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SEQUENCES OF STEINER
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1. Introduction

In [2], Steiner describes two exact sequences (or, rather, two families ofexact
sequences) associated with a short exact sequence of groups

(1.1) K G ’,H (0 may be regarded as an inclusion).
Let a K; write K(a) for the centralizer of a in K and G(a) for the centralizer of
a in G; write [K], [G], [H] for the sets of conjugacy classes of elements of K, G,
H respectively and use a similar notation [x] for the conjugacy class containing
x. Then Steiner’s first sequence is

01 fll t or2 f12
(1.2) K(a), G(a) H [K] [G] [H].
Here z1, 2 are induced by a; ill, P2 are induced by fl; and 0 is defined by

pX [XaX-1], X G.

We particularly note: (i)if [K], [G], [HI are furnished with base points [a], [a],
1] respectively, then the sequence (1.2) is exact; (ii) the exactness at H takes the
strong form that

(1.3) c3h h2.>h h2(fllX), some x G(a), h, h2 H;

(iii) if K IG stands for the set of conjugacy classes of elements of K under
conjugation by elements of G, then K IG fl- 111] and (1.2) may be shortened
to the 5-term sequence

Oil Pl (

(1.4) K(a), G(a) H [K] K G.

Steiner’s second sequence is defined when (1.1) is central. It then reads, with
a 6 G now,

Or1 Pl t p //2

(1.5) K; G(a) n(fla) K [G] [HI.
Here g is induced by g; ill, f12 are induced by fl; pb [ha], b K; and d is
defined by flx xax- a- . We particularly note: (i) if [G], [HI are furnished
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TWO EXACT SEQUENCES OF STEINER 207

with base points [a], [fla] respectively, then the sequence (1.5) is exact; (ii) the
exactness at the second occurrence of K takes the strong form that

pbi pb2 ’bl b20y, some y H(fla), bi, b2 K;

(iii) if H operates on G by fix xl xxl x- and if H(a) is the subgroup of H
fixing a, then, in (1.5), coker l- H(a)and (1.5) may be shortened to the
5-term sequence

p f12
(1.6) H(a) H(fla) K [G] [HI.

It is our purpose in this paper to generalize (1.4) and (1.6) and to discuss their
properties, especially with regard to the localization of nilpotent groups.
Indeed, this programme was already carried out with regard to (1.6) in [1],
although our generalization will be more substantial than in 1]. In our genera-
lization we retain the short exact sequence (1.1) and consider two possible
additional pieces of structure. In the first there is a group N on which G acts; in
the second there is a group Q acting on the sequence (1.1). In the course of our
study of these generalized sequences, we will have occasion to consider Ideali-
zations of (right) coset spaces G/H, where H is a subgroup of the nilpotent
group G, and a study of this situation will be found in the last section. Here, of
course, we go beyond [1] since, for h H, the function O-, oh, 9 G, is not an
automorphism of G, and we only discussed in [1] representations of groups as
groups of automorphisms.

2. The generalized sequences

We first give a generalization of (1.4). Let N be a group and let (1.1)again be
a short exact sequence of groups and suppose that G acts on N; then, by
restriction, K acts on N, and we allow K(a), G(a), for a N, to be the subgroup
of K, G respectively, fixing a. Let N IK be the orbit set ofN under the K-action,
and define N IG similarly. We define O" H ---, N IK by Oflx [xa]r, x G,
where [a’]r is the K-orbit of N containing a’ N.

THEOREM 2.1. There is an exact 5-term sequence, with base points [a]r
NIK, [a] NIG,

1 fl 0 2

(2.1)
in which

(i) zl, z2 are induced by o, and l is induced by [3"
(ii) the sequence is exact at N IK in the sense that l[a] OH"
(iii) the sequence is exact at H in the sense of (1.3).

Proof We will be content to prove (ii)and (iii). Plainly CZ2[Xa]K [xa]
[a]G. Conversely, if [a’]r [a]G, then a’ xa, for some x G, so that [a’]x
Oflx. This proves (ii). To prove (iii), observe first that if h h2lx, x G(a),
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then x bx2 x, where flxi hi, i-- 1, 2, and b e K. Thus chl [xla]r
[bx2 xa]r [bx2 a] [x2 a] ch2. Conversely, if [x a] [x2 a], then
xla=bx2a, some beK, so that (bx2)-x=xeG(a), x=bx2x,
fix1 (flx2)(flx), and (iii)is proved.

Remark. We recover (1.4) by taking N K with G acting by conjugation.

COROLLARY 2.2. If H is commutative, then we may give 3H a unique group
structure such that c3" H --, cH is a homomorphism. Then (2.1) breaks up into the
exact sequence of groups

(2.2) K(a),’ G(a) H ,,OH

and the exact sequence of pointed sets

(2.3) OH----,NIK
with base points [a], [a], [alc..

Remark. It would suffice for the conclusion that 1 G(a) be normal in H,
but we will not insist on this generality. Of course, we could still break (2.1) up
into (2.2), (2.3), even if H were not commutative, but then c3" H ---OH would not
be a homomorphism.

COROLLARY 2.3. Let H act on N IK by the rule flx [a]r [xa], x e G.
Then the orbit of N IK under this action containing [a] is in bijective correspon-
dence with the right coset space H/fl G(a). In particular, if H is commutative,
then N K may be represented as a disjoint union of commutative groups, each a
homomorphic image of H.
The following result relates to the dependence of (2.1) on the choice of a e N.

THEOREM 2.4.
a bijection of exact sequences (in obvious notation)

(2.4)

With the data of Theorem 2.1, let y G, a’ ya. There is then

where co,x yxy-, x G(a) (or K(a))’, og, h (y)h(y)-, h H’, or[c
[yc], [c] NIK or NIG.

Notice that cot" N IK --, N IK simply moves elements within their H-orbits;
see the preceding remark.
We now turn attention to the generalization of (1.6); see also [1]. We again

consider the short exact sequence of groups (1.1); but now we take a group Q
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and suppose that Q acts on G and H in such a way that fl: G H is a Q-
homomorphism. If a G, we define d: Q(fla)- K by dx a(xa)-1, x Q(fla),
and p: K--, G Q by pb [ba], b K.

THEOREM 2.5. There is an exact 5-term sequence, with base points [a] G IQ,
[fla] e

fll /9 f12
(2.5) Q(a) Q(fla) K G IQ , H IQ
in which

(i) fl, f12 are induced by fl;
(ii) is a crossed homomorphism; that is, O(xy)= Ox(x @), x, y e Q(fla);
(iii) the sequence is exact at G IQ in the sense that fl x[fla] pK;
(iv) the sequence is exact at K in the sense that pb pb2oxb b2 x,

for some x e Q(fla), b, b2 e K.

ProoZ We are content to prove (ii), (iii), (iv). To prove (ii), note that

(xy) a(xya) a(xa)- (xa)(xya) a(xa)- Xx(a(ya) ) x(x
To prove (iii), observe first that fl2[ba] [fl(ba)] [fla]. Conversely, if flg[a’]
[fla], then fla’ xfla flxa, x e Q, so a’ b(xa)= x(b’a), where b e K, xb’ b.
Thus [a’] [b’a] pb’. To prove (iv), first let xb b2 Ox, x e Q(fla). Then
x(b a) (xb)(xa) b2 a, so that pb [b a] [X(bla)] [b2a] pb2.
Conversely, if pb pb2, then [b a] [b2 a], so that x(b a) b2 a for some
x e Q. But then fl(x(b a))= xfla, fl(b2 a)= fla, so that xfla fla, x e Q(fla),
and xb b2 x.

Remark. To obtain (1.6) from (2.5) we take Q H, K central in G, H acting
on G as described in (1.6) and H acting on itself by conjugation. There is then
an insiificant difference between : H(fla) K as described in Theorem 2.5
and in Steiner’s sequence. If we call Steiner’s definition *, then *x 0x-.
Since, in Steiner’s situation, K is commutative, there is clearly no essential
difference between the roles of * and in the sequence. Of course, is a
homomorphism if Q acts trivially on K; this is (with Q H) precisely the
condition, in Steiner’s case, that K be central.

COROLLARY 2.6. If K is commutative and Q acts trivially on K, then we may
give pK a unique group structure such that p: K pK is a homomorphism. Then
(2.5) breaks up into the exact sequence of 9roups

(2.6) Q(a), Q(fla) K pK

and the exact sequence of pointed sets

(2.7)
with base points [alG, [alG, [fla]tI.
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COROLLARY 2.7. Let Q act trivially on K. Then K acts on G IQ by the rule
b" [a] [ba], b K. Then the orbit of G IQ under this action containing [a] is in
bijective correspondence with the right coset space K/c3Q(fla). In particular, ifK
is commutative, then G Q may be represented as a disjoint union of commutative
groups, each a homomorphic image of K.
The following result relates to the dependence of (2.5) on the choice of a G.

THEOREM 2.8. Let Q act trivially on K, let b K, a’ ba. There is then a
bijection of exact sequences (in obvious notation)

ill’ ’ P’ f12
Q(a’), ,Q(a’) K GIQ ,,HIQ

where m 1 on Q(a) and Q(Ba); ob’= bb’b-, b’ e K; o[c] [bc], c e G;
Oh= 1 on H Q.

Notice that rob: G IQ G IQ simply moves elements within their K-orbits;
see the preceding corollary.
With a view to a remark we wish to make at the end of the next section, we

study the effect on the sequences (2.1), (2.5) of replacing a by a. We first note
that if the group G acts on the group N and if n is any positive integer, then the
orbit set N IG admits the nth power map n": N IG N IG, given by the rule
[c] [cq; for, if x e G, then (xc)" xc". e following is then easy to see in
relation to (2.1):

PROPOSITION 2.9. Under the hypotheses of Theorem 2.1 there is a map of
exact sequences, with a N,

(2.9)

K(a),

K(an);
The situation with regard to (2.5) is a little more complicated"

PROPOSITION 2.10. Under the hypotheses of Theorem 2.5 and the additional
hypothesis that K be central in G, there is a map of exact sequences, with a G,

(2.10)

Q.
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Proof Now, in any group G, if u, v e G and uv is in the centre of G, then, for
any n, u"v"= (uv)". For if uv w, and 9 e G, then (w9)" w"9" and we set

9 v-x. Thus if x Q(a), " ?x (a(xa)-l)"= a"(xa)-", since cx is in the
centre of G. Hence r" Ox a"(xa")- t?’x. Also if b K, 7r"pb r"[ba]
[(ba)"] [b"a"] p’b". The remaining assertions of the proposition are trivial.

COROLLARY 2.11.
is a bijection.

If, in Proposition 2.9, N admits unique nth roots, then (2.9)

COROLLARY 2.12. If in Proposition 2.10, G and K (and hence H) admit
unique nth roots, then (2.10) is a bijection. In particular, if also Q operates
trivially on K, then "" coker c3 coker cY.

3. Localization

We again consider a short exact sequence of groups (1.1)

(3.1) K, -G

but will insist in this section that the groups be nilpotent. We further suppose
given a group N on which G acts nilpotently, so that N is itself a nilpotent
group. Then we consider a family of primes P and let e stand for the localiza-
tion map at the family P. There is then an induced action of Gp on Np. Let
a N. Then we know (see Theorem 1.1 of [1])that

(3.2) G(a)p Gp(ea) for e: N Np.

Plainly localization induces a map of exact sequences (2.1)

(3.3)

tl fll 22

K(a) G(a) H N K N

If1 [e2 le3
Kp(ea)) Gp(ea) Hp Np Gp

THEOREM 3.1. In (3.3), el, e2, e3 are localization maps, so that Op1 -(IP,
fie1 flXP, and (fix G(a))p flp Gp(ea). Moreover, ifH is commutative, then, in
the disjoint unions, over the H-orbits of N IK and the Hp-orbits of NpI Kp,

N IK LI H/fl, G(a), a N, NI Ke LI He/flex Ge(ae), ae Ne,

e4, restricted to H/fix G(a), is the localization map to He/flex Ge(ea).

Proof It is only necessary to invoke (3.2) and the exactness of localization.
With regard to the second sequence, we revert to (3.1) but fl is now a Q-map,

where Q acts nilpotently on G. Moreover we assume that Q acts trivially on K.
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Let a G. Then, if Q is nilpotent, localization induces a map of exact sequences
t.)

(3.4)

fll
Q(a) Q(fla)

Qe(ea) Ql,(fll, ea)

0 p

THEOREM 3.2. In (3.4) ex, e2, e3 are localization maps, so that fl,x fl 1,, and

(OQ(fla)), Oe Q,(fleea).

Moreover, if K is commutative, then, in the disjoint unions, over the K-orbits of
G Q and the Ke-orbits of Gel Qe,

G IQ H K/OQ(fla), a e G, Gel Q, H Ke/O,Qe(fl,a,), ae e Ge,

e4, restricted to K/OQ(fla), is the localization map to Ke/t3, Qe(fleea).
If we wish to generalize these results further to the case when H, or K, is not

commutative, we will have to consider the localization ofcoset spaces, the topic
of the next section.

Remark. We note that, in Theorem 3.1, although not every Hp-orbit of
NelK, is in the target of an H-orbit of N IK under e,, nevertheless, by Corol-
lary 2.11, every H,-orbit is isomorphic to a target orbit if H is commutative.
For, given a, Ne, there exist a N and n prime to P such that ea a. Then

(3.5)
He/flex Ge(a,) H,/flex Ge(a)

H,/fl,x Ge(ea),

(by Corollary 2.11)

and the latter is the target ofe restricted to H/fl G(a). Note, however, that the
first equality in (3.5)does not justify us in asserting that H,/fl,x G,(a,) is itself a
target orbit--we are dealing here with several copies of the same group, some
in the target, some not.
A similar situation obtains with regard to Theorem 3.2. We assume that Q

acts trivially on K and that K is central in G. Then, although not every Ke-orbit
of GeIQ is in the target of a K-orbit of G/Q under e, nevertheless, by Corol-
lary 2.12, every Ke-orbit is isomorphic to a target orbit. For, given a, e G,,

andthere exist a G and n prime to P such that ea a,

Ke/O,Q,([3,ae) - K,/O,Q,([3,@)

= K,/O,Q,(fl,ea),

(by Corollary 2.12)

and the latter is the target of e, restricted to K/OQ(fla).
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Note that the paragraph above applies to the situation dealt with in [1]; for
then Q is nilpotent and operates nilpotently on G, so that nile G c. We then
take K F G, so that Q operates trivially on K and K is in the centre of G.

4. Localizing coset spaces

To extend the study of the last section beyond the point at which H, in (2.1),
or K, in (2.5), is commutative, it is necessary to consider the localization of coset
spaces. Thus we consider in this section a nilpotent group G and subgroup H
and we construct the right coset space G/H. Then the P-localization map
e: G Gp induces e,: G/H Gp/H, and we propose to study e, in this
section.’ The questions we will consider will be modelled on those of [1]. We
first make a basic group-theoretical observation.

Let G be a group, K a subgroup of G, and L a normal subgroup of K. Then
the group K/L acts on the right coset space G/L on the right by the rule

(4.1) gL. kL= gkL, g 6 G, k e K.

For if O’ Oll, k’= kl2, /,, 12 E L, then g’k’ ok(k-1/1 k)2 gkl, L, and

(9L" klL) k2L ok, k2L oL" ((klL)(k2L)), 9L" L 9L.

PROPOSITION 4.1. The sequence

K/L; ,G/L ,,G/K

is exact in the sense that K/L operates faithfully on G/L and the orbit set is in
natural bijective correspondence with G/K.

Proof The operation is faithful; for if oL k, L oL k2 L then ok1 ok2 l,
L, so that kl k21 and klL= k2L. Moreover n(olL)= n(o2L)c:’olK

02 K :’91 92 k, some k K. 91 L 02 L. kL, some k K.
This elementary proposition forms the basis for our further arguments when

allied with the observation that if G is nilpotent and H is a subgroup of G then
there is a normal series

(4.2) H <aN <aN2 <a""

indeed we may take Ni to be the normal closure ofH in Ni+ 1, 1, r, with
N,+I G, No H.

THEOREM 4.2 (Cf. Theorem 1.2 of [1]). Let G be finitely 9enerated nilpotent,
H
_

G, and let S
_
T befamilies ofprimes. Then GT/HT --* Gs/Hs is finite-one.

Proof We argue from (4.2), by backward induction on i, that
GT/NiT Gs/Nis is finite-one, this being known in the case r. Thus if we

It is plain that, in an appropriate category, e, can be regarded as a P-localization, but this is
not the aspect we wish to emphasize here.
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write L Ni_ l, K Ni, we are in the situation of Proposition 4.1 and have a
map of exact sequences

(4.3)

T

KT/LT GT/LT GT/KT

Ks/Ls Gs/Ls Gs/Ks
where el is known to be finite-one and e3 may be assumed finite-one by the
inductive hypothesis. We want to prove that e2 is finite-one. Let a im e2.
Then nsa im e3 so that nsa has finitely many counterimages in GT/Kr. It
thus suffices to prove that, for each b GT/K T with e 3 b nsa, there exist only
finitely many elements c Gr/LT with nTc b, e2c a. Let us suppose there
is such an element c and let c’ be another such element. Since nTc’= nTc, it
follows that c’=c-d with dKT/LT. Since e2c’=e2c, it follows that
e2 c e2 c el d, so that el d Ks/Ls. Since el is finite-one, d belongs to a
finite set, so that we have only finitely many choices for c’. This completes the
inductive step.

THEOREM 4.3 (Cf. Example 1.6 of [1]). Under the hypotheses of Theorem 4.2,
there exists a cofinite family of primes P such that GT/HT Go/Ho is injective
for TP.

Proof We again employ backward induction, preserving the notation of
the proof of Theorem 4.2. We find cofinite families P1, P3 such that
KT/LT Ko/Lo is injective if T

___
P and GT/KT--*Go/Ko is injective if

T
_

P3. Then if P2 P P3 and T
_
P2 we have a map of exact sequences

KT/LT Gr/LT GT/KT

(4.4) 1 e2 1e3
Ko /Lo Go /Lo Go /Ko

with e, e3 injective. It quickly follows that e2 is injective. Since P2 is cofinite,
the inductive step is complete.

Remark. Example 1.6 of [1] showed that the corresponding statement for
orbit sets was false.
The strategy of proof now being evident, we are content to state our remain-

ing results without proof.

THEOREM 4.4 (Local Hasse Principle for coset spaces; cf. Section 3 of
[1]). Let G be a nilpotent 9roup, H

_
G, and, for each prime p, write

%: G/H Gp/Hpfor the map induced by p-localization. Then:
(i) if a, a’ G/H and epa epa’ for all primes p, then a a’;
(ii) if G is finitely 9enerated and if ap Gp/Hp, for each prime p, such that

rpap is independent ofp, where rp: Gp/Hp- Go/Ho is induced by rationalization,
then there exists a G/H with epa apfor each p.
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THEOREM 4.5 (Cf. Theorem 4.3 of [1]). Let G be a nilpotent group, H
_

G,
and let G be the local expansion [1] of (, thus ( lip Gp (and, similarly,

lip Hp). Then the square

(4.5)

G/H dlI-I

Go IHo do//:/o
is cartesian.

Remark. Recall that (o means (t)o. Note, further, that in fact the lower
horizontal arrow in (4.5) is injective. To see this, we may proceed, as usual, by
observing that this is true when H is normal in G and then arguing by induction
based on (4.2).
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