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Introduction

Let G be a locally compact group and let p be a probability measure on G. p
generates a random walk on G with the crucial property that the number of
times that the walk can be expected to visit a Borel subset A of G is #*m(A)
where the summation runs over all positive integers m, and/z*m denotes the
m-fold convolution power of p. It is known [1] that either lz*m(A) is finite for
every compact set A or else is infinite for every open set A. In the former case
the random walk determined by p is said to be transient and to "wander to oo".
In the latter case the walk is said to be recurrent.
For convenience we now restrict our discussion to the case in which G is a

1-connected nilpotent Lie group. Such groups are diffeomorphic to R" for some
n. If the group actually is R" then it is a classical theorem (see [2] for instance)
that for n _> 3 every random walk on G generated by a measure that is sup-
ported by no proper closed subgroup of G is transient. A special case of a
theorem proved by Guivarc’h and Keane [3] is that this result is also true for
1-connected nilpotent Lie groups of dimension greater than two.

Let G be a 1-connected nilpotent Lie group, let L denote its Lie algebra, and
let exp denote the exponential map from L to G. Then exp is a global diffeomor-
phism that carries Euclidean measure on L to Haar measure on G [4]. Thus exp
carries absolutely continuous probability measures on G to absolutely contin-
uous probability measures on L. If/z is a probability distribution on G and if A
is a neighborhood of the origin in L consider the two infinite series

fAcp*moexp (I)dl and fAdPOexp*m (I)dl,

the former series being associated with the expected number of visits of a
random walk on G to a neighborhood of the origin and the latter series being
similarly associated with a random walk on the abelian group structure of L.
Both series are convergent, but one might expect that, since in order to return
to the origin in the non-abelian case one must retrace one’s steps in the correct
order, the first series should converge more rapidly than the second. In this

Received April 26, 1978.
The contents of this paper were taken from the author’s doctoral dissertation at Louisiana

State University.
(C) 1980 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

264



THE GAUSSIAN RANDOM WALK 265

paper we address this question in a particular casethat in which b exp is
the Gaussian distribution and G is the Heisenberg group.
Our main results are Theorems 4.1 and 4.5. The former theorem shows that,

as in the abelian case, the behavior ofthe series in question depends only on the
behavior of the convolution powers of the density function evaluated at the
origin. The latter theorem shows that, asymptotically, the ratio ofb* exp (0,
0, 0) to b exp*’ (0, 0, 0) behaves like m-x/. Roughly, this means that
the ratio of the probability of returning to the origin at the mth step on
the Heisenberg group to the probability of returning to the origin at the mth
step on R3 behaves like m-a/z. We thus have a quantitative reflection of the
effect of the non-commutative group multiplication on the difficulty of return-
ing to the origin.
One of the main tools in the analysis of random walks on R" is the Fourier

transform. Its value in this situation is that it carries convolution to pointwise
multiplication. In the interesting but relatively simple case in which the distri-
bution function t# is a Schwartz function one can then apply the Plancherel
theorem (inversion theorem)to analyze the series A l)*m(x’) dx. One might
thus expect that in the case in which G is a 1-connected nilpotent Lie group that
the representation-theoretic Fourier transform and inversion theorem would
prove to be similarly useful. This has not, thus far, been the case. In the
non-abelian setting the inversion theorem takes the form, for q a Schwartz
function [5],

b(1) f(n)
where G is the set of unitary-equivalence classes of irreducible unitary represen-
tations of G, dr is a (known) positive measure and

trace rr, trace f n(g)ck(g)dg.

While the map b--, z, is multiplicative, the trace function is not, unless zr is
one-dimensional. Therefore the non-abelian Fourier transform is not
multiplicative.

Since we have been unable to utilize the non-abelian Fourier transform, our
analysis of the problem at hand proceeds by real-variable methods. The proofs
are computational, using classical theorems. One property of the Gaussian
density that makes our calculations manageable is that it is its own (abelian)
Fourier transform. This fact is crucial to the proof of Lemma 2.5.
The author wishes to express his sincere appreciation for the help and en-

couragement given him by his thesis advisor Professor Leonard Richardson.
He also wishes to thank M. Keane and Y. Guivarc’h for comments on an
earlier manuscript. Finally, the author thanks the referee for several helpful
suggestions regarding the exposition in this paper.
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1. Preliminaries

In this section we list for convenience certain notations and conventions that
will be used in the sequel, indicate the means by which convolutions on the Lie
group can be lifted to the Lie algebra, and consider briefly the abelian version
of our random walk.
N3 will denote the Heisenberg group. This group can be thought of as the

group of 3 x 3 unipotent matrices, or alternately as R3 with multiplication
given by

(x, y, z)(x’, y’, z’)-- (x + x’, y + y’, z + z’ + xy’).
The Lie algebra of N3 is Rs with bracket operation given by

[(, y, ), (’, y’, 2’)] (0, 0, y’- y’).

If G is any 1-connected nilpotent Lie group with Lie algebra L then exp is a
global diffeomorphism and there is a map C-H" L --. G, called the Campbell-
Hausdorff map [4] such that for l, l’ L

C-H(/, 1’)= exp -1 (exp exp I’)
+ !’ + 1/2[I, I’] + higher order bracket terms.

Since the group being considered is nilpotent the series terminates, and for N3
all of the higher order bracket terms vanish.

Recall that exp carries Euclidean measure dl on the Lie algebra to Haar
measure do on G. Letf L(G)and let ! exp- O. Then

f*"(Oo) f f(ooO; t)f,m-a(Ox) do

=f,.’"ft.fexp(C’H(lo,
.’fo exp (C-H(/._2, -1._

x f exp (! 1)dlx"" dim_

Thus if one knows C-H explicitly one can carry out all of the integrations
necessary to compute convolutions on the group by lifting to the algebra.
We note that for the Lie algebra of N3,

C-H((x, y, z), (x’, y’, z’))= (x + x’, y + y’, z + z’ + 1/2(xy’ yx’)).
For notational convenience we introduce here certain conventions that will

remain in force throughout the remainder of the paper:
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(1) All measures on Euclidean space are taken to be Lebesgue measure
normalized by multiplication by (2)-/2 where n is the dimension ofthe space
in question.

(2) For any n, E(x, x) e-’ +’’’+x).
(3) For any n, G(xl,..., xn)= e -xl’-+’’’+xn’-’/2.
(4) For any n, F(x, x,,)= e-’+’’’+’’/.
(5) Sums taken over an empty indexing set are taken to be 0.
(6) Products taken over an empty indexing set are taken to be 1.
(7) b" N3 - R is the function defined by bo exp (x, y, z)= G(x, y, z). We

call the random walk on Na associated with the measure b dg the Gaussian
random walk on N3.

We conclude this section by considering briefly the abelian Gaussian
random walk, that is, the random walk on R3 associated with the measure G(x,
y, z) dx dy dz. It is easily computed, either by direct computation or by utiliz-
ing the fact that G G, that

a*m(x, y, Z)"-- m-3/2G(m-I/2x, m-/2y, m-/Zz).
It follows that, denoting the sphere centered at the origin of radius k > 0 by Bk,
for every m and for all (x, y, z) Bk

G’m(0, 0, 0)_> G*m(x, y, 7,)>__ G(k)G*m(o, 0, 0).

Thus for fixed k > 0,

and

fB G*m(x’ y’ z)dx dy dz O(G*m(o, O, 0))

G’m(0, 0, 0)-- O[Jl,G*m(x y, z)dx dy dz).
The question of the transience and rate of "wandering to c" of this random
walk are thus seen to depend only on the behavior of G*m(o, 0, 0) as m c.

2. Evaluation of b*m exp

Convolving the function b on N3 with itself m times and composing with
exp, one gets a Schwartz function b*m exp on the Lie algebra ofN3. Our goal
in this section is the evaluation of the ordinary Fourier transform ofb*m exp
as a function on R3. To do this we define a particular sequence of polynomials,
prove some preparatory results concerning their algebraic interrelationships,
and then proceed with the evaluation of b* exp by means of a rather long
and involved calculation. The major results of this section are Theorem 2.6 and
its corollaries.
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DEFINITION 2.1.
by

eo() P()= ,
2(2.) P"+() P’(’) + 2

PROPOSITION 2.2. For m 1, 2,...,

(2.2)

Proof

For m O, 1,... define polynomials P in R[)’] recursively

form> 1.

P,, +, ()’)/P,()’) Pm()’)/P,-

\i=0

We proceed by induction on m, the case rn 1 being trivial. Assume
inductively that the proposition is true for m. We apply Definition 2.1 and the
inductive hypothesis and calculate

),2 m

P,, + 2()’) P. +1 ()’) -{- -" i=0

P() +
i=o i=o

(P(?))-I 1 + P() + P.() Pi(7)
i=0

(P.(y))- P.(Y) + P,(?) P’() + P(Y)
=0 kf=O

Dividing both sides of the equality above by P+(7) provides the inductive
step and completes the proof of the proposition.
The following corollary follows trivially from Definition 2.1.

Coo 2.3. For m=0, 1, P e R[7/4] with non-negative
coefficients aM constant coefficient 1. In particular, for every m aM every real ,
(.3/ e(/ .
The next lemma will be used in the proof of Lemma 2.5.

LNN 2.4. For m 0, 1,

(.4) (e())- e,() (4e()e,())-’

X=0 =0
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Proof We apply Lemma 2.2 and calculate

(Pm()) P,(?) ?2(4Pm(?)Pm+ ,())-
i=0 \i=0

(e()e+ ())- e+() e,() e,()
i=0 k i=0

i=0 Xi=0 Xi=0

m-1

(n(Y))-’
i=0

LEMMA 2.5. Fix m {1, 2,...}. Let k be an integer with 0 < k < m. Then

(2.5) b*" exp (a, fl, y)

m-k-1 - Yi
i=0 i=O j=o i=o

I-I F pt+(y)(pi(y))-, 2 P,(y) xlx) + (Pi(y))- fly +- xi
\,=o

j=O /=0

x F (Pk(Y))-’ p,(y) (a2 + f12)+ my2
\i=0

m-k-1

X (Pk(y))- H dxi dy
i=0

Proofi We proceed by induction on k. Consider first the case k O"

+*" exp (a, fl, y)

fR3 E(x’ flYo, YZO)IJ)*m exp (Xo, Yo, Zo)dxo dyo dzo

m-2

f e(Xo, flyo, Zo) 1-I
3m i=0

x G(xi- xi+ ,, Yi- Y,+ ,, zi- z,+, + 1/2(x,+ ,y,- xiYi+ 1))
m-1

x G(xm_ 1, Y,,,- 1, z,_ 1) 1-I dxi dyi dzi.
i=0
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Making several changes of variable the above integral becomes

3m

E OXo, flYo, ? Zo +-
m-2

1-I o(, x, + , y, y, + , z, z,+)
i=0

m-1

G(Xm- 1, Ym- 1, Zm- 1) H dxi dyi dzi"
i=o

After we integrate with respect to dzo"" dzm- and note that ( G and G(x, y,
z) G(x)G(y)G(z), the integral becomes

fR2- E OXo, Yo, iE=o (Xiyi+l Xi+lYi a(xm-1)

m-2 m-2 m-1

X H G(xi Xi.l)G(Ym-1) H G(yi Yi.l)G(x//m ?) II dxi
i=0 i=0 i=0

Again making several changes of variable we rewrite the integral as

R2m

E - Yi x, fl + - xi y

m-1 m-1 m-1

x I-I F(x])I-I F(y)F(m2) I-I dx, dy,.
j=0 j=0 i=0

This proves the lemma in the case k 0.
Next, for 0 < k < m,

2(m-k) j’-0 - Yi Xj,
j=o

Xi y

IPk +, (7)(Pk())- 2
Xj

+ (Pk(’))- fl’ +- x, Pi(7) xi
i=0

H F Pk+,(v)(Pk())-Y]
j=O

x F (Pk(V))-* p,(v (2 + f12) + m?2 (Pk(V))-* I-I
\i=0 i=0
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2(m k)

/P +, ()(P())- 2

j=O

Complete the square in the arguments of the last two F’s in the integrand above
and the integral becomes

R2(m-k) j=O i=0
Yi Xj, Z + x, yj

j=O

m-k-2

I-I F Pk+ l(/)(Pk(’)) -1Xj2
j=O

Xi Z Pi(;) xj+ (Pk(7))-t fl +- i=o i=o
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4 i=o
Xi "-a)3

m-k-1

(e(lt- 1-I , ey,.

Xi

i=0 i=0

Translating Xm_k_ and Ym-k-1 appropriately and performing some algebraic
manipulations we rewrite the integral as

2tin- k) =0 i=0 j=O

x H F Pk+,()(Pk(?))-* ?*(16Pk(V)Pk+,(V)) P,(V) x
j=o
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j--O
P+ ,(y)(P(y))-* ,’(16P(y)V+ ,(y))-* p,(y) y2.

\i=0

Yiy2(4P,(y)P,+,(y))- ay - ,:o /--0

+ my21
Pk(Y))-’ Pi(’) ’2(4P(’)P+, (’))-’ Pi(’) 02 +

i=o \i=o

Yi Pi()X Ym-k-1 + (2P+,())-’ a? 2 i=0 (=0

x G[PR+, (,)(pa(,})-,Xm_k 1, Pk +, (?)(Pa(’))-’y2m--x (P(y))-’ I-I dx,
i=0

Note that

+- X 0---- Yi
i--o 2 i--o

and make the substitutions

u [P,+, (?)(P,(’))-1]l/2Xm-k-1, v [P,+ ()(PR()’))-’]’/2ym- k-,
after application of Lemma 2.4 and then integration with respect to du dr, the
integral becomes

E o " Yi Xj, .a + Xi YJ
2(m-k- 1) m 0 j=O

j=O i=0

Yi Pi(Y)(Pk(Y))-’ ay -,-0
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+
,-o

*
,-o

F Pk+(/)(Pk(7))- 4(16Pk(T)Pk+l())-1 Pi() Y
\i=0

F (P,+ 1())-1 Pi() (2 + 2)d" m)’2
\i=0

x F Pk(7)(Pk+l())-I +
i=0

)’ Z Yix F Pk()(Pk+,()) (

i=o

X (Pk +1())- H dxi dYi"
i=o

Perform some algebraic manipulations and apply (2.2) and the integral finally
becomes

fR [m-- 2 (E a xj,
2(m-k- 1) j=O =0

I-I F Pk+2(7)(Pk+l())-lxj2
j=O

x, E Pi(’)’) xj

m-k-2

j-O

F [Pk + 2()(Pk +1 ())- ly2.j

(PR+,(7))- (at, -- i=o i-o

x F [(Pk+l()))-1(,=0 P,(),))(02-l-f12) + m2

m-k-2

(Pk+ 1())-1 H dx, dy,.
i=0

This provides the inductive step and completes the proof of the lemma.
The case k m of Lemma 2.5 is important. We state this special case as a

theorem.
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THEOREM 2.6. For m 1, 2,...,

(2.6) b*’o exp (, , y)

(PI(Y))-1F I(P.,(’))
COROLLARY 2.7. For m 1, 2,...,

p,(),) (2
\i=0

+ fl) + my2

(2.7) 4b*" exp (x, y, z)= fil

and in particular,

xF

E[- (Pm(c))li2xa, -(Pm(c)li2yb, zc]

(a2 + b2) P,(c) + mc2 da db dc
i=0

Proof. We apply the Fourier inversion theorem to the Schwartz function
4*mo exp" to conclude from Theorem 2.6 that

()*mo exp (x, y, z)= fRs (Pm())-1E(-x, -Yfl, -zy)

m-1

x F (x2 + fl2)(Pm(y))-I E Pi(Y)+ mY2 d dfl dy.
i=0

Making the substitutions a (P,(y))-1/2(X, b (Pro(Y))-1/2, y we obtain
2.7.
As an immediate consequence of 2.7 we have

COROLLARY 2.8. For m 1, 2,..., 114,*m exp [[oo *m exp (0, 0, 0).

3. Some polynomials

In the last section we saw that the behavior of the function ,m exp is
intimately related to the behavior of certain polynomials in one variable. In this
section we study the polynomials Pm of the previous section and also other
polynomials derived from them in some detail. The notation of the previous
section remains in force.

PROPOSITION 3.1. Let m 1, 2,
(1) Pm - R[y2/41 and Pro(O)= 1.
(2) Let x 2/4 and view PI as a polynomial in x; then deg PI [m/2].

Moreover, if
P,(x) 1 + al x +’.. + at,/2ix

tm/21

then ai is a positive inteoer for i= 1, [m/2]. If rn is even, then am/2 1.
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Proof. (1) is a restatement of Corollary 2.3.
To prove (2) we proceed by induction on m, the cases m 0, 1, being trivial.

Suppose inductively that m > 1 and that the proposition has been proved for 0,
m. We consider two cases.

Case 1. m odd. We let x T2/4 and replace 2/4 by x everywhere that )2/4
appears in the expressions for the polynomials Pi(?). Then by Proposition 2.2
and a slight abuse of notation

m-1

(3.1) Pm + (X) Pro(x) + x P,(x).
i=0

By the inductive hypothesis, deg Pro(X)= (m- 1)/2 deg Pm-l(X) and, for
< m 2, deg e(x) < (m 3)/2 with each of the polynomials Pi(x), 0,...,
m having positive integer coefficients. We thus see that there are positive
integers a, a(s-)/2, b, b(m_3)/2 so that

m-2

Pro(X)-t" X Z P,(x)-- 1 + 31 x +’"/ a(m-1)/2 X(m- 1)/2

i=0

and

X2xPm_l(X) X q- bl + ...+ b(m_a)/2x(m 1)/2 .q_ x(m+l)/2

where we have used the inductive hypothesis to conclude that the leading
coefficient of P_ l(X) is 1. From 3.1 and the above expressions we see that
Pn,+ I(X) is a polynomial ofdegree (m + 1)/2 [(m + 1)/2] with positive integer
coefficients and leading coefficient 1.

Case 2. m even. Proceeding as in Case 1 we have
m-1

Pm+l(X) Pro(x)+ x
i=0

where deg Pro(x)= m/2 [(m + 1)/2] and deg P,(x) < (m 2)/2 for i= 0,...,
m 1. The proposition in this case now follows immediately.

This completes the proof of the proposition.

DEFINITION 3.2. For m, k 0, 1, define am,k by

(3.2) Pm(/) am,0 + am,1(’2/4) + ""+ am,[m/2](T2/4)[m/2]

and set am,k 0 for k > [m/2].
Our immediate goal is to obtain a formula for am,k in terms of m and k.

LEMMA 3.3. For m 0, 1, and k 1, 2,...,
m-2

(3.3) am,k (m-i- 1)ai,_ 1.
i=0
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Proof. Since

2 m-2

Pm()=Pm-() +-- , P,()
i=0

for m >_ 1 and Po(Y) 1, we see that am,k am_ 1,k d- E.g ai,k_ 1" We fix k >_ 1
and proceed by induction on m. For m 0 the lemma is trivial. Assuming
inductively that (3.3) holds for m; then

am + l,k am,k E ai,k-1
i=0

m-2 m-1

E (m-i-l)a,,k-, + E
i=0 i=0

m-2

am_l,k_ "-I’- E (m-
i=o

m-1

(m--i)a,,k-1
i=0

This completes the proof of the lemma.
At this point we recall the classical fact (see [6] for example) that for a

non-negative integer p

(3.4) lV + 2v + + kv
kn+
+ l -F--+

kv n=2nlBn(P) kv-n+
n -1

where the numbers B are the Bernoulli numbers which occur as the coefficients
of the power series expansion

e-1= y" B.z", tzl <2n.
n=O

(3.4) is actually a stronger statement than we need. We shall use only the fact
that the left side of (3.4) is given by a polynomial in k of degree p + 1.

LEMMA 3.4.
deoree 2k.

For m, k 0, 1, am,k Sk(m) where SR is a polynomial of

Proof We note that am,0 1 for all m and proceed by induction on k.
Assume inductively that the lemma is true for k. By (3.3),

m-2 m-2 m-2

am,k+1 E (m--i--1)a,,k= (m--1)’, Sk(i)-- E iSk(i)
i=0 i=0 i=0

where Sk is a polynomial of degree 2k. Applying (3.4) to the summation of the
various powers of occurring in the polynomials Sk(i) and iSk(i) we see that
am,k / is given by the difference oftwo polynomials in m ofdegree 2k / 2. Thus
there is a polynomial Sk+ ofdegree at most 2k + 2 such that am,k+ SR/ l(m)
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Since ao,k+ a2k+ 1,k+ 0 we see that Sk+ must in fact be of degree
2k + 2. This completes the inductive step and thereby the proof of the lemma.
We are now in a position to determine an explicit formula for a,k.

PROPOSITION 3.5. For m, k 0, 1,...,

1 2k-

(3.5) am,k (2k)’. i=oI-I (m- i).

Proofi By Lemma 3.4, for k > 1, am,k Sk(m) where Sk is a polynomial of
degree 2k and Sk(O)=’"= Sk(2k- 1)= 0.
Thus for k > 1,

a,,k C m(m- 1)...(m--(2k 1))
for some constant c. By Proposition 3.1

1 a2k,k C "2k(2k 1)’"(1)= c(2k) l.

Thus c 1/(2k)!. This proves the proposition for k > 1. For k 0, Sk 1 and
the proposition is trivially true.

If we consider the integral of (2.7) which yields q.m exp (x, y, z) we see that
we need to determine not only the polynomials P(/) but also certain sums of
these polynomials.

DEFINITION 3.6. For m 0, 1,... define polynomials l"m by
m--1

(3.6)
i=0

We note that FI(0) 0 and that if FI is viewed as an element in R[72/4] then
deg F [(m 1)/2] for rn > 1, and Fo 0.

DEFINITION 3.7. For m, k 0, 1,... define "m,k by

(3.7) I’m(Y)--’ "r" O -- "C ,1 + "+ "Cm m -1) 2

and set "[m,k 0 for k > [(m 1)/2]. Note that Zm,o 0 for all m.

PROPOSITION 3.8.

(3.8)

Proof

For m 0, 1, and k 1, 2,...,

From (3.6) and (3.7) we see that, for k > 1,

,k E a,k’ m O, 1
--o
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Thus T,m,k --0 for m 0,..., 2k. Since, by Proposition 3.4, ai,k is given by a
polynomial in of degree 2k we have by equation (3.4) that Zm,k is given by a
polynomial in m of degree 2k + 1. Thus

Tin,k --C m(m- 1)... (m- 2k)
for some constant c. Since 172k + 1,k a2k,k 1 we have

1= c "(2k + 1)(2k)’"(1)= c "(2k + 1)!.
Thus c 1/(2k / 1)! and the proof of the proposition is complete.

COROLLARY 3.9. For c 0,

lim
1

i.,m(m- 1/2C o0(3.9)
m-.o m

Proof. Applying (3.7)and (3.8)we have

1
i,m(m- /2c 1 ttm)/2l m(m- 1)"" (m- 2k). c2k

k=l (2k + 1)! mk4k

ttm,/2 m(m-1)’" (m-2k)()2k= (2k + iiimk+l
For fixed c and k each of the terms in the above sum tend to o individually as
m---, 03. This proves the corollary.

4. Asymptotic behavior of the random walk

The notation of the previous sections remains in force.
In Corollary 2.7 we saw that

b*mo exp (x, y, z)= f E[-(Pm(c))l/2xa, -(Pm(c))l/2yb,

x F (a2 / b2) P,(c) / mc2 dad dc.
i=0

Alternately,

(])*m exp (X, y, Z)-- fRa E[-(Pm(c))’/2xa, -(Pm(c))l/2yb, --zc]

x F[(m + I"m(C))(a2 + b2) / mc2] da db dc.

Making a change of variables this last integral becomes

m- 3/2 fR E[- (Pro(m- 1/2c))1/2m- ’/2xa, (Pro(m- 1/2c))1/2m- 1/2yb, m- ’/2zc]

x FIn-(m + Fro(m-1/2c))(a2 / b2) / C2] da db dc
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Again making a change of variables we have

q,mo exp (x, y, z)= m-3/2

fR3 E I--(m Pm(m--/2-c) 1 /2 _(mPm(m-__/2__c) .i
+ rs(m-/c)] xa,

+ Fro(m-lnc)]
m

rn + Fro(m-’/2c) G(a, b, c)da db dc.

We integrate with respect to da db to conclude that

(4.1) ,mo exp (x, y, z)= m-3/2 f m

R m + Fm(m-X/2c) E(-m
1/2gC

(x +m-mm(r:W2c)
and in particular,

(4.2) ,m exp (0, O, O)= m-3/2 fR m
m + Fro(m-/2c) G(c) dc.

In the next theorem we utilize (4.1) and (4.2) to show that, as in the abelian
case, the rate at which the Gaussian random walk on N3 "wanders to oo" is
determined by the behavior of ,m exp (0, 0, 0) as m

THEOREM 4.1. For k > 0 let Bk {(x, y, z): (x2 + y2 + z2)/2 < k}. Then
there is a constant, Ck > O, depending only on k so that for (x, y, z) e Bk,

q*mo exp (0, 0, 0)> $m exp (x, y, z)> Ck*mo exp (0, 0, 0).
Hence,

and

b*mo exp (x, y, z)dx dy dz O(*m exp (0, 0, 0))

c*m exp (O, O, O)= O (fB dp*m exp (x, y, z) dx dy dz)
Proofi The first inequality was established in Corollary 2.8. To establish the

second inequality we note that since ,m exp is continuous and strictly posi-
tive for all m it is sufficient to find a positive constant Ck that works for all
sufficiently large m. To obtain such a Ck we will consider the expression in (4.1)
and (4.2) and make some estimates. No effort will be made to obtain the best
possible Ck. We will need to make use of certain results that will be obtained
later in the course of the proof ofTheorem 4.4. No circularity of reasoning will,
however, arise.
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Fix k > 0. Choose A > 0 so that for all m,

f, m f, m

\t- a,al rn + Fm(m-1/2c) G(c) dc < e,
rn + Fm(m- /2c G(c) dc

where e > 0 is chosen so that e(1 + G(k)/4) < G(k)/8. Such an A exists since by
Theorem 4.4,

whereas by (4.9)

m

limmooinf x//m rn + Fm(m-/2c) G(c) dc > 0

lim v/mf m

moo /[-A,A] rn + rm(m-/2c) G(c) dc 0

for every A > 0, and such an A can clearly be found for fixed m.
Since all of the real-valued functions in (4.1), when viewed as functions of c,

are even, only Re (E(-m-/2zc)) affects the integral, and hence

,m exp (x, y, z)= m_3/2 (I rn _l/2zc)
-A,A] m + I"m(m-1/2c)

cos (m

(Pm(m-1/2c) )x F
m + Fm(m- /2c) (x2 + y2) G(c)dc

m 1/2ZC)+
\[-A,A] m + Im(m 1/2c)

cos (m

( Pm(m-t/2c) y2)x F m mm(-n= i-2C) (X2 -- G(c) dc.

Next, we note that by (2.2) and (3.6),
c2 2 P,(m-/2c)PI(m- 1/2c) Pm- l(m-1/2c) "" mm i=o

c2
Pm-l(m- 1/2C) + mm (lm-l(m- 1/2C) + m 1).

Thus,

Pro(m-’/2c) Pro-, (m-
rn + r,(m-’/’-c) m + Fm(m- ’/2c)

c2
<1+.

4m

c2 m- 1 + Fm_(m-/2c)
4m m + rm(m- /2c)

Using the above inequality and the fact that F < 1 we see that if m is large
enough so that cos (m- /2zc) > 1/2 whenever z < k and ]c < A then
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b*mo exp (x, y, z)

-a,a m + Fro(m-/2c)
F 1 +--m (x2 + y2) G(c)dc

_, m + r(-’ (t c

-a,a m + Fm(m-/Zc) F(c2 1 + dc

Now if m is large enough so that 1 + kNm < 4, then, using the fact that F is
even and monotone increasing on [0, m) and F is even and monotone decreas-
ing on [0, m), we have

_f m

R\t-a,a rn + Fm(m-1/c) G(c) dc

m-3/2 (G(k)/4 I m
G(c) dc

-2A,2A] m + Fm(m-/2c)

\[A,A] m + Fm(m-/2c) G(c) dc

By our choice of A and e we now have

,m exp {x,,)> { {l _e)_)m_/ f m

+ r(m-’/) (c) c

(G(k)/4- e(1 + G(k)/4))*o exp (0, 0, 0)
G(k)/8.*o exp (0, 0, 0).

This completes the proof of the theorem.
The author thanks Jonathan Brezin for pointing out an error in the original

proof of Theorem 4.1.

DEFINITION 4.2. For m 1, 2,... set

Im (to exp*m (0, O, 0))-tt*too exp (0, O, O)
m3/2)*m exp (0, 0, 0)

1 + m-’l-’,,,(m-1/2C) G(c) dc.
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From the integral defining I we see immediately that I < 1. Thus we see
that not only is the non-abelian walk transient but also that it "wanders to o"
at least as rapidly as does the abelian walk. In fact the non-abelian walk
"wanders to o" more rapidly than does the abelian walk as one sees by
applying Corollary 3.9 and the dominated convergence theorem to conclude
that I 0 as m - . It is now natural to inquire about the rate at which I
tends to 0. This question will be answered rather precisely in Theorem 4.4.

LEMMA 4.3. For a > 0, c R,
oo 1

(4.3) lim (mc)k (2k + 1)’k +

the limit being uniform on compact subsets of R.
Proof.

oo 1
(mc)k (2k + 1)’

<
k [am] + (am)k (k + 1)’k [am] +

oo 1E (]cl/a) (k + 1)"k [am] +

the latter series tending uniformly to 0 on compacta as rn oo.

THEOREM 4.4. (a) lim_oo mVI, 0 for p < 1/2.
(b) 0 < lim inf,-.oo ml/2Im <_ lim SUPmoo ml/2Im <
(c) lim,_.oo mVlm for p > 1/2.

Proof. Although (a) and (c) follow immediately from (b)we shall prove
them independently since little extra work is involved in doing so and the
proofs are instructive.

Since F and G are even functions,

mVI. 2
1 + m-’l"m(m-/Zc) G(c) dc.

Since F, is a monotone increasing function we have that
-1/2

(4.4) mVI* > 1 + m-1F,(m- 1/2c) G(c) dc

> G(1)mv- 1/2(1 + m-1F,(m-1))-1.
Now, combining (3.7) with (3.8) and setting m-1 we have

tt.-1)/2 (m 1)... (m- 2k) Im- 1F,(m- 1) R=IE (2k + 1)’. 4k m2

[(m- 1)/2] 1

-1 (2k+1)!4"
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This shows that m- Fm(m- ) remains bounded as m --, m. Applying this result
to 4.4 we see that

(4.5) lim inf ml/2Im > 0
m-oo

and

(4.6) lim mI, o for p > 1/2.
m-- oo

On the other hand,
m-l

f (1 + -’r.(m- 1/2C))-IPG(c) dc < ’-1/2
0

and thus
m- 1/2

(4.7) lim fo (1 + m-Fm(m-1/2c))-mgG(c) dc 0 for p <

and
-1/2

(4.8) lim sup fo tl + m-Fs(m-1/2c))-m/2G(c) dc 1.
m

To complete the proof of the theorem we must consider the behavior of

f._ ,/
(1 + m-’r.(m-’/Zc))-’(c) dc.

Consider the map

ttm)/2] (m --1) (m 2k) ( c2 )kc 1 + m-Fm(m-/2c)= 1 +

For m 2,

[ (m -1) (m 2k ( c2 ) k

(4.9) 1 + m-F(m-/2c)> 1 +
k=, ( 1)

t4 (m)2k
>l+k=, (2k+l)’.

1 1 [mc2] k

k=O (2k + 1)
from whence we see that for all p and all c 0,

lira m-. m- F(m- /c) m,

the limit being uniform away from 0. Thus for all p,

(4.10) lira f ’(1 + -F(m-/c))-G(c) dc O.
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We next consider the behavior of the integral

Define

fm-1/2 mY(1 + m-1Fro(m-1/2c))-1G(c) dc.

(4.11) f(r) =o (2k + 1)".
r R.

By (4.9) and Lemma 4.3 we conclude that for Ko fixed, 0 < Ko < 1, and for m
sufficiently large,

(4.12) 1 + m- r.(m-1/2C) > K0 f(mc2/16),
Now, for r > 0,

(4.13)

We also have

c[0, 1].

x//r2k +f(r)=r-1/2k=O(R) (2k+ii".

(4.14) e’/’= E x//r
=o k!

N//r2k+2 %//r2k+l1 + k=02 (2k + 2)’. " k=0 (2k + 1)’.
0 N/r2k+l o N/r2k+l_-1/ ,/r ,_-x/5 + +

Combining (4.13) and (4.14) we conclude that, for r > 0,
oo %//r21 +x//rf(r) i;o2 (2k + 1)

/r21 +
> --o (2/+2)’.

r-’/’(e’ 1

from whence/(r)> (r + x//r)-l(e"/’- 1). Thus for c e [rn-/2, 1],

imc21 imc2 x//mc e,/,/,(1 e- /,).(4.5) f\-i-g! -> + :,
Setting K Ko(1 e-/*)we have, by (4.12) and (4.15),

(4.16) 1 + m- F(m- t/2c) > K , 16 + 4
e’/*/*



286 DAVID R. FISCHER

for c [m-1/2, 1] and m sufficiently large. Thus for large rn

fm-/’- (1 + m-F.(m-/2c))-16(c) dc

f imc2 x/me)K- x/mc/4

s-/2, 16 + 4
e dc<

,/m/4.

K- f (x + x)e-" 4m- / dx

< K- 4m- / f (x + x)e dx.
o

Since the last integral above is finite we conclude that

(4.17) limsup m f_, (1 + m-F(m-/c))-G{c) dc <

and, for p < ,
(4.18) lira " f (1 + m-F(m-/c))-G(c) dc O.

1/

Finally, {4.6)proves (c), (4.7), (4.10)and (4.)together prove (a), and (4.5),
(4.8), (4.10)and (4.17)together prove (b).
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