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A STRONG SPECTRAL RESIDUUM
FOR EVERY CLOSED OPERATOR

BY
B. NAGY

1. Introduction

Decomposable operators (see, e.g., [2]) are linear operators, for which a
weaker, geometric variant of the constructions, characteristic of spectral opera-
tors [3], is still possible. Residually decomposable operators, introduced by
F.-H. Vasilescu [6], [7], and bounded S-decomposable operators, studied by I.
Bacalu [1], are operators such that, loosely speaking, the property of decompo-
sability holds only outside a certain part of the spectrum. F.-H. Vasilescu has
proved [7] that for certain operators having the single-valued extension
property there is a unique minimal closed subset of the spectrum, called the
spectral residuum, outside which the operator has a good spectral behavior of
this kind.

The main result of this paper is that, utilizing a similar concept of good
spectral behavior, for an arbitrary closed operator there exists a unique mini-
mal closed subset of the spectrum, called the strong spectral residuum, outside
which the operator shows this behavior. It is proved that for a large class, close
to that occurring in [7; Theorem 3.1], of operators strong and ordinary spectral
residues coincide. If the strong spectral residuum is void, the operator is
(bounded and) decomposable. Whether the converse is true, is equivalent to a
well-known unsolved problem, raised by I. Colojoard and C. Foias [2; 6.5 (b)].
Though the proofs seem to remain valid after minor modifications in a Fréchet
space, to make references more convenient, we have chosen the Banach space
setting.

Let X be a complex Banach space and let C(X) and B(X) denote the class of
closed and bounded linear operators on X, respectively. Let C and C denote
the complex plane and its one-point compactification, respectively. Unless
stated explicitly otherwise, all topological concepts for sets in C will be under-
stood in the topology of C. If F = C, then F° denotes C\F and F denotes the
closure of F. For T e C(X), D(T) is its domain and ¢(T) denotes its extended
spectrum, which coincides with the spectrum s(T) if T e B(X), and is
S(T) u {oo} otherwise. We set p(T) = o(T). If Y is a closed subspace of X and

T(Y n D(T)) = Y, then we write Y € I(T) and T|Y denotes the restriction of
Tto Y n D(T).
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We recall some concepts and facts from [7]. For x € X, z € C we say that
z € d4(x) if in a neighborhood U of z there is a holomorphic D(T)-valued
function f, such that (u — T)f(u) = x for u € U n C. Such a function f,(u) is
called T-associated with x. There is a unique maximal open set Q .in C with the
following property: if G = Qis an open set and f,: G — D(T) is a holomorphic
function such that (u — T) fo(u) = 0 for u € G n C then fo(u) = 0 on G. We put
Sy =Qf, and, for any x in X,

pr(x) = 07(x), op(x)=ye(x) U Sy and  pq(x) = op(x)".
We say that T has the single-valued extension property if S; is void. For any
T e C(X), H<=C weset X (H)={x € X; o,{(x) = H}, then X (H) is a linear
manifold in X. A closed linear subspace Y in X belongs to the class I if
T|Y e B(Y). If F is a closed set in C, define

Iy={Yel;;a(T|Y) < F}

If I has an upper bound (with respect to the relation <), which belongs to
I; p, then it is denoted by X, . Similarly, we define

I(T, F)={Y e I(T); o(T| Y)  F}.

If I(T, F) has an upper bound, belonging to I(T, F), with respect to the relation
<, then it is denoted by X(T, F).

DEFINITION 1. A closed subspace Y in I(T) is a spectral maximal space of
T e C(X) if for any Z € I(T) the relation ¢(T|Z) = o(T|Y) implies Z < Y.

It is easily seen that if F is closed in C and X (T, F) exists, then X(T, F)isa
spectral maximal space of T. Conversely, if Y is a spectral maximal space of T
and F = o(T|Y), then Y = X(T, F).

The following result is taken from [4] and will be utilized later.

LemMA 1. If T € C(X), the closed set F = C contains St and X {F) is closed
in X, then X (F) = X(T, F).

Let S be closed in C. A finite family of open sets (G, ..., G,; G,) is an
S-covering of the closed set H = Cif( Ji-; G; U G,oH U Sand G, n S =
fori=1,...,n

The next definition is an extension from the case of a bounded operator [1].

DEFINITION 2. Suppose T € C(X) and the closed set S is contained in o(T).
Call T strongly S-decomposable if for any open S-covering (G, ..., G,; G,) of
o(T) there are spectral maximal spaces of T, X, <« D(T) (i=1,...,n), X, X
such that:

(1) o(T|X)<=G;(i=1,...,n)and o(T|X,) = G;

(2) for any spectral maximalspace Yof T, Y=Y n X+ Y-, (Y n X)).
T is called S-decomposable if we postulate (2) only for Y = X.
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The following results will be utilized later. For their proofs we refer to [4] (cf.
also [1]).

LemMA 2. If T € C(X) is S-decomposable then S; < S.

LemMma 3. If T € C(X) is S-decomposable and F is a closed set containing S
then X +(F) = X(T, F).

2. The strong spectral residuum

DEerFINITION 3. Let T € C(X)and R = R(T) be the family of all closed sets S
such that S; = S = ¢(T) and T is strongly S-decomposable. If there is S* € R
such that S* is contained in each S € R, then S* is called the strong spectral
residuum of T.

Now we state the main result of this paper.

THEOREM 1.  The strong spectral residuum exists for each operator T € C(X).

Proof. It will be divided into several steps.

(1) R is nonvoid, for ¢(T) clearly belongs to R. If {S,; a € A} is a totally
ordered subfamily of R with intersection So = N {S,; ae A} and H=Cis a
closed set disjoint from S, then, since C is compact, there is a, € 4 such that
H ~ S,, is void. Hence an S -covering of ¢(T) is an S,covering of o(T) for
some ae A. Since T is strongly S,decomposable, it is also strongly
So-decomposable. By Zorn’s lemma, there exists a minimal element in R.

(2) If Tis S;- and S,-decomposable, S = S, N S,, the set H is closed in C
and is disjoint from S, then the subspace X ; , exists.

Indeed, if S = F = C then F = (%, (F U S;), hence

X(F)= 6 X(F u S§).

If, in addition, F is closed, then X {F U S)is closed in X, by Lemma 3, for T is
S-decomposable (i = 1, 2). Thus X (F) is closed in X and, by Lemma 1,
X (F)=X(T,F). Putting F=H U S, Z=X,/H uS), we obtain that
Z = X(T, H u S) is a Banach space. Thus the operator V = T|Z is in C(Z)
and o(V) = H U S. The sets ;= a(V) n H and o3=o(V) n § are disjoint
spectral sets [5; p. 299] of V. If P, P denote the associated projections and
Zy, Z denote their ranges, then Z = Z, + Z. [5; Theorems 5.7-A-B] yield
that Z, € I(T, H). Moreover, if co belonged to o 4, then we should have S = C,
hence S; = C fori = 1ori=2.Since T is S-decomposable, this is easily seen to
imply T € B(X). But then V € B(Z) would yield oo ¢ a(V), a contradiction.
Thus o is bounded, which implies Z, € I .

Further, if Yel;, then o(T|Y)cH uS implies Y <Z. Hence
T|Y =V|Yand o(V|Y) < H.If D is a Cauchy domain (bounded or not, cf. [5;
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pp. 288-293]) such that H = D, D = S¢, with positively oriented boundary
B(D), then for every y € Y we have

Pyy = (2mi)~! [ (z=V)'ydz+cy

*B(D)

= (2mi)~! [ (z=VI|Y) 'ydz+cy
“B(D)

=y’

where ¢ = 1 if D is unbounded and ¢ = 0 otherwise. Thus Y < Z,, hence the
subspace X ;. , = Z, exists.

(3) If the closed set E = C contains S; and X (E) is closed in X, then

o(T| X (E) > S;.

Denote by o (T) the set of all z € C such that there is a connected open
neighborhood V of z and a D(T)-valued holomorphic function f(v), not iden-
tically 0 and satisfying (v — T)f(v) = 0 on V. As in the case T € B(X), o9(T)is
open and its closure in C is S;. If there is a point z € C such that z e S; N

p(T| X ;(E)), then there exists an open disk G = C such that G < ¢%(T) n

p(T| X (E)). Further, there is a holomorphic function f(z), not identically 0
and satisfying (z — T)f(z) =0 on G. By [6; Proposition 2.2], 6,(f(z)) =
01(0) = S;. Thus there is z, € G such that f(z,) # 0 and f(z,) € X ;(E), which
contradicts z, € p(T | X +(E)).

(4) If T is S-decomposable, S<G<=C and G is open, then
o(T| X 1(G)) = S.

Indeed, by Lemma 3, X(G) is closed in X, thus S >S; and (3) imply

o(T | X +(G)) = St Hence, if the statement of (4) is false, there is z € (S\Sy) N
p(T|X +(G)). Thus there exists a neighborhood U of z such that U c Q, n
p(T| X 1(G)), and for u € U, y € X(G) we have

(= T)u—T[X(G) 'y =y.

Therefore z ¢ a,(y) for every y € X;(G). Further, let (G, G) be an open S-
covering of a(T). Since T is S-decomposable, for every x e X we have
x = x; + y where x, € X g, and y € X;(G). Hence y4(x,) = G, and 6 4(x,) c
G, U Sy. Since a4(x) = o4(x;) U g4(y), we have z ¢ o,(x) for each x € X, and
z € S = o(T). On the other hand, for any T € C(X) we have o(T) = U {0 (x);
x € X} (see [6; p. 513]), a contradiction, which proves (4).

(5) If T is S-decomposable, S<= G = C, G is open and Y is a spectral
maximal space of T, then W =Y n X (G) is a spectral maximal space of T.

Indeed, by Lemma 3, X (G) = X(T, G). Further, put H = 6(T | X {G)), then
(4) implies S =« H = G, and we have X (G) = X(T, H). If F=¢ T| then
Y = X(T, F). We shall show that W = X(T, H n F).

It is clear that W e I(T). Suppose now that ze (H° U F)n C. If
(z—=T|W)w=0 and ze H, then w=0, for z— T is injective on all of
X(T, H). Similarly for z € F¢, thus we have shown that z — T | W is injective.
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Choose an arbitrary w € W and assume that z € (H° n F) n C. Then there
is h e X(T, H) such that (z— T)h=w, for z — T is surjective on X(T, H).
Further, we can prove similarly as in [6; Proposition 3.1] that a spectral maxi-
mal space of T is a T-absorbing subspace of X, hence z € o(T|Y) implies h € Y,
thus h e W. In a similar way we obtain that z — T|W is surjective also for
ze (H n F°) n C. Finally, if ze H° n F° n C, then there exist h € X(T, H)
and f e X(T, F) such that (z — Th=w = (z — T)f, hence (z — T)(h —f) = 0.
Since H o S, the subspace X (H u F)= X(T, H u F), by Lemma 3. The
operator z — T is injective on this subspace, and clearly h — f e X(T, H U F).
Hence h=fe W, thus we have shown that z— T|W is surjective for
ze(H v F)n C.

Suppose now that co € H® U F¢, then one of the closed sets, say F, is
bounded. Then o(T|Y) = F implies that T|Y € B(Y), hence T|W e B(W)and
o € p(T|W). Thus we have proved that in any case W € I(T, H n F).

If a subspace U is in I(T, H n F), then 6(T|U) = H n F, hence U < X(T,
H) n X(T, F)= W.Thus W = X(T, H n F) is a spectral maximal space of T.

(6) IfS,S,eRandS=S, N S,, then S e R.

Indeed, suppose (G; (j = 1, ..., n), G,)is an open S-covering of o(T). The sets
Z, = S\G (k =1, 2) are closed in C and they are disjoint, for § = G,. Hence
there are open sets H, (k = 1, 2) such that H, > Z, and H; n H, = . Put
G, = G, U H,, then G, o S, U G, (k =1, 2) and G,, n G,, = G,. There exist
open sets By such that S, < B, B, = G, (k=1,2). ForeveryG;(j=1,...,n)
let G =G, n Bj; then Gt = G;, G* ~ S, = & and GX U G, > G, (k=1, 2).
Thus (G% (j =1, ..., n), G,) is an open S,-covering of ¢(T). Since T is strongly
S,-decomposable, for any spectral maximal subspace Y of T we have, by
Lemma 3 and (2),

Y=Y n X (G,)+ Y (Y n Xr50)
j=1

According to (2), the spectral maximal spaces X ; g, exist for j = 1, ..., n, and

XT,Gjl < XT,Gj‘
Hence

Y=YnXn(G)+ X (YN Xpg)
ji=1

By (5), W = Y n X4(Gy,) is a spectral maximal space of T. Since T is strongly
S,-decomposable, we obtain

W=W nX(G,) + ‘_il W0 Xrgp) € ¥ 0 XG)+ 3 (Y 0 Xg)
for we have (7_, XT(ésk) = X((?-1 G,)- Hence J
Y=Y X(G)+ 'il (Y A Xp.g):
thus T is strongly S-decomposable. "



178 B. NAGY

(7) According to (1), there exists a minimal element S, in R.If S, € R, then
(6) yields S; n S, € R, hence S, o S,. Thus S, is the strong spectral residuum
of T, and the proof is complete.

Now we recall some definitions and results from [7]. T e C(X) is called
S-residually decomposable (S = o(T) is a closed set) with localized spectrum if
for every closed F = C with F n S = (¥ the subspace X ; , exists, for every
S-covering (G, ..., G,, G,) of o(T) there exist X, ..., X, € I such that
o(T|X;)=G,; (i=1, ..., n) and any x € X has a decomposition x = x, +
4 x, + x, where x; € X;, pp(x;) = yp(x) (i=1, ..., n) and o4{(x,) = G, In
this case we shall write S € Q(T) = Q. Ifthere is S, € Q such that S € Q implies
Sy = S, then S, is called the spectral residuum of T.

F.-H. Vasilescu proved [7; Theorem 3.1] that if T e C(X) has the single-
valued extension property, and for any closed F,, F, = C the property that
X (Fy), X4(F,) are in D(T) and are closed implies that X {F; u F,)is in D(T)
and is closed, then the spectral residuum of T exists.

THEOREM 2. Suppose T € C(X) has the single-valued extension property and
for any closed F < C the set X ;(F) is closed in X. For any closed set S < o(T)
then S € Q(T)if and only if S € R(T). Hence the spectral residuum of T exists and
coincides with the strong spectral residuum of T.

Proof. Under the given conditions Lemma 1 implies that for any closed
F < C the set X (F) = X(T, F) is a spectral maximal space of T. Assume first
that S € Q(T), (Gy, ..., G,, G,) is an open S-covering of ¢(T) and Y is a spectral
maximal space of T. Setting F = ¢(T|Y) then Y = X (F) and, in view of [7;

Proposition 3.1}, we may assume that the sets G, ..., G, are bounded. For any
yeY,y=y, + - +y,+y,wherey,e X{G)(i=1,...,n5)further S; = &
implies that o,(y;) = o,(y) = F (i=1, ..., n), since T has localized spectrum.

Hence also 0 {y,) = F. The spectral maximal spaces X; = X (G) (i=1,...,n,
s)exist, X; = D(T)fori=1,..., n, by [7; Proposition 2.5|,and Y = Y n X+
Yr_y (Y N X,); thus S € R(T).

Conversely, if Se R(T), and F is closed in C with F n S = (¥, then
X(T, F) = X (F) exists. If F is bounded, then [7; Proposition 2.5] yields
X ;(F) = D(T). If F is unbounded, then S is bounded, which implies T € B(X).
In either case, X | . = X {F) exists. For any x € X the closed set H = o (x)
defines the spectral maximal space X (H). By assumption, for every open
S-covering (G4, ..., G,, G,) of o(T),

X, (H)=XHnG)+ Y XiH n G).
i=1
Hence x=x; + "+ Xx,+ X, where x;e X;(G;), and S;= ¢ implies
yr(x;) € H = y4(x). Thus S € Q(T), and the proof is complete.

Added in proof. After submitting the manuscript, the author learned that
E. Albrecht (Manuscripta Math., vol. 25 (1978), pp. 1-15) had shown that there
is a decomposable operator for which the strong spectral residuum is not void.
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