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SOME REMARKS ON LAX-PRESHEAFS

BY

SYMEON BOZAPALIDES

Abstract. [,op, Vat] is a reflective and coreflective sub-2-category of
Fun (’PCat). Lax ends and pointwise lax extensions can be expressed by
indexed limits using the above coreflector.

1. We use the symbol for generalized lax ends [3].
For 2-categories ’ and , Fun (, ) denotes the 2-category of lax func-

tors, lax natural transformations and modifications from ’ to ’. We then have
the standard formula Fun (, )(F, G)= (FA, GA).

PROPOSITION. The canonical embedding [Sp, at]- Fun (op, at) has
both left and right adjoints.

Proof Given a lax-presheaf F" op ._ Cgat the 2-presheafs_
C A ./ C, A) x FA, (1)

/?C [/’(A, C), FA]
A

(2)

are such that

[,op, Cgat](H,/)
_
Fun (op, at)(H, F),

[e’p, Cgat](/, H)_ Fun (op, Cgat)(F, H)
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respectively. Let us prove the first isomorphism"

[,ov, at](H, if)= .J[HC, .PC]

f I c, c),

a[HA, FA]

Fun (q/op, (o(at)(H, F).

Comments (1) For ’ a category, Giraud [4, pp. 37-41] shows that the
inclusion of [op, Vat] into the pseudo-functors and pseudo-natural transfor-
mations has both adjoints.

Formulas (1) and (2)cover this case if, instead of generalized lax ends, we
take iso-lax ends (all 2-cells are invertibles).

(2) The result of this section is equivalent to a statement in [6 pp. 31-32].
However the proof here is quite different.

(3) In [8], Street establishes the existence of , for a lax functor F. Also,
Street’s 2-functor LA[9, p. 171] is just I, where "1 denotes the constant at 1
presheaf.

2. At the level of 2-categories there are three equivalent notions of limit: (i)
lax limits, (ii)lax ends, (iii)indexed limits. In fact, by [9, Theorem 14], the
existence of (i) implies that of (iii)and the converse comes from [9, Theorem
11].
On the other hand if a 2-category has lax limits then it has lax ends [7

pp. 52-53] and conversely [2, Remark a].
Now, there is a short path to pass from (iii) to (ii). Precisely, if

T: ,oo x ’ --, M is a 2-functor we have

lim (/(,-), T)= A T(A, A),



678 SYMEON BOZAPALIDES

either side existing if the other does. In fact

{B, lim (s’(2,-), T)) j [s’(, D), (B, T(C, D))]
,D

CA [,D[(C7’ A) X (A, ]), (B, T(C, D))]

(, T(A, )).

The last member may be identified with the category of lax wedges ofvertex
B over T.

3. A lax natural transformation

(I)

is said to exhibit R as a right lax extension of G along K when pasting . at R
determines an isomorphism of categories [cg, ](S, R)- Fun (, I)(SK, G).
We say that (I) is pointwise if it is respected by the 2-representables

(B,-): at

for each B .
We have the following limit-formulas for R.
(i) For each C e % let dc be the canonical projection from the comma

2-category [[C ], K] to /.
If lim G’dc exists, then R exists and we have RC lim G’dc [5], [6]

(ii) Suppose now that for each C the A [(C, KA), GA] exists; then R
exists and RC A[c(C, KA), KA), GA] [2, Theorem 7].

(iii) As far as the indexed limit version we have the following result.
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PROPOSITION. The pointwise right lax extension of G along K exists if and
only if for each C , the indexed limit lim ((C, K), G) exists. In this case

(,) RC lim (g(C, K), G).

Proof We first prove that R defined by (,) is a right lax extension"

[c, ](S, R)= j" (SC, RC)
c

.i (SC, lim (CF(C, K), G))

The preservation property is evident.
Conversely, if (I) is pointwise then for each B e d and each Q: --, (gat we

have

[% at](Q, d(B, R))_ Fun (,, at)(QK, (B, G)).
For Q (C,-), the above isomorphism gives

[8o, at]((8(C,-), (B, R))_ Fun (,, at)((8(C, K), (B, G))
or

(B, RC)_ [0, ((o at](@(C, K), d(B, G)),
that is RC lim ((C, K), G)as desired.

Remarks (1) It is clear that and / are lax extensions along an identity
2-functor.

(2) Recall the formula for ordinary (=Cat)right extensions"
RC lim ((C, K), G) ([1, Theorem 8.3] with Street’s notation). So, we see
that the symbol v gives the measure of laxness for extensions.
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