (6.2) and Table 2. Let s be as in the remark
following (6.2) and J, =(V,, V_)=<E. By (4.3), D=C(J)).

Suppose (D, E) # (PSp(4, q), PSU(4, q)), (PSp(4, q), PSL(4, q)). We claim
that tg Z*(C(J,)). Suppose otherwise. Since J, and J, are conjugate by an
element of A, we have te Z*(Cs(J,)). Hence, te Z*(Y(t)), where Y=
Cg(J,). But a direct check shows this to be false. Thus the claim holds, and,
consequently, DO(C(J,)) 2 C(J,). Now argue as in the proof of (6.2) and
then use (5.1) to obtain the structure of E(C(J,)).

Now C(J,)=C(X) and D is standard in each of E(C(J,)) and E(C(X))=
E. By (5.2), either (7.4) holds or (D, E(C(J)), E) is one of

(PSp(n, q), PSL(n, q), PSL(n+1, q))

or (PSp(n, q), PSU(n, q), PSU(n+1, q)).
Suppose one of the latter holds and let w be as in (6.3). Then w inter-
changes XxJ;, and X" xJ,. So O*(C(XJ],))~ O*(C(JX"))= O*(C(JJ)).

Comparing centralizers of J, in C(X) and in C(J,) we obtain a contradiction.
Suppose, now, that

(D, E) = (PSp(4, q), PSU(4, q)) or (PSp(4, q), PSL(4, q)).
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Then Y=1J,, X1, where l/Z(E)=Z,., or Z,_,, respectively. Let X, be a
(g +1)-Hall subgroup of J,,. Then Xo~a X and J,=C(X,). In fact, J, =
E(E(C(Xp)NC(X)) (recall that q>2 here). Consequently, Ng(J,)=
(D, I) = E, and the result follows.

Hypothesis (7.5). () s~rin W.
(i) A#O*(n,q), with n=8, 10, or 12.
(iii) (D, E)# (PSp(n, q), O*(n+2, q)"), with n=4.

Remark. As stated in §6 we distinguish the pairs

(PSp(4, 9), PSU(4, q)), (PSp(4, ), 0" (6, q))
and also the pairs
(PSp(4, q), PSL(4, q)), (PSp(4, q), 0" (6, q)).
So in each case the first pair is not ruled out in Hypothesis (7.5).
(7.6) Assume Hypothesis (7.5). Then K, = Cg(E;).

Proof. This is clear from (7.4) if K, =J,=SL(2, q). So suppose J;, <K,.
Assume first that g=4. Then there is an easy argument as follows. Since
K,=SL(2, q®) or SL(2, q)x SL(2, q), there is a subgroup X, <K, such that
X, is an abelian Hall subgroup of K, and X, NJ, is an A-conjugate of the
subgroup X =J,. Moreover X, centralizes a (q+ 1)-Hall subgroup of T, if
J.>1J,. So X,=<Ng(E,) (recall the definition of E,). But K, ={J,, X,), so
K, =Ng(E,). As J,2Cs(E,)NK;# K, we must have K, =Cg(E,) as de-
scribed.

For the remainder of the proof we assume q =2. Recall that A% O*(n, q)'
for n=28,10, or 12. Let r* =s, where w is as in (6.3). Choose a; with
J, = Ca(J,). Then J¥=<Ca(J,). By (6.3) there exists a root a €3 such that
J,=C@J,)NCJ,)NCJY). Suppose, for the moment, that W is not of type
F,. Then, by (6.3), we may take a ~ r. From the definition of K; one checks
that J, = C(K,). We claim that J¥=C(K,). Clearly K,, J»=C(J,). Also,
I, J?<E, =E(C(J,)). This is because E, and E, are conjugate by an
element of W (considered as an element of A). If K ,#S;XS;, then
K,=L,(4) and we must have K,=<E, (since K,=N(K,NE,) and
K,NE,=J,). Suppose K, *E,. Then K,=S;X S, and E=D x D. Because
of our standing assumptions on A we see, from the structure of E, that either
D=5p(6,2) or K,=Cs(J,)”. As we are assuming K, +E, = C(J,)™, we
must have D=Sp(6,2). Since K,<N(K,NE,) and J,<K,NE,, we must
have K =(K,NE,)Xu), where u is an involution satisfying [u, t]=v and
(v)=V,. Since Aut(Sp(6,2))= Sp(6,2), v interchanges the components of
E,. So tu stabilizes each component of E,. In particular, tu stabilizes the
intersection of O;(K;) with each component of E,. But then v=/(tu)*
centralizes O;(K;), a contradiction. So we necessarily have K, <E,,.

Let L = O?(CA(J,J.J,)). Considering T= C(J,J,L) as a subgroup of C(J,)



CHEVALLEY GROUPS .AS STANDARD SUBGROUPS, II 527

we have O%*(T) = K,, where K, = K, or K, x K3, according to whether or not
J,=1J, or J;>J,. Let Y= E(Cg,(J,)). Then from the structure of E, ~E we
check that

Ozl(CE‘, ()= OzI(CE,, (JL) =K.

As K,=O0?%*(Cg (J,L)) and as J¥=<Y, we conclude that J = C(K,). Thus,
the claim holds.

We show that this also holds if W is of type F,. Consider the possible
values of s}, using the table in (6.3). If i=2 or 3, then J;=1J, and
J,. = C(K,) (view this in E). Suppose i =4. The corresponding value of a is
a=a,~r, and the above arguments apply here. So in all cases we have
Ju=C(K,).

At this stage we have

CG(Ks)Z<CE(Ks)’ J:;: Ja‘ SE) = <CE(K3)’ Dw) = Y1°

Since we know the structure of N(K,)N C(J,) we can apply induction and
(5.2) to see that Y, =E.. It follows that K, = C5(E,), as desired.

(7.7) Assume Hypothesis (7.5).

() If A is not an orthogonal group, then for a,, a,€ A,[J%, J%]=1 if and
only if [K%, K¢2]=1.

(i) If A is an orthogonal group, then for a,, a, in A [K*, K%]=1,
provided [J%:, J%]=1.

Proof. 'This is clear if J, = K,, so suppose J, <K,. Also, since J, =<K it
will be sufficient to assume [J%, J%]=1 and to prove [K%, K%]=1. So set
a=a,ai'e A and assume [J, J¢]=1. Then J*= C(J,), so J*<E, = C;5(K,)
by (7.6). So K, =Cs(J%. Also, J,<E(Cg(J%) so as in (7.6) either K, =
E(CoUT))=C(K?) (by (7.6), or E(Cs(J))=DxD and K=
(K, N E(C(J))u), where [u, t]=v e V¥, In the latter case argue as follows.
By (7.6), C(K,)NC(J%)=E,NC(J%. But this does not coincide with the
structure of C(J%) N C(K,) obtained from the embedding of K, in C(J?).
Therefore, we must have [K,, K¢]=1, as required.

(7.8) Assume Hypothesis (7.5).
(i) K,=Cs(E)).
(i) If K,>J,K,#8;%S,, and if A is not an orthogonal group, then
K, = E(Cg(E))).
(iii) If we N (regarded as an element of W) and Jy = J,, then K} = K.

Proof. Consider O?(Cg(E,))=J,. We may assume that K, > J.. (i) follows
from (7.6). Assume A is not an orthogonal group. We have K, =
O?(C5(E,)). If J,#8S,, then J, is a standard subgroup of Cg(E;,). Using the
main theorem of [10] and (2.1), we obtain (ii). Suppose J, =S, and let
V, <Ie Syl,(K;). We are assuming that K # S; X S;, so K, =L,(4). We claim
that I e SylL,(E(Cg(E;))). Otherwise, there is an element x € E(Cgs(E;)) with
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x€1, x*eI, and x normalizing I(t). Since t& C(E;), t*¢ C(E,) and hence
t* e tI. But then t* e t' and x € I(C(t) N C(E,)) = 1J,(t), a contradiction. From
here we obtain K,O(Cg(E,))=L(Cs(E)), and arguing as in the proof of
(5.1) we have the result.

Suppose we N and J¥=J,. Assume A is not an orthogonal group. We
have we J; X C4(J,). So we may assume w e C4(J,), for, otherwise, replace
w by wy=gw with ge WNJ. Then C,(J,)= E(Cs(J,))=E,=C(K,) (by
(i)). So K¥=K, and (iii) holds. Suppose that A is an orthogonal group.
Write s =r": where w; = 5,5;5:5,. Then

we(J,x D) =J,xJ, x D".

Now J,,= C(K,), so we may assume we D" < E}"»= E_ and again the result
follows from (i).

At this point we know that, given Hypothesis (7.5), we can define a
subgroup K, for each a €3 with a~r. Namely for such a root a choose
we W with s* = a. Then regard w as an element of A and set K, = K}'. By
(7.8)(iii) this is well defined. Also, K} = K,. Moreover, (7.7) gives certain
commutator relations among the K,. For example, we have:

(7.9) Assume Hypothesis (7.5) and that A is not an orthogonal group. Let
a,BeZ and a~B~r~s. Then [K,, Kg]l=1 if and only if [J,, Jg]1=1.

(7.10) Assume that Hypothesis (7.5) holds. Let A = PSp(n, q) with n=8,
PSU(n, q) with n=6, or PSp(6,q) with E=PSp(4,q®, PSU(5,q), or
PSp(4, q) X PSp(4, q). Then the following hold:

(i) There exists g € E with t# t® € C(Z) (notation as in (6.5) and (6.6)).

(ii) Cgs(Z) contains P= (fa,, Jars + > Ja,) as a standard subgroup,
PO(Cs(2)) $C5(2),

and (t)e SyL,(Cs(Z)N Cs(P)). 3
(iii) (JS®)=<E, and (JS®)=E(Cs(Z)) unless A =PSp(8,2).

Proof. To get (i) we consider the action of ¢t on E and use the results of
§19 of [1]. In most cases it follows that if v € D is a transvection, then ¢~ tv
by an element of E. Otherwise t~tv for v a product of two commuting
transvections. Since

CA(Z)Z<jap ceey Ja3>>

we may choose v so that t® = tv satisfies (i). Also, it is easy to check that
(e Syl,(Cs(Z2)N ?G(P))-

Suppose that A =PSp(n,q) or PSU(n, q), with n=8. Notice that if
A =PSp(8, q), then (7.5)(iii) shows that E# Lg(q) or Us(q). Let r~me3
and choose m such that [J,, Z]=1. Let L= 0%*(Cs(J,Z)). Then L=
PSp(n—6,q) or PSU(n-6,q). Then LXZ=<E, and we check that
t& Z*(Cg,(Z)(t)). Consequently, t& Z*(Cs(Z)). This proves (ii). As J, <E
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and C(Z)= C(J,)<N(E), certainly (JS®)<E. If A% PSp(8,2), then J, <
CA(Z)* and an easy argument gives the rest of (iii).

In the remaining cases let V be the usual module for Sp(6, q), SU(6, q),
or SU(7,q) and consider A% acting, projectively, on V as (A%)~. Since
ge C(J,), J,= A& As Z<N(A?®) and Z =(J%), we must have Z= A&, Also,
g€ C(J,) implies that V, is a root subgroup of A% for a long root. So the
elements of V# are transvections in their action on V. C,(V,)= Q(J, X H),
where Q= 0,(C;(V,)), Cz(V,) acts irreducibly on the elementary group
Q/V,, and Hy=1 or Z,,,, depending on whether Z=Sp(4, q) or SU(4, q).
Consider Cu:(V,). This group has as normal subgroup O,(Cx(V,))I, where
I=Sp, q), SU4, q), or SU(S, q). Moreover, we may assume J, <I. From
the structure of the parabolic subgroups of X (see §3 of [5]) we conclude
that Q = O,(Cx(V,)).

Now we claim that Z stabilizes a non-degenerate 4-space of V,. From the
embedding of J,= A% we see that J, X J; must stabilize a non-degenerate
4-space, V,, of V. Moreover V,=V,;1V, where V; and V, are non-
degenerate 2-spaces, J, trivial on V,, and J; trivial on V;. Let {v,4, v5,} be a
hyperbolic pair for V; chosen so that [V,, V;]=(vs,). Then O,(Cx(V,)) is
trivial on (v3;)*/{(vs;). Apply the 3-subgroup theorem to J,, Q, and (v,,). We
have

[J, (v32), Ql=1 and [J, Q,(vsx)]=[Q,(vsx)].

Since QJ, normalizes [Q, (vs,), J,(v31), we conclude that

[O, (0:D]=[Q, (v32), J Kv31) = V.

So Q stabilizes V, and hence Z =(J,, J,, Q) stabilizes V,, proving the claim.
From here we see that C,:(Z) contains D = Sp(2, q), SU(2, q), or SU(3, q)
as a normal subgroup. In the first two cases q>2, and so [D, t]=D. As
D =C(Z), we see that t& Z*(C5(Z)(t)). This also holds for A= U,(q), if
q>2. If A=U,(2) and te Z*(C5(Z)(t)), then

D=SU(@3,2) and [D,t]= 0s(D)=0(Cs(2)).

Viewing Cs(Z) = C5(J,) N Cs(J,), we see that this is impossible. This proves
(ii), and (iii) follows.

(7.11) Assume that the hypothesis of (7.10) hold and choose notation as
in (6.5) and (6.6). Then

O*(E,NE,)=Cs(Y)a =Cs(J, XJ)a = C5(Z)a.
Proof. We have Y=Z and J,xJ,=Z. So
Co(Z)a=Cs(,xJ)a and Cg(Z)4=C5(Y)a.

By (7.10)(ii), P is a standard subgroup of Cs(Z) and PO(C5(Z))+ Cs(2).
From (6.5) and (6.6), P is standard in C5(Y), and by direct check we have P
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standard in Cg(J, X J,). By (5.2) we conclude that
Cs(Z)s=Cs(, xJ)a=Cs(Y)a

unless, possibly, E(C4(Z))” = PSp(n, q), E(C5(Z))” =PSU(n, q) (respect-
ively PSL(n, q)), and one of E(Cgs(Y)) or E(Cs(J, X J;))™ is isomorphic to
PSU(n+1, q) (respectively PSL(n+1, q)). Suppose that this exceptional
case occurs. Let I=Y or J,xJ, so that E(Cg(I))"=PSU(n+1,q) (or
PSL(n+1, q)).

Let 6, = r**. Then considering C(Js;)=Z we see that

(CUs) N C(Z2) 4 = (CU,) NC(Y)) 4 = (CU5,) N CTJ,)) a-

Reading this in the groups C(Z),, C(Y)a, and C(JJ,)s We see that n=2.
But then PO(Cs(2)) = J,,0(Cs(Z))= Cs(Z), a contradiction.

Finally, E, = C5(J,) o and E; = C5(J;) s, 80 E,NE;= Cs(J, X J;) o. Check-
ing the embedding of J; in E, we get the equality, completing the proof of
(7.11).

(7.12) Assume that AEF4(q). Let Y,Z be as in (6.4). Choose X, a
(q+1)-Hall subgroup of J, and Y, a (q+1)-Hall subgroup of J,, where
n=a,+a,+a; Then:

(i) XxX; and YXY; are (q+1)-Hall subgroups of Z.

(i) Q={,, J.,) is a standard subgroup of Cs(Z) with

() e Syl,(Cs(Z2) N C(Q)).
(iii) (Cg(XxXy))a is Z-conjugate to (Cs(Y X Yq))a.
(iv)
(Co(Z)a =(Co(XX X)) a=(Co(YXY))a=(Cs(J,XJ))a
= (CG(J'y X Jn))A:
provided t€ Z*(Cg(Q)) or t& Z*(Cgo(Q)), where E° = E(C5(Y)).

Proof. By order considerations (i) holds. So by Wielandt [18], X x X,
and Y X Y, are conjugate. This proves (i) and (iii). We have (ii) by inspec-
tion. We have Z containing each of the groups XX X;, YX Y, J, XJ; and
J, x J,. Therefore (iv) will follow as in the proof of (7.11), once we show that
t¢ Z*(Cs(2)).

Now Qf=Z for g=s5,545,535,5:835,€ A. So it suffices to show that
t¢ Z*(C5(Q)), and each of the conditions in (iv) immediately implies that
this is the case. This completes the proof of (7.12).

8. A=E,(q), D.(q), and ’D,(q)

We are now in a position to construct the subgroup G,. The method for
all the groups is essentially the same, although there are certain differences.
The hardest cases are when the Dynkin diagram of A has a double bond.
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(8.1) Suppose that A=E,(q), n=6, 7, or 8. Let w,€ W be the element
$25483, 515384, Sg$756, respectively. Let Go=(E, E"). Then G, is semi-simple,
|Z(Gy)| is odd, and G,=E,(q* or E,(q) X E,(q).

_Proof. We give the proof for n=38, the other cases being similar.
E=E,(q® or E,(q)XE,(q) and E=(K,,, ..., K,) (see Table 2). Then

Ewl = <Ka1’ ) K:xv;>= (Kal’ .. Kan Kip K7’ K8>9

by (7.8). So Go=(K,,; - - -, Kqp)-

First assume that E = E7(q2) Here we claim that G, = Eg(q?). To do this
we must first know the commutator relations exnstmg between K,, and the
groups K, , .. .- By (7.9), [K,,, Ka.]=1 for i=1 ,6. Also

(as, )1 = Koy as)ESL(3,q)-

So we can label the elements of (K, K,,) by elements of F_.. However this
must be done in such a way that the elements of K, have the same labeling
in E as in (K,,, K,,). This can be done by relabeling (K,,,, K,,) using a field
automorphism (see §11 of [7]). Once this has been done Theorem 1.4 of
Curtis [4] shows that G, is a homomorphic image of a certain group G¥*,
where G*=Fq(q®) and G* is generated by groups isomorphic to
K,,...,K,, subject to certain relations determined by the groups
(K., K, ), 1=i,j=8. This proves the claim. Also, note that |Z(G,)| is odd,
because otherwise C(A) would contain a klein subgroup.

Next, suppose E = E,(q)x E,(q) and write E=E,E, with E,=E',E, a
perfect central extension of E,(q), and [E,, E,]=1. For i=1,...,7, write
K. =K, NE, and K2 =K, NE,. Then K, =K, xKZ2 and K =(K})" for
i=1,...,7. Also fori=1, 2 we have Ei=(K’al,...,Kf,,).

Now (K, K,)=(K., K5 )*x(KZ,K2)=SL(3,q)*xSL(3, q). Conjugat-
ing this by w1 we get a s1m11ar decomposmon for (K,,, K,,) ={K,,, K,,)"'=
Y. Write Y=Y, x Y, where K, =Y, and K}, = Y2 Then set K, =K, NY,
for i=1,2. Finally for i=1, 2 write G =(K., ...,K.,). We have 61 G,
and arguing as before we have [G,, G,]=1, Go G1G2, G,=G,=Ey(q),
and |Z(G,)| odd. This completes the proof of (8.1).

(8.2) Let A=0O*(n,q)" with n=14 and n even. Let
W1 = §,5354815,83.

Then Go=(E, E™) is semi-simple, |Z(G,)| is odd, and Go=0%(n, q%)’ or
Go=AxA.

Proof. The argument is similar to that of (8.1). Write

A = <Jap ceey Ja1>’
so ANE={,,...,J,). Now

E=0"(n-4,q) or E=DxD.
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In the wreathed case we write E=(K,,...,K,,), where J, = Cg_(t) and
K, =7, xJ,.For A=0O%(n, q)’ or O™(n, q)', label the Dynkin diagram of E

... 0—0D or o—;(o ,
e T Bl P

respectively. Then write

E=(K,, Kz, K,, ,,...,K,;) or (K, Kg K, ,,...,K,),
respectively. Here,

K,=K,, and K;=K, if A=0%~n,q)

and
J,=C(ONK,K, if A=07(nq).
We then have E"'=(..., K,, K, ) and

GO = <Ka, K{B, LR Ka3’ Koq’ Kal) or (Kap seey Ka29 Ka,)a

depending on whether E=0O"(n—4, q*) or Dx D.
From (7.8)(ii) we have

$,5,8, — 5,858, — §,5,85 —
Ka2434_Ka3’ .Ka2334—Ka 29 and Kalzzs—Kal.

Kit=K,

Therefore, (K,,,, K,,)>** = (K,,, K,,) and (K,,, K,,)"**** =(K,,, K,,,). First, re-
label elements in (K,,, K, ) so that elements of K,, are labeled the same in E
and in (K,,, K,,). Once this has been done relabel the elements of (K,,, K,,,)
so that the labeling of K, agrees with that in (K, K,,).

We can complete the proof as in (8.1) once we check that certain
commutator relations hold. Suppose first that A=0O%(n, q)’. Then the
necessary relations follow from (7.7)(ii) (such as [K,, K,,]= 1). Suppose that
A=07(n,q).

First assume that E=O%*(n—4, q®). Then the relations not obtainable
from (7.7)(ii) directly are

[Kw Koq] = [Kw Kaz] = [KB’ Kal] = [KB7 Kag] = 1

Consider the group Y =(K,, K, K,, ). Then Y= L,(g*) and t induces a
graph-field automorphism on Y, with Cy(t)={J,,J,_). It follows that
(Jop Koy =Y. So we need only show that

o Koy = C(K,,,) N C(K,,).

29

However,

Jo =C(K,)NC(K,,)
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as J,=E, NE,, and
K, =C(K,)NC(K,,)

by (7.7)(ii).

If E DxD the same arguments apply. Here use the facts that
(K, a, D= K, )=C(K,)NC(K,,). This shows that [K,, K,]=
[K,, K,,]=1, the desired relations. The proof of (8.2) is then complete.

To handle the orthogonal groups of lower dimensions we must work a bit
harder.

(8.3) Let A=0%(10, q)' or 0*(12, q)’ and set
W1 = §,8354515,253.

Then G,=(E, E™) is semi-simple, |Z(G,)| is odd, and G,=AxA,
0*(10, ¢*', or 0O*(12, ¢%)'.

Proof. Choose notation for E as in (8.2). The difficulty here is that (ii) of
Hypothesis (7.5) does not hold. Consequently, we cannot apply (7.7). Let
K,,= K2 and K, = K3*.

Let I=] = J., X J, be cyclic of order g+ 1 and such that I corresponds to
the centralizer of a non-degenerate (n —2)-subspace of the usual module for
O*(n,q) (n=10 or 12). We may choose I=X. Then E(C,(I))=
O%(n-2,q)'. Let P=E(C,(I)). It is easy to check that P is a standard
subgroup of Cgs(I) and

() € Syl,(Co(I) N C(P)).

Also E=Cg(I), so t& Z*(Cs(I)). As I=X, (Co(DNCs(X))a=E so by

induction and (5.5), E(Cg(I))=0O"(n-2, g%’ or P x P. Except for the case

E(Cs()=PxP=0"(n-2,q)x0 (n-2,q)" the Dynkin diagram of

E(Cgs(1I)) is of type D, for k =3(n—2) (or the union of two such diagrams).
Let 8, =r>"%% and note that J, ~ ,J;, = J,, X J5,. Also

t€ Z*(C(J,,) N E(Co(DXM).

Consequently t£ Z*(Cs(J,)). It follows from (5.2) that E = E(Cgs(X))=
E(Cs(J)), so J.=Cg(E). Deﬁne a subgroup, L <E, as follows. If A=
O*(n, q)', set L = K,, X K, or K, X K,,, depending on whether n =10 or 12.
If A=0"(n,q), set L= Ka ><K‘4 or K, XK, depending on whether
n=10 or 12.

From the embedding of L =E = E(Cg(I)) we have the structure of

Z=(E(Cs(D)N Cs(L))a-

If E(C5(I))=0"(n—2, g%, then Z=0"(4, ¢>) or O*(6, q°)', depending on
whether n=10 or 12. Then C,(t)=0%(4,q)' or O7(6, q)', according to
A =0%*(n, q), and depending on whether n=10 or 12. Similarly, we have

L7t}
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the structure of Z and C;(t) if E(Cg(I)) is wreathed. Now, Cg(L)=
(J, C(t)). Also, (J,, C,(t))= Co(L N A) (use the Lie structure or argue as in
the proof of (2A) in Wong [19]). There exists a € A such that L*NA =1J,
and L*=K,. Then

Co(K,)= Co(L*) =(Ca(L* NA), Z%)=(Ca(],), Z%).

So E(C,(J,)) is standard in Cg(L?) and tg Z*(Cg(L?)). From (5.2) and the
fact that C5(L?%) = Cs(J;) we conclude that K, = L* = C(E,). Once we have
this, we can prove (7.7)(ii) and complete the proof as in (8.2).

In dealing with the orthogonal groups O*(8, q)', ¢ =4, we must introduce
a certain subgroup as follows. Let I be a (q—1)-Hall subgroup of J,=
J., X J,, normalized by s;, and I=H. Let I, <I be such that

II: Ij=q—-1 and C,(I)={,,...,J.).
If A=0%(8,q) we may take I, = X, where X is as in (4.1) of [13].
(8.4) Let A=07(8, q)' with q=4; set F= E(Cg(I,)) and F* = F**, Then
G, =(F, F*) is semi-simple, |Z(G,)| is odd, and
Go=0%(8,q%)' or 0O7(8,q9)'x0"8,q).
Proof. We have Oz(CA(Il))=(Ja‘, Jy,» Jo,) and t€ Z*(Cs(I)) by (4.7) of
[13]. So
F=0%6,9°)" or O*(6,9)x0%®,q).
We label F=(K,,, K,,, K,,), as usual. So, J, =K, for i=2,3,4.
Now C(I) Ny, I, Jo) = J.. X J,.. It follows that
O*(Ce(D) = K,, X K,,.

As Cs(I)=Cgs(I;) we have K, XK, =E(Cs(I)). In particular, s; nor-
malizes K,, X K,,, and since s, centralizes J,, and J,, we have K = K, and
K. =K,,. Let K, = K.

Next, we note that there is a subgroup Z= A such that Z(A)Z/Z(A) is
cyclic of order q—1, E(Ca(2)) ={J,,, J,, Jo,), and Z centralizes I;. To see
this, just choose Z=Cy((Jy; Jop o). Then Cp(Z)=(K,, K,,), so
té Z*(Cs(Z)) and

E(Cs(Z2))"=L4(q*>) or L,(q)XLsq)

depending on whether (K,,, K,,)” =L;(q%) or L;(q)X Ls(q). In any case we
write

E(CG (Z)) = <I%a1’ Ka;’ Ka3>
where K, =J,, [K,, K,]=1, and (Kal, K,,)=(K,,, K,,). But then Kal =
K=K, and [K,, K, ]=1. Similarly, [K,, K,,]=1. We now have all
necessary commutator relations to determine the structure of
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(K., Ko,» Koy Ko,) = Goo. We conclude that Gy = G, and (8.4) follows.

(8.5) Let A=07(8,q), with q=4. Choose I and I, as in the remarks
preceding (8.4), and set F= E(Cgs(I,)). Then G,= (F, F***) is semi-simple,
|Z(G,)| is odd, and

Go=0"(8,q4% or O(8,9)xO0(8,q).

Proof. F=(J,,J,). As in (4.5) of [13] we argue that t& Z*(Cs(I)) (use
the fact that % € tVZ, for some ge E). So

F=0%6,q>) or O7(6,q)x07(6,q).

We write F=(K,, Kg, K,,) or (K
ponds to the Dynkin diagram

=
> or cr::é:p,
< = -
B 2 3 A

respectively, and in the wreathed case we really mean a union of two
diagrams.

It follows from the above that E(Cg(I)) = K, X K, or K,,,, respectively. Let
geN(V,)NK.K; or geN(V;)NK,, with t*=tv and ve VZ. Consider
Cs(t8)=N(A®). We have J. = C(t%), so J, =T =N(A8)® =A% Also, g
centralizes I, so the embedding of I in A® is the same as that of I in A.
Consider A% acting on the subspaces of the usual module, M, for O7(8, q).
Writing

o« Ka,), TESpectively. Here, labeling corres-

I=(INJ, )xINJ,),

we see that M contains 4-spaces, M; and M,, such that M=M, L M,, INJ,,
and INJ, fix all the 1-spaces of M, and the preimage of INJ,, and INJ, in
O7(8,q) acts fixed-point-freely on M,. Now J,=<C(INJ,) and J =
C(INJ,), and these facts imply that J, and J, stabilize M; and M,. So J,
stabilizes M,. Hence E(Ca:(J,)) = E(Ca:(I))=L,(q?. As in the proof of
(4.5) of [13] this implies that t€ Z*(C(J,)). As Cg(J,)=Cg(I), we have
E(Cs(J,)) =K, XK, or K. Now set K,, = K2 and K, = K**>. Then

(Kay» Kp)y = Ko, X K, = J,, X J,.
Also, there is an abelian subgroup I>1I with
1=27,,,xZ, or Z,_,XZ,_

depending on whether F=(K,, KB, o OF (K, , ) Then K, XK, = (I T).
Now I normalizes Cs(I), so K, NK, ﬂ C(E(CG(I))) isa normal subgroup of
K,, % K, containing J. We must have

K, X K, = C(E(Cs(D)).
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This says that [K,, K,]=[K,,, KB] 1 or [K,, K,,]=1, depending on
whether F=(K,, K, K,,) or (K, K,,)).

Suppose F=(K,, K, K,,) and write s;=s,s, for s, € K, and sg € K;. Then
K, = K, so by the above,

(K Kap) ~ (K, Ko) ~ (K%, Kby = (K32, Ko,) = (Ka, Ko,)-

So in this case we have all necessary commutator relations to conclude that
Goo=(F, K,,) satisfies G,o= O+(8 q?)'. As A =Gy, we have Gy, = G,.
Now suppose that F=(K,,, K,,). All that is needed here is to show that

(K, Ko) ™ =Ls(q) X Ls(q).

Let L=(J,,J,,NCWJ,,xJz). Then L/LNZ({(J,,J,,)) is cyclic of order
q+1. Regardmg T J. 5 as O7(6, q)' acting on its usual module, L acts
trivially on a non- degenerate 4-space of index 2. Since the (q+ 1)-Hall
subgroup of J,,N H centralizes J,, X J3;,, we conclude that L <J, Z(A), so
[L,J, ]=1 Now from above we have E(C4(L))"=0%(6,q) and so
E(CA(L)) < az) oq’ ]232 .

The group L is conjugate to a subgroup of X, so t& Z*(Cg(L)) and,
necessarily, E(Cs(L))=L,(q) X L,(q). Consequently,

E(CG(L)) < 73] oq’ Ksasz>
where K,,=J,, K, =J,, each K,, is t-invariant and
R, =R, =Ly(q)* Lo(q).

We also have L=J, =<K, =C(K,,), so K,,=E(Cg(L)) and we must have
K., K But then,

K,=Kg" =K, and (K, K,)=(K,,K,),
showing that (K, , K,,)” = L,(q) X L5(q). This completes the proof of (8.5).

9. A =PSp(n, q) or PSU(n, q)

In this section and the next we assume that A = PSp(n q) or PSU(n, q).
In the present section we also assume that either E=D x D or that the pair
(D, E) is of type (7), (12), or (13) in Table 2. This implies that the Dykin
diagram for E is the same as that of D (or the union of two such, in the
wreathed case). Let A have Lie rank L

For any root a€X with U, <E we have associated a root subgroup
U, <E such that U, < U, (U, is a direct product in the wreathed case).
Moreover J, =J, <(Ua, U_.)=K,. If the components of E are not odd-
dimensional unitary groups, then K, = K,. In the exceptional cases, a~s
and K, _SU(3 q) or SU(3,q)xSU(3, q). With this notation, we have

( oy’ a, q9 * 0t Ka;)'
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Set K, = K>, E°= E**, and G,=(E, E°). We will show that
GO = (Ka,’ Ka.-m ceey Koq)
and that G, satisfies the necessary commutator relations.

(9.1) Suppose that n=8. Then G, is semi-simple, |Z(G,)| is odd, and
either

Gy=AxA
or
A=PSp(n,q) and G,=PSp(n, g%, PSU(n, q), or PSU(n+1, q).
Proof. By (7.11),
Co(Z)a=Co(U,xJ)a=(Ky, Ko s - - -, K,
In particular, s, €J, = Cg(P) and it follows that

E°=(K,,...,K,, K2, K,).

)=P.

Also we have
e K] = ey, Ket?1~ 1, Ko ]~ [T221%5%, Ko ]
=[J,,, K, ]= 1.
In particular, s;€ C(K,,). This implies that
(Ko Ko) ~ (K3, Ko) = (K3, Koy ~ (K57, Kop) = (Ko Ko,)-
Finally, we have the relation

(Ko, Ko ] =K, Ko ]~ (K,

49

12

K##1=[K,., K,]=1.
With the above relations we argue as in §8 that
Goo=(R,» Ko_,» - - - Ko)
is semi-simple |Z(Gy,)| is odd, and
Goo=A X A, PSp(n, q*), PSU(n, q), or PSU(n+1, q).
Since A = Gy, we have Gy, = G,, and the proof of (9.1) is complete.
(9.2) Suppose that A =PSp(6, q) or PSU(6, q), with q=4, or that A=
PSU(7, q). Then G, is semi-simple, |Z(G,)| is odd, and either

GOEAXA
or

A=PSp(6,q) and G,=PSp(6,q>, PSU(6, q), or PSU(7, q).

Proof. The argument is similar to that of (9.1) although we must work
more to get some of the commutator relations. As in (9.1) we need only
show that Gy, = (K,,, K., K,,) satisfies the necessary commutator relations.
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First we claim that [K,,, K, ]= 1. Note that

e KaJ= ey K21~ T2, Ko 1= 1, Ko 1= 1.

If D=PSp(4,q) and E=PSU4, q), then Ka J,, so the claim holds.
Consider the other cases. Using (7. 8)(i) and the above we have [K,, K, ]=
1. So we may assume K, ,>K,,; that is

a3)

(R,)"=PSU@B,q) or PSU(3,q)xPSU(3, q).

By (7.11) K,, = C5(Z)a = E(C5(Z)). Let Y = C5(K,,). Then Z is a standard
subgroup of Y

We first show that t£ Z*(Y). Suppose otherwise. If E=DxD then
K. <Y and t£ Z*(K,(t)). So suppose that E=PSU(5, q). If g>4, let I=
CE(K,son). Then I/Z(E) is cyclic of order (q+1)/d for d=(5,q+1). If
q=4 and

O*(C({J,)/CUJ,E)=PSU(S, q),
set I=1. Finally, if =4 and
0*(C{J,)/C(J,E))=PGU(S, q),

then we may choose I =(x) where I=C(J,) and I 1nduces an outer diagonal
automorphism of E of order 5 and centralizing Ka oJ,. Since I centralizes
J.x T, and since we are assuming that ZO(Y)=Y, we have [Z, I1= O(Y).

Also, K,, contains a subgroup I, with [J,, L]=1, I, =Z(K,), and
I,/Z(K,,) is cyclic of order (q+1)/e, where e =(3, g+1). Note that for this
case A=PSp(6, q),s0 q=4, q+1>3,and I, # Z(K,,). Now [II;, Z]= O(Y)
and II, acts on E(Cs(J,))= E™%, centralizing J, ><Js. It follows that II,
induces a group of inner automorphisms of E%® of order dividing q+1.
Consequently, there is a subgroup I,=1II; with I,=< C(E**%) and I,% Z(E).
So IF* centralizes J, X E.

In particular If)zslsC(Kaa)=Y. Since I$® also centralizes J, X J, we have
I = O(Y). We want to have I§* = C(Z), and to get this it will certainly
suffice to show that [Z, O(Y)]=1. Let O=0O(Y) and let veV, be an
involution. Then

O = Cy(t) Co(tv) Co(v).

Now Co(t)=N(A)NCWJ,)=N(Z), so [Cy(t), Z]=ZNO(Y)=Z(Z) and
Co(t)=Cy(v). Also there is an element geK'f,gjl with t& = tv. Cy(tv) nor-
malizes A® and, as q=4, Cz(tv)xJ, =A% Since Cy(tv)=O(Y) we con-
clude that Cy(tv)=C,(v). We then have ve Cg5(O(Y)), so Z=(v¥)=
Cs(O(Y)), as needed. In particular, I§* = C5(Z), which implies Cg(I§")=
(Z,J,,, Joy = A. So Ig*+=I,, whereas I3"*=< C(E) and I, % C(E). This con-
tradiction shows that t& Z*(Y).

Let Q=E(Y). As Y=C(,)~C(J,) and since (C(J,)NY), =K, we
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apply the theorem of [9] and obtain
QO=PSU(4,q) or PSU(4,q)xPSU4, q),

depending on whether E = PSU(5, q) or PSU(5, q) X PSU(S, q). So we may
write Q =(K,, K;), where
K,=SL(2,q* or SL(2,q*)xSL(2,q%

and K, =J,. Now K, =C(K, )=C(,,), so K, =<E"*. Since K, also cen-
tralizes C(J,, )ﬂK (which is just I, if E=PSU(5, q)) we conclude from the
action of PSU(S q) on its usual module, that K, = K, . In particular, we
have now proved that [K,, K, ]=1.

What remains is the structure of (K, ,,2, K., ). For this start with (J,,, J,,) and

notice that since q=4, C=C,({(J,,, J.,)) ZZ(A). So we consider C5(C).
Then (J,,, J,,) is standard in C5(C) and

() € Syl,(Co(C) N ClJys Ja))-

Choose ve V%. Then there is an element geK,, with t¢=. Then C
normalizes A% and it is not difficult to see that C,.(C) is not 2-constrained.
From here the argument in (4.5) of [13] shows that t¢ Z*(Cg(C)).

Apply the main theorem of [12] and conclude that

E(C5(C)=Lsy(q®) or Ly(q)xLy(q) if A=PSp(6,q)
and
E(Cs(C))=L,(q*) or Li(q°)xLs(q) if
A=PSU(6,q) or PSU(7,q).

Now C=H and so C=N(J,)NC(J,,). Viewing this in Ng(J,) we conclude
that C=C(K,,). It follows that

E(Co(C))™ =, Jo)" XUy Juy)™ if E=DxD

and otherwise E(Cg(C))™ =L,(q*). We know that K, < E(Cs(C)), so we
must have E(Cs(C))=(K,,, K,,). From here we easily derive the necessary
commutator relations. This completes the proof of (9.2).

“10. A =PSp(n, q) or PSU(n, q) (continued)

We continue the assumption that A%PSp(n, q) or PSU(n, q). Here we
also assume that the pair (D, E) is of type (5), (6), (8), (9), (10), or (11) in
Table 2. Set E°= E** and G,=(E, E°).

(10.1) Assume that A=PSp(n,q) with n=8 and that E=0(n,q).
Then G, is quasisimple, |Z(G,)| is odd, and G,=0"(n+2,q)".

Proof. Write E=(K,,,..., K,), where I=n/2 and J, <K, =SL(2, q%
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and J, =K, for i=2 ,1—1. We choose the K, satisfying the usual
commutator relatlons for PSO (n, q). In particular, ( o Kooy =PSU(4, q)
and [K,, K, ]=1for i=2 , |—2. We point out that (7.4) fails to hold in
this case.

Let e=o;+2a;_1+ -+ +2a3;+a, and y=€e+a,+a;. Then
Ce(U, X ) =K, ..., K.

So t¢ Z*(Cg(J,, % J,)) and hence t¢ Z*(Cs(J,, % J,)) (because a$*>= a, and
ei=1). It follows from (5.2) that

Cs (Jal',‘y)A =Cg(Y)a

(Y as in (6.5)). On the other hand, C5(Y)s ~ C5(XX )a = Ce(X1)a, and
from the embedding of D in E we have Cg(X;),=0%(n-2,q)". Conse-
quently, we write

CG(Jal‘Iy)A =L= <Ja’ JB, ‘Il—l’ N} ]a3>
where Jg =J,=SL(2,q),[J, Js1=1, U, Ji-1)” =Ls(q), and [J,, J,]=1 for

i=3 , 1=2. Finally C(t)NJ,Jg =J,,.
It w1ll sufﬁce to show that [J,, J,,]1= [JB, J.,]=1, for once these relations
are checked we have (J,, Jg, Jo,_,» - - - » Jo,) = Goo satisfying the defining rela-

tions for O*(n+2, q)". Since Gyo= A we have Gy, = G,, completing the
proof. There is a subgroup P=J, XJ; such that P is a t-invariant (q+ 1)-
Hall subgroup of J, X Jz and Py, = Cp(t) = X*""%-1. Notice that J,J; =(P, J,,),
so it will suffice to show that P= C(J,,).

We have P=Cg(P,y) = C(;(X)w where w=s, """ 5_,. Also

= <Ka,9 app? Joq)

and P centralizes J, XJ, X{J,, ,, ..., J,,) =1 Consider the group O~ (n, q)’
acting on its usual module M. There is a homomorphism ¢ from E* onto
O~ (n,q)'. Then (I)¢ has as its fixed space an anisotropic 2-space of M.
From there we can determine Cg+(I). If [#5 (that is, n# 10) then Cg.(I) is
cyclic of order g+ 1. If =5, then

Ce(I)= Zq+1 X Lz(q) and Cg.(D)= ]sa‘:ss“-

For [#5 set I, =1 and for [ =35 set I, = I X J3*%. Since P centralizes I we
must have P<E“C(E"), and, the projection of P to E" must centralize I;.
Now (I,)¢ defines a unique non-degenerate (n—2)-subspace, M,, of M, on
which the stabilizer in O™ (n, q)' induces O*(n —2, q)'. We already know that

Co(P)a=0"(n-2,q)

and the commutator relations imply that (Jove-, J, ..., J,) = Q satisfies
Q=0%(n—-2,q) and (Q)e acts on M,. It follows that P=C(Q). In
particular, P= C(J,,), as required.
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(10.2)  Assume that A =PSp(6, q) with q=4 and E=0"(6, q)'. Then G,
is quasisimple, |Z(G,)| is odd, and G,= O"(8, q)'.

Proof. Let C be a (q— 1)-Hall subgroup of J,. Then

O%(Ca(C)) = Uy, Jao)-

Also, C*2=J, <K, where E=(K,,, J,.). So Cg(C**) involves O™ (4, q)'=
L,(q*) and so tg¢ Z*(Cg(C)). Since

F=Cg(C)N C(X*%)
satisfies F=L,(q% we must have Cg;(C)3= O*(6, q)'. Write
I=C5(C) s =, JB’ a;)

where [J,, Jg]=1, Jp =T, {(J,, J.,)” =Ls(q), and J,,= C(t) N J Js.

One checks that C;(J,Jg)/Z(I) is cyclic of order g—1 and contained in
J2Z(I). So, let C,=C(J,Jz)NJz, and let P be the t-invariant (q—1)-Hall
subgroup of J,Jg with Cp(t) = C**. Then

Q=C(Cr) o =(Jg%, Ty, J,) and ANQ={Jg, L)

Now, P normalizes Q, and since P centralizes CX C; we conclude that
P=QC;(Q) and P projects into a Cartan subgroup of Q normalizing J, . It
follows that J,Jg =(J,,, P)=<N(J,,) and hence JoJs = C(,,).

We now conclude that if Goo=(Jy, Jg, Jo,Ja,), then A =Gy, and Goo=
078, q)'. Then Cg,(X)z =Cs(X)™,s0 E< Goo and we have Gy, = G,. This
completes the proof of (10.2).

Similar methods will be used to handle the case (D, E) of type 10).

(10.3) Assume that A ’=*PSp(n3 q), n=8, and E=0*(n, q)'. Then G, is
quasisimple, |Z(G,)| is odd, and Go=07"(n+2,q)'.

Proof Write E=(J,, Jg, Jo_ps - - ., Jo,), Where 1=n/2, Jp =T, [Ja, JB] 1,
=C(t)NJ, X Tg), (Juy Jo) "= Ls(Q) and [J,, J,]=1for i=2,...,1-2
Let
e=ot+20_1+- - +2a3+a,

as in the proof of (10.1). Then
CE(Jazx] ) <‘Ia9 Jﬁ, o’ Ja4>'

Consequently, t€ Z*(Cs(J,, % J,)) and so t& Z*(Cs(J,, X J,)).
Now C5(J,,J,)=Cs(Y), where Y is as in (6.5). As Y~ XX, in A, we
have
Co(Y)a~ Co(XX)a=Ce(X))a=0"(n-2,q)".

By the above and (5.2), E(C5(J,J,))=E(Cs(Y)), Set P=E(Cs(J,J,)).
Then P=0O"(n-2, q)" and we write

< o) a; PEILILILIE ‘Iag),
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where J, =<K, =L,(q%,[K,,J,]=1for i=3,...,1-2, and
(Ko a,_.,>~~PSU(4 q)=07(6,9)".

If we can show that [K o Jao] = 1, then Goo=(P, J,,, J,,) will satisfy the
defining relations of O~ (n+2, q)'. It will then follow that Gy, = G, and the
proof will be complete. So it suffices to show [Ka‘, J,]=1. Let I=1"' be
cyclic of order q+1, with

I=N(C(V,)NK,)NN(C(V_,)NK,).

Then I normalizes each of the root subgroups of P in the natural root
system for P and it follows that I must centralize

oo I Jagps o+ o s Jay =F.
So Cs()=J,,xJ,XF.

On the other hand, I is conjugate in Ka, to a cyclic subgroup of J,, of
order q+ 1, which in turn, is conjugate to X. So E(Cg(I))” = O"(n, q)’ As
E(Cc(D))NC(t)=J,, xJ,xF, we have E(Cs(I))=A. Regard A as
O(n+1,q)'. Then A acts on a module M of dimension n+1 over F, and A
preserves a quadratic form. Also there is a unique 1-space, M,, of M with
(M,y, M)=0. 1t is easily checked that (F,J,)=O"(n,q)' and that (F,J,)
stabilizes a unique complement, M;, to M,. Moreover, M; is the unique
complement to M, stabilized by J,, X J, XF. It is also easy to see that
E(Cg(I)) must stabilize a complement to M,. Consequently E(Cs(I)=
(F, J,.,). In particular, J,, = Cs(I). So C(J,)=(J,, )= K,,,, as needed.

(10.4) Assume that A = PSp(6, q) with =4 and E=0"(6, q)'. Then G,
is quasisimple, |Z(G,)| is odd, and G,=O"(8, q)'.

Proof. As in the proof of (10.2), let C be a (q— 1)-Hall subgroup of J,.
Then O?(CA(C)) ={J,,, J,,)- We claim that

E(Cs(C)) " =07(6,q)=U,q) or Us(q).
(For consider C**:=J,,. From the known structure of E(Cgs(X)), we have
E(Cg5(XC%))"=L,(q)xLy(q) and t& Z*(Cg(XC*%)t)).

So t& Z*(Cs(C)). Also, since (J,,,J,,) is standard in C5(C) and X% <
I = Cg(O), we use the above and induction to get the claim.) Write
E(C5(0)=(K,,, L), where J,, =K, =L,(¢?) and (K, J.,)=U,(q).
There is a subgroup I= K such that I is cyclic of order g+ 1,and I'isin a
Cartan subgroup of (K, ) normalizing each of the root subgroups in the
root system spanned by *a, and *a3;. Then Cg(I)=J,, X J3 X C. Now I is
conjugate in K, to X%% so E(Cs(I))"=O07%(6,q). As t centralizes
J,, X J3 X C we must have te C(E(Cg(1))). For otherwise, ¢ induces a graph
automorphism on E(Cg(I)) and [C, E(C5(I))]= 1. But then

Sp(4, @) = O (Ca(D)) = O%*(Ca(C)) = oy, Jo) = Sp(4, q),
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whereas [1, J,.]# 1. Now argue as in the proof of (10.3) to obtain
E(CG(I)) = Ja,, J32).

Therefore C( )>(Ja ,)=K,,, and so (K s Jops Ja) "= 07(8, q)'. It follows
that G, =(K,,, J,,, J,,)» and the proof of (10.4) is complete.

3 (10.5) Assume that A =PSp(n, q) or PSU(n+1, q) with n=8 and that
E=PSL(n—1,q) or PSL(n—1, g%, respectively. Then G, is quasisimple,
|Z(G,)| is odd, and

Go=PSL(n+1,q) or PSL(n+1,q>.
Proof. Write E=(K,,, ..., Kg, K,, ..., K,), where each of the generat-
ing subgroups is isomorphic to SL(2, q) or SL(2, q%), depending on whether

A =PSp(n, q) or PSU(n+1, q). Notation is chosen to correspond with the
following labeling of the Dynkin diagram:

i ‘3& TS %

Also, for i=2,...,1— = C(t)NKyzK,, and I, ,=C(t)N(K,, K,)). Fi-
nally, K, = K, for i= 2 , oL

Set Kz =Kpg> K, Kf,jz, and Goo=(E, Kz, K,,). Then A=<Gyy, so
Gyo = G,. We will show that G00 satisfies the necessary commutator rela-
tions. Apply the results of §7. Set s =r* and K| the corresponding subgroup
of E (so K~ Kjg,). Then by (7.8), K; = Cg(E;). Setting K, = K{* we have
K,=J, and K, = Cg(E). Next, we apply (7.11) to get

Co(Z)a =(Kpg,, ..., Kg, K,,...,K,).

In particular, s, € Z, so s, centralizes C5(Z), and

E°= (Kg,, K, Kg,, ..., Kg, K, ..., K,,, K3, .Yl).
Set P=(K,,, ..., K,).
Then Cs(P)=(Z, Kg,, K,)=(Z, 1., ={J,, 1., Jo,) and

(Z,1,) =PSp(6,q) or PSU(6,q),
depending on whether A = PSp(n, q) or PSU(n, q). We also know that
Ce(P)=(Kg,, J,, K,))=(Kg,, J5,, K,,) where & =s%=r"%

In particular, tg& Z*(Cg(P)). Since Cs(P)N C(J,)= Cg(P) we conclude that
E(Cs(P))” =PSL(6, q) or PSL(6, q*), depending on whether A = PSp(n, q)
or PSU(n+1, q).

Choose notation so that E(Cs(P)) =(K,, Kg,, J5,, K,,, Kz), corresponding
to the labeling

o O Tl —0- -0
vy
,32 61 ‘o:?_ P
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of the Dynkin diagram of E(Cgs(P)). Here Kz =K, and J, = C(t) N K K.

Also, notice that Kz XK, =<Cg(P). As K;,=E=Cs(K,), we have

[Ks,, K, 1=1, and hence 1=K, K;*2]=[Kp,, K ]. Similarly, [K,,, K; 1= 1.
We next note that

19

<K519 K,)~ (Kﬁp Ky = (Km, Ks),

50 (Kg,, K,)”=L;(q) or Liy(q?). Similarly, (K,,, K,)” =L,(q) or L;(¢*). With
these facts we conclude that (Kj, K,, K, )<E(Cs(P)) and is a covering
group of PSL(4, q) or PSL(4, g%). Since (Kj,, K,, K,,) = C(K,,) we have

(Kg,, K., K,) = E(C(K;,) N E(Cs(P))) = (K, K,, Kg).

By (5.3) we have {K;, K, }={K,, K;}.

Suppose K, =K, and Kz;=Kjg,. The looking in E(Cs(P)) we have
K =K. But Kg = Kg2= Kg,. This is impossible. Therefore K; =K,
and K,, = K,.

Therefore

(Kg,, K, =(K,,,K,)"=PSL(3,q) or PSL(3,q%
and
[Kﬁl’ sz] = [Kﬂz’ K'Yl] =1
From the structure of E® we have [Kg,, K32]= 1. Write s;= xy, with x € K,
and y=x'eK,,. Then Ki**:= K, implies Kg=""2=Kp" and ye N(Kg,).
Therefore,
[Kl31’ K‘Ya] = [Ki"lzsz’ Ks‘Yszsz] -~ [Kz‘z’ K‘syaz] = [Kﬁz’ Kzz]

-~ [KsBlz’ K‘Yz] ~ [Kﬂl’ sz] =1.

We now have
C(Kﬁl) = <K81’ P’ K‘y;) = <K33’ R K‘y;)’

So [Kg,, Kg,]= 1. Similarly, [K,,, Kg,]=[K,,, K,,]= 1. At this point we have
sufficient information to determine the structure of Gy,. This completes the
proof of (10.5).

(10.6) Let A-—=PSp(6, q) with q=4 or PSU(7,q). Assume that E=
PSL(S, q) or PSL(S, q®), respectively. Then G, is quasisimple, |Z(G,)| is odd,
and G,=PSL(7, q) or PSL(7, q*) respectively.

Proof. The argument is similar to that of (10.5). Write E=

(Kg,, Kg,, K., K,,), with notation chosen to correspond to the Dynkin
diagram

o o o o
"6.2 4é‘:‘l {3 {.,'Z,

Set D =(Kg,, K,,). Then E contains a subgroup I such that Cg(D)= K, x I,
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where bars denote images in E and I is cyclic of order (g—1)/d or
(g*>—1)/d, respectively, where d =(5,q—1) or (5,q*—1). So IZ Z(E).

Consider Cg(D). We claim that t¢ Z*(Cs;(D)) and that E(C, (D))= Z.
First note that from the structure of E(t) we have t~ tv with ve C,(Z) and
vZ(A) a transvection in A (see (19.8) of [1]). From here we see that the
proofs in (7.10) and (7.11) go through, showing that E(C4 (D))= Z. But also
E(CA(D))=E(C4(J,,)) = Z. This proves the second statement of the claim.
We note that s,eJ,, =Z=C(K,, K,,)).

If A=PSU(7, q), ‘then K,=PSL(2, q°) and t¢ Z*(Cg(D)). Consequently,
the claim holds in this case. Suppose now that A =PSp(6,q) and that
te Z*(Cs(D)). Let bars denote images in Cg(D)/O(Cg(D)). Then Z=
E(Cgs(D)). Since I = Cg(D) and I centralizes J, X J,, it follows that I= 1. So
[Z, I]=0(Cs(D)). Let I,=0(Cp(J,)). Then I,=C({,XJ) and
I,Z(D)/Z(D) is cyclic of order (q—1)/e, where e = (3, q—1). Now apply the
argument that occurs in the proof of (9.2) in order to get a contradiction.
We use q—1 in place of g+ 1, but otherwise the argument is the same.

Continue the assumption that A =PSp(6,q). The argument of (9.2)
actually shows that E(Cs(D))” must contain a non-trivial cyclic subgroup of
order dividing q—1 and centralizing J, X J,. Checking the possibilities for
E(Cs(D))~ we have E(Cg(D))” =PSL(4, q). If A=PSU(6, q), then since
[J,, K;]=1 we must have E(Cg(D))~ = PSL(4, q*). Choose notation so that
E(Cs(D))=(K,, K, Kz) corresponding to the labeling

[o! O W)

< S 2

of the Dynkin diagram of E(Cs(D)). Also, Kz = K|, and J,, = C(t) N K, Kj.

Note that (K,, K|, Kz)=<E(Cs(J,,))=E* ’P‘(K,,l, K3, Kw K,), where
Kpg, = Kg,» and K = K. It is easy to see that in the usual action on the
subspaces of a 5- d1mens1ona1 F,-space (or F-space) for Es%, K, % K acts
on the unique 4-space preserved by J,. From here it follows that
(Ko, I Kg)=(Kp,, J,, K,), so by (5.3), {K,, Kg}={K,,, K,,}. We may choose
notation so that K, =K, and Kz =K.

In the (B, N)-decomposition for D=(Kj, K,,) let t;, v; be involutions
generating the Weyl group of D and chosen so that v;=t;. Here v;€ K,,
and t;€ K,,. We then have

(Kg,» Kg,) = (K2, Kig*)~ (K, Kig)  (as Ky, = C(D))
~ (K@, Kg,)~(Kg,, Kg,)-
Similarly
<K31’ ) <Kl32’ K’Y> < Y17 Kﬂz) ( 23 Kﬂ3> and <K‘Yl’ K72> ‘Yz’ K‘Y>
At this point we have the necessary commutator relations to conclude that

Goo=(Ks,, Kg,, Ks,, K,,, K,,, K, satisfies Goo=PSL(7,q) or PSL(7,q°)
and A = Gy,. It follows that Goo-— G, and (10.6) holds.
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(10.7) Let A=PSp(n,q) or PSU(n, q) with n=8 and assume that E=
PSL(n~2, q) or PSL(n~2, q°), respectively. Then G, is quasisimple, |Z(G)|
is odd, and G,=PSL(n, q) or PSL(n, q°*), respectively.

Proof. The argument here is very similar to that of (10.5). The differ-
ences are only notational. Write

E= <KBz> et KBx—l’ Koa’ KY(—I’ te Kw)’

where each of the generating subgroups is isomorphic to SL(2, q) or
SL(2, q%), depending on whether A =PSp(n,q) or PSU(n,q). Notation
corresponds to the following labeling of the Dynkin diagram:

O ... O O -0 .o OY
ls-?. ‘?8‘1 .(.L YL- 1 2
Also, K, =Kpgfori=2,...,1-1,J,=C(t)NKgK, fori=1,...,1-1, and
J,=C(t)NK,,. Set P=(K,,,...,K,,...,K,) and proceed as in (10.5).
Our final result of §7 is the following.

(10.8) Let A=PSp(6,q) or PSU(6,q), with q=4. Assume that E=
PSL(4,q) or PSL(4,q). Then G, is quasisimple, |Z(Go)| is odd, and
G,=PSL(6, q) or PSL(6, q°).

Proof. Write

E=(Kg, K., K,)
with
Ki,=K,, J,=C(HNK,K, and J,=C(t)NK,,
Now J, =J2* and by (7.8), K, =<E(Cg(E)). So
(K32, K, ]~ [Kg,, K, ]=1.

Set Kz =Kg> and K, =K} Then [K,,K,]=1 and, similarly,
[K,, K.]=1.

The group A contains a subgroup I such that IZ(A)/Z(A) is cyclic of
order g—1 or (q+1)/(3,q+1) (depending on whether A =PSp(6,q) or
PSU(6, q)) and such that

I=C({J,,, J..)NH.
We claim that (J,,, J,,) is standard in Cg(I),
(ty e SyL,(C(I) N C({Ja,s ),

and t€ Z*(Cs(I)). The first two assertions are routine. For the other part
first note that from the structure of E°**«(t) it is clear that t~ tv, where
veJ% . Write tv=t% Then I=C,(J,), so I normalizes A®. It follows that
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C,:(I) is not 2-constrained. From here we argue as in (4.5) of [13] to get the
conclusion. Now, we will argue as in (9.2).
Apply the main theorem of [14] and conclude that

E(Co()=L,(q*) or Ls(q)xLsy(q) if A=PSp(6,q)
and that
E(Cs(I)=L,(q*) or Li(q>)xLs(q®) if A=PSU(6,q).

Now I normalizes J, and centralizes J,,. Viewing this in Ng(J,) = Ng(K,) we
conclude that Kg, X K,, = E(Cg(I)). Consequently

E(Co(I)=Ls(q) X Ls(q) or Ls(q*)*xLs(q?).
Similarly, I normalizes J,,=J;*", and we look at E"* to conclude Kj X
K, =E(Cs(D)). It follows that
E(Cs(I))=(Kp,, Kg,)°(K,,, K,,) or (Kg, K, )(K,, Kg).
If the latter case holds, then Kg2=K,, whereas Kjg2=K, . This is

Y1?
impossible. So the first case must hold, and setting

GOO = (KBp Kﬁz, Kaga K’y;) K‘y;)

we have, as usual, A = Gy, = Gy, and the result holds.

1. A=F,q)

In this section we assume that A=F,(q). To get the necessary com-
mutator relations we must consider the groups E = E(Cs(X)) and also
E°=E(C5(Y)) (notation as in §6). Recall, P=E(C,(Y)). Once we show
that E and E° “pair up” in an acceptable way we set G, =(E, E°) and show
that G, has the desired properties.

(11.1) One of the following holds.
(i) E=DxD=E°.
(i) E=PSp(6,q*>)=E°.
(i) E=PSU(6,q) and E°=0%(8, q)'.
(ivy E=PSL(6,q) and E°=0~(8,q)' =P.

Proof. We know the possibilities for the structure of E and E°, and the
respective embedding of D and P. Since

(Co(XxX))a and (Co(YXY))a

are Z-conjugate (see (7.12)), we know that the embedding of (J,,, J,,) is the

same in each of (Cs(X X X;))4 and (Cg(Y X Yy)) 4. Checking possibilities,
we have the result.

(11.2) Assume that (11.1)(1) or (11.1)(ii) holds and set G,=(E, E°).
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Then G, is semisimple, |Z(G,)| is odd, and Gy=A X A or F,(q?), respec-
tively.

Proof. Write
E =(K,,, K., Ko.)),

where J, =K,, K, =SL(2,q)xSL(2,q) if (11.1)(i)) holds, and K, =
SL(2, ¢®) if (11.1)(ii) holds. Moreover,

(K., K,,)"=PSp(4,q)x PSp(4,q) or PSp(4,q°)

29

and

CE «Kaz’ Kag» = Ka2+2a3+2a4'

So t¢ Z*(Ce(K.,, Ko
By (7.12)(iv) we conclude that

(Ko Ko = (Co(X X X)) a =(Co(YX Y1) g = Ceo( Y1) A

So we write E°=(K,,, K,,, K,,) where J, =K, K, =K, for ie{1,2,3} and
j€{2,3,4}. Then

(Kaz, Ka:;) = CG(YYI)A = CG(XX1)A = (Kaz’ Ka;;)’
so by (2.3) we have Ka2= K., and Kag= K... So
GO = <Ka1’ Ka Kag$ Ka4>'

At this point we need only show that [K,, K,,]= 1. For once we have this
commutator relation, the arguments in §8 give the structure of G,. Now
[K.., K.J=[K,, K] and s, normalizes K,, as K,, and K,, commute. So it
suffices to show that [K,, K:]=1 and for this we need only show that
s;€ N(K,,). However this follows from (7.8)(iii) once we interchange the

roles of X and Y. We have now completed the proof of (11.2).

(11.3) Assume (11.1)(iii) holds. Then G,=(E, E® is quasisimple,
|Z(Gy)| is odd, and G,=>E¢(q).

Proof. We write E=(J,,K,, K,,) where K, =K, =SL(2,q%, J,,
Ko Jo. =Ko ey Ko 1=1, (o, K,,)"=PSu(4,q), and (K, K,,)~
PSL(3, ¢).

The group E° can be expressed E°=(J,,, J.,, Jg,, Jo,) Where J,, J,., Jg,, Js,
are conjugate in E° and the ordering corresponds to the ordering

29

1A

3
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of the Dynkin diagram of E°. Now
E°=(P,(Co(Y X Y))a)

and (C5(Y X Y}))a is Z-conjugate to (Co(X X X)) a = (Jo,, Ko,). As
A=, J

19 Yoy a;) >’
we conclude that Gy =(J,,, J.,, K., K,.)-

As in (11.1) it will suffice to show that [J,,, K,,]=[J.,, K, ]]=1. Since
K,,= K3+ and since s; and s, centralize J,, we need only show that
[Ja‘, ] 1. Let I be a (q+ 1)-Hall subgroup of K,,, normalizing each of
Vian Vias, Vta4, where Vta, is the Sylow 2-subgroup of K, containing
V.., and similarly for Vta Then I centralizes each of J,,, J3,, Ji2*+, and J,.
Also, I is inverted by t, so t normalizes E(Cg(I))~ E(Cs(Y)). Checkmg
centralizers (see §8 and §19 of [1]), we see that t must centralize E(Cg(I)), so
that E(Cg(I))<A. Let S = E(Cs(I)). Then S=PSO*(8, q)'.

We only need [I, J,,]=1, since K, =(J,,, I). Therefore if J, =S, we are
done. Suppose, then, that J, #£S. As above we have

P=J,XJ3XJa«X], =8,
and consequently we may write

S=ay» J2, JE+ C), where ([, O =g, C)” =", C)” =Ls(q).

[ 7E)

We will first handle the case q>4. We have HNP isomorphic to the
direct product of four copies of Z,_,. Thus H= HNP. Also, H= Ng(C).
From the Theorem in [4] we conclude that C is generated by a pair of
opposite root subgroups, U,, U_,, for a €3. As U, ~ U,,, a is a long root
and an easy check shows that o = = ;. Thus J, = C=<S$, as needed. If g =4,
essentially the same argument applies. However, one must go to the proof of
the theorem in [4] and check that for F,(4) all the arguments go through.

Now suppose that g=2. Let P,= O;(P) and let A=F,(4) with A<A,
under the natural embedding. So for each root a €3, there is a unique root
subgroup, U,, of A with U, <U,. For a3, let J, =(U,, U_,). We then
have the groups P and §, containing P, S, respectively. With this notation, T
is a Cartan subgroup of P, and hence of A. Also, T=N(C) implies
T=N(C). It now follows that P is generated by all the long root subgroups
in a root system of A. Consequently,

8~ o o Ty T2y in A,

and this conjugation can be performed by an element, g, normalizing each of
Jaz, Jf,z, Jf,;j*, J.. But then ge P (check normalizers in F,(4)) and so
S =gy e Tits Tz

In particular, J, <8S. So J, =J, NA<SNA =S, completing the proof of
(11.3).
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(11.4)  Assume (11.1)(iv) holds. Let Go=<E, E°). Then G, is quasisimple,
|Z(Gy)| is odd, and G,=E4(q).

Proof. E=PSL(6,q) and we may write E=(Kjg, Kg,, Kg,, Kg,, Kp,)
where each Kz =SL(2,q) and notation is chosen to correspond to the
Dynkin diagram

1 3 4 Y 6

(o2 O- O- 0

viewed as a subdiagram of

1 3 4 s

o]

>J

D

L.’L

So [Kg,, K, 1=[Kq,, Kg,]=[ka,, Kg]=1, (K,,K.,) =PSL(3,q), etc. The
group {t)D is embedded in E(t) in such a way that

Jaz = KB4’ 0‘3 C(t) N (KBS X KBs) JO‘4 = C(t) N (K31 X Kﬁs)’
KBl - KBG and K;33 = Kﬁs‘

Let I be a (q+ 1)-Hall subgroup of J,, and Ia (g +1)-Hall subgroup of
Kg, X Kg,, containing I, with I t-invariant. Then I normalizes Cg(I), =
E(Cs(I)) and centralizes J, X Kg, =1J,XJ,,. Writing I=Y", for w=
54535,5855,5,53, we have

P CG(I)A (EO)w = ( az Jal’ C)}
where C=1L1,(q?), C is t-invariant, and Cc(t) = J%*%. Then
0%(CoUJ) =C.

In particular, C=<E. Let I, be a (q + 1)-Hall subgroup of C, chosen such that
I, is t-invariant and I, normalizes each of the root subgroups, U.,,, U.,,.
Then I, must centralize J, , J,,, J,. Viewing this in Cs(J,) we see that II; and
f are each in E and project to (q+ 1)-Hall subgroups of Cg(J,). In fact,
= C=E. Considering the group (J,,, I;), we have (J,,, I,)< Cz({J,, J,.,)-
Usmg the Bruhat decomposition and the fact that C,(J,)=(J,,, J.,, Jo.)
one checks that E(C,({(J,, J.,)) = (Ju,, Jo,)- SO

Co (T Ju)) = Ce({T Jo)) Z Uy Jay In)-

o}

It follows that

te& Z*(Cs({Jy o))

so by the main theorem in [14], L= E(Cs((J, Jo,))) satisfies L<E and
L= L;(q®), Li(q)* Ls(q), or =2 and L=1J,. However in the last case
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Cg(t) contains an involution x acting on (J,,, J,,) as a graph automorphism.
But x cannot act on A. So L =L,(q?) or Li(q)X Ls(q).

Suppose that I = L,(q?). Then t induces a field automorphism on L. Let F
be a cyclic subgroup of L inverted by ¢ and such that FZ(L)/Z(L) has order
q>+ 1. Such a subgroup exists and in E we see that Cg(F) is cyclic of order
dividing q°—1 and Autg (F)=Z,. Let (a, t) be a klein group in Ng,(F),
with a € E. Then a inverts F and it follows from consideration of the usual
module for SL(6, q), that a is of type js, in the notation of §4 of [1]. Since
Cg(t)"=PSp(6, q) we know that ¢t centralizes a conjugate of F. Therefore,
t ~ ta. By the results in §7 of [1] we have a being conjugate to an involution
in VZ V%, so t~ta,a, where a,e V¥ and a,e V%, Conjugating by an
element in Kz we have t~ ta,. Finally, conjugate by an element of Cg(f) to
get t~tv for ve V¥. All of the conjugation above takes place in E(t).
However by (19.8) of [1] t# tv in E(t). This is a contradiction. Therefore,
L =1,(q) X Ls(q). Let M be the usual module for SL(6,q) and view
SL(6, q) as a covering group of E. Let (J,, J,,) be the preimage of (J,,, J.,)
in SL(6, q). Then {J,,, J,,) stabilizes two complementary 3-spaces of M,
inducing contragredient representations on the subspaces. Therefore,
(Ja,» Jo,) stabilizes precisely two proper subspaces of M. On the other hand,
it is easy to see that the preimage of L in SL(6,q) must also stabilize
complementary 3-spaces in M. It follows that L =(Kg, Kz XKg,, Kg.). In
particular K, , Ky, Kg,, K, all centralize J,,.

It follows that (E,J,) =E«q) and A=(E,J,). From here we get
(E, J,)= G, and (11.4) holds.

12. A=Eq)

For this section assume that A =2E(q). Then
D={,,J,,J,) and D=PSU(6, q).
Therefore, E = PSU(6, q) x PSU(6, q) or PSL(6, q°).

(12.1) Assume E=PSL(6, q°)_and let E°= E*%%, Then G,=(E, E° is
quasisimple, |Z(G,)| is odd, and G,= E¢(q?).

Proof. Assume E=PSL(6,q% and label the Dynkin diagram of E as
follows:

Q 0O 0. - O

¢ 3 2 5 6
Then write E =(Kg,, Kp,, Kg,, Kg,, Kg,) With each Kz =SL(2, ¢%) and com-
mutator relations as usual. Here

I,=C(HNK,, J,=C{t)N(Ks%xKg), and J,=C(t)N(Kg, X Kg).
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Define K, by Kg, = K. Then K =J,, and by (7.8), Kg, = C5(E,,). We
next show that Kj, K, Kg,, and K, are each in E,. Consider Y;, a
(g*+1)-Hall subgroup of J,, inverted by s;. Then Y; is contained in a
subgroup 173 of Kg, X Kg, with fgz Y,XY; and Y’3 inverted by s;. Now ?3
normalizes (Cg(Y3))a. Also Ce(J,)=K,,, so t£€Z*(Cs(J,,)), and hence
t¢ Z*(Cs(Ja,)- By (6.7) E(Ca(J,,) = E(Ca(Y3)). Since Cg(J,,)=Cs(Y3),
(5.2) implies that Cg(J,,)a = C5(Y3)a. Now (J,,, Y3)= Kz X Kp,, s0

KBS X KBs = N(CG(Jag)A)9

and since J,, < C(Cs(J,,) o) We must have Kg X K, centralizing Cg(J3)4. In
particular, Kp, X Kz, centralizes J,,. Similarly, Kg, X Ky, centralizes J,,. So
each of Kg,, Ks,, Kg,, and K, are in C(J,)) 4 = E,, =< C(Kp,).

Let t,€ Kg, be defined by [t5, t]= s5. Then t;€ C(Kg,) and so SL(3, ¢°) =
(Kg,, Kg )" =(Kg , Kz, ). At this point we argue as usual to conclude that
(E, Kg ) =(E, E°»= G, and (12.1) holds.

(12.2) Assume that E=PSU(6, q)x PSU(6, q). Set E°=E** and G,=
(E, E°). Then G, is semisimple, |Z(G,)| is odd, and Gy=A X A.

Proof. Write E=(K,,K,,,K,,) with J, =K,, K, =J,xJ, for i=
1,2,3. Set K, =K2, so J,,=K,,. The argument in (12.1) shows that
(K., K., ]=[K,,, K,,]=1. We still need the structure of (K,,, K,,,) in order to
complete the proof.

Consider J, as in (6.7). Then

P= OZ(CA (Jy)) = <Ja23 Jala stxs—) and 15 = L4(‘1)~

We argue as in (12.1) that for i=1,2 K, = C(E,), so K,,, K, are in C(J,).
Also s; normalizes J, so we have C(J,)=(K,,, K,,, K33). By the main

theorem in [14] we conclude that E(C(J,))” =L,(q) X L,(q). Then
0*(C(J,) N C(J,,) = Ly(q) X Ly(q).

Since K%, = C(J,,) (by 7.8), we have K% = O*(C(J,)N C(J,,)). Let E; and
E, be the components of E, D, and D, the components of C(J,). We may
assume that K33 NE,= K3 ND, for i=1,2. Conjugating by s;, we have
K,,NE,=K,ND, for i=1,2. At this point the structure of
(K, Ka,, K, K,,) is determined, using the usual arguments. This completes
the proof of (12.2).
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