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EXTENDING THE PRODUCT OF TWO
REGULAR BOREL MEASURES

BY
Roy A. JOHNSON

1. Introduction

Let X be a compact Hausdorff space, and let B(X) denote the Borel sets of X.
A Borel measure on X is a finite, nonnegative, countably additive measure on
B(X), and a Borel measure p on X is regular if u(E) = sup {u(K): K < Eand K
is compact} for all E in B(X).

If u and v are regular Borel measures on compact Hausdorff spaces X and Y,
respectively, then it is well known that the product measure u x v on B(X) x
B(Y) has an extension to a regular Borel measure u® v on X x Y. In this
paper we give some partial answers to the following open question: Does
u x v have only one extension to a Borel measure on X x Y ? Equivalently,
if p is a Borel measure on X x Y such that p(E x F) = u(E)v(F) whenever
E e B(X) and F € B(Y), is p regular? In particular, necessary conditions and
sufficient conditions are given for the existence of a nonregular Borel extension
of u x v.

We pause to consider an equivalent statement for the condition that u ® v is
the only extension of u x v to a Borel measure on X x Y.

THEOREM 1.1. The following are equivalent :

(1) IfpisaBorel measureon X x Y and p|pxyxpy)= 1 X V,thenp = p® v.
(2) IfAisa Borel measure on X x Y and A|gx,x gy, is absolutely continuous
with respect to p X v, then A is absolutely continuous with respect to

V.

Proof. 1In order to show that (1) implies (2), let A be a Borel measure on
X x Y such that A |5y x gyy < # X v. We wish to show that 4 < u ® v. Suppose
otherwise. Then there exists a Borel set E in X x Y such that u ® v(E) = 0and
A(E) > 0. Choose F in B(X) x B(Y) such that A(E) = A(E ~n F) and such that
u x v(F) is as small as possible under the requirement that A(E) = A(E n F).
Then (1 x v)p < A. That is, (4 x v)(F n G) = 0 whenever G is in B(X) x B(Y)
and A(G) =0. Otherwise, we would have A(E)=A(E n (F— G)) and
u x v(F — G) < pu x v(F).
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By the Radon-Nikodym theorem, there exists a nonnegative function f on
X x Y such that f'is measurable with respect to B(X) x B(Y)and u x v (H) =
fufda for all H in B(X) x B(Y). If M € B(X x Y), define

p(M) = j fdA+ p®v(M — F).

Then p is a Borel measure on X x Y and p |y« gy = ¢ X v. Since u x v.and
Ap have the same sets of measure 0 in B(X) x B(Y), we may assume that the
function f is strictly positive on F. Then since A(E n F) >0, we have
p(E N F)={g ,p f dA >0.Hence, p(En F) > 0and u ® v(E n F) = 0, which
violates the hypothesis of (1). Therefore, A < u ® v.

In order to show that (2) implies (1), let p be a Borel measure on X x Y such
that p |z« sy = 1t X v. By the hypothesis of (2), p is absolutely continuous
with respect to the regular Borel measure u ® v. Hence, p is a regular Borel
measure on X x Y [4, Exercise 52.9]. Since p extends u x v, it must therefore be
1 ® v and we are done.

Notice that 4 ® v is the only extension of u x v to a Borel measure (whether

regular or not) on X x Y if any one of the following equivalent statements
holds:

(1) ux vand u® v have the same completion.

(2) Every compact set in X x Y is u x v-measurable.

(3) Everycompactsetin X x Y with positive u ® v-measure contains a set
in B(X) x B(Y) with positive ¢ x v-measure.

(4) EveryBorelsetin X x Y with zero 4 ® v-measure is contained in some
set in B(X) x B(Y) with zero u x v-measure.

2. Necessary conditions for a nonregular Borel extension of y x v

THEOREM 2.1.  Suppose some nonregular Borel measure on X x Y extends
w x v. Then there exists a compact set K in X x Y and a nonzero Borel measure
Aon X x Y with the foliowing properties:

(1) pxv(K)=0and px v¥K)>0.

(2) If S(K) is the smallest o-algebra of subsets of X x Y containing B(X)
B(Y) and K and if © is that unique measure on S(K) such that n(K) =
and n(H) = p x v¥(H n K) if H € B(X) x B(Y), then A|sx, < 7.

Proof. Suppose p is a nonregular Borel measure on X x Y which extends
u x v. Since p is not absolutely continuous with respect to u ® v, there is a
Borel set E in X x Y such that p(E) > 0 and p ® v(E) = 0. Choose a set F in
B(X) x B(Y)such that p(E) = p(E n F) and such that g x v(F) is a minimum
under the requirement that p(E) = p(E n F). Since u® v(E n F) =0 and
p(E n F) >0 and since u ® v(F) = p(F), we have u ® v(F — E) > p(F — E).
Then since u ® v is regular, there exists a compact set K contained in F — E
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such that u ® v(K) > p(F — E). Necessarily, 1 ® v(K) > p(K). In order to see
that pu x v, (K) =0, suppose G € B(X) x B(Y) and G < K. Then G =« F — E,
so that En F=E n (F—G). Hence, pux v(F— G)=pu x v(F). Hence,
U x v(G)=puxv(F n G)=0,so that u x v, (K) =0.

Choose a compact G, set L containing K such that y ® v(K) = p ® v(L) [1,
Theorem 59.1]. Necessarily L € B(X) x B(Y). Let A = p, _. That is, A(E) =
p((L — K) n E) for all E € B(X x Y). Then A is a Borel measure on X x Y,
and 4 is nonzero since

ML) = p(L = K) = p(L) — p(K) > p®¥(L) — p ® v(K) = 0.
Now let S(K) be the g-algebra generated by K and the members of B(X) x
B(Y). Each member of S(K) has the form (P n K) u (Q — K), where P and Q

are in B(X) x B(Y) [4, Exercise 16.2a]. Let n be that unique measure on S(K)
such that n(K) = 0 and

n(H) =p x v¥(H n K) if H € B(X) x B(Y).

It is easy to see that n((P n K) u (Q — K)) must equal u x v¥(Q n K).
Moreover, the formula n((P n K) U (Q —K)) =u x v¥(Q n K) is well
defined, and the resulting set function n is indeed a measure on S(K) [1,
Exercise 6.10].

We show that 4|s, < 7. Suppose n((P n K) u (Q — K)) = 0, which means
that u x v¥(Q n K) = 0. Since u x v(L) = u x v¥(K), we have

uxv(Q nL)y=pxv¥Q n K)=0.
Then

MP A K)U(Q—K)=p((Q " L)~ K)<p(@ nL)=pxvQ nL)=0.

Therefore, 4 |sk, < 7 and the proof is complete.
As a consequence of Theorem 2.1, we have the following necessary condition
for the existence of a nonregular Borel extension of u x v.

THEOREM 2.2. Suppose some nonregular Borel measure on X x Y extends
u x v. Then there exists a compact set K in X x Y such that u x v,(K) = 0and
a Borel measure A on X x Y such that \(H — K) > 0ifH € B(X) x B(Y)and H
contains K.

Proof. Let K be the compact set and A the Borel measure given in Theorem
2.1. Suppose H € B(X) x B(Y) and H contains K. If = is the Borel measure
described in Theorem 2.1, then

n((X x Y) — H) = u x v* (empty set) =0

and n(K) = 0. Then A((X x Y) — H) = 0 and A(K) = 0 since 4|, < 7. Neces-
sarily, A(H — K) > 0 since 4 is nonzero.

Recall that a cardinal number is said to be measurable if there exists a set Z
with that cardinality and a finite, nonzero, countably additive measure on the
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class of all subsets of Z such that each singleton has measure zero. If such a
cardinal exists, it is greater than the first uncountable cardinal w, [6,
pp. 141-143].

THEOREM 2.3.  Suppose K is a compact set in X x Y such that u x v (K) =0,
and suppose 4 is a Borel measure on X x Y such that A(H — K) > 0 whenever
H e B(X) x B(Y)and H contains K. In other words, suppose K and A satisfy the
conclusion of Theorem 2.2. If H is a set in B(X) x B(Y) such that K < H, then
H — K cannot be expressed as a disjoint union of sets {U};.; such that each U
is an open F, in H unless the cardinality of I is a measurable cardinal.

Proof. Suppose H € B(X) x B(Y), where K <« H and H — K is a disjoint
union of sets {U,}; ., such that each U, is an open Fin H. Since 4 is finite, only
countably many of the U;’s have positive A-measure. By subtracting such U/s
from H, we may assume without loss of generality that each U, has zero
A-measure. Since each union of Us is open in H, each union of U/s is a Borel
setin X x Y.If Z is a set with the same cardinality as I, then there is a natural
correspondence between the class of all unions of the U;’s and the class of all
subsets of Z. Since A(H — K) > 0 and A(U;) = 0 for each i € I, the measure A
induces a finite, nonzero, countably additive measure on the class of all subsets
of Z such that each singleton has measure zero. Hence, the cardinality of I is
measurable in this case.

Theorems 2.2 and 2.3 can be combined to give the following conditions
under which u ® v is the only extension of u x v to a Borel measure on X x Y.

COROLLARY. Suppose for each compact set K in X x Y there exists a super-
set H € B(X) x B(Y) and a disjoint collection of sets {U,}; ., such that

(1) U;isanopen F,in H for eachiin I,
Q) H-K=u{U;:iel}and
(3) cardinality of I is not a measurable cardinal.

Then u ® v is the only extension of u x v to a Borel measure on X x Y.

The conditions given in the corollary may at first seem contrived and un-
likely to occur in practice. Let us therefore look at an example where these
conditions are satisfied. Let X = [ —1, 1) with the smallest topology containing
sets of the form [ —b, b) or X — [—b, b), where 0 < b < 1. Then X is a compact
Hausdorff space and B(X) x B(X) is properly contained in B(X x X) [5,
pp. 172-173]. If K is any compact set in X x X, let

H=K u{(xy):(—x,y) €K}

It can be seen that H is a compact G; containing K and that each vertical
cross-section of H — K is an open F, in H. Thatis, (H — K) n ({x} x Y)is an
open F_ in H for each x in X.
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Under the assumption that ¢ is not a measurable cardinal, we can thus
express H — K as a disjoint union of sets {U};., such that each U; is an open
F, in H and such that the cardinality of I is not a measurable cardinal. Hence, if
wand v are (necessarily regular) Borel measures on X, then u x v has only one
extension to a Borel measure on X x X.

The referee has observed that if the set H in the preceding corollary is
compact, then H — K is weakly O-refinable. In other words, each open cover of
H — K can be refined by a sequence of families ¥(n) of open sets such that if
x € H — K, then there exists n(x) such that x is in some member of V(n(x)) and
only in a finite number of members of V(n(x)). Of course, the members of each
V(n) can be arranged to be contained in one of the U;’s of the corollary. By the
reasoning of [3, Theorem 3.9], each locally zero Borel measure on H — K is 0
on H — K. Now choose a set M in B(X) x B(Y) such that K « M < H and
such that y ® v(M — K) = 0. If p is an extension of i x v to a Borel measure,
than p,, is locally zero on M — K. Hence p(M — K) =0 so that p(K) =p ®
v(K). These ideas lead to the following strengthening of the corollary to
Theorem 2.3.

THEOREM 2.4.  Suppose for each compact set K in X x Y there exists a superset
H e B(X) x B(Y) such that H — K is weakly O-refinable and such that the
cardinality of each discrete subspace of H — K is not a measurable cardinal. Then
U ® v is the only extension of u x v to a Borel measure on X x Y.

3. Sufficient conditions for a nonregular Borel extension of u x v

THEOREM 3.1.  Suppose K is a compact setin X x Y such that u x v (K) =0
and p x v¥(K) > 0. Let S(K) be the smallest a-algebra of subsets of X x Y
containing B(X) x B(Y) and K. Let m be that unique measure on S(K) such that
n(K) =0 and such that n(H) = p x v¥(H n K) if H € B(X) x B(Y). If there
exists a nonzero Borel measure A on X x Y such that 4|5k, < 7, then p x v can be
extended to a nonregular Borel measure on X x Y.

Proof. Suppose A is a nonzero Borel measure on X x Y such that
sy <m. If FeB(X)x B(Y) and pu x v(F) =0, clearly n(F) =0 so that
A(F) = 0. Hence, A |gx) « pary < 1t X v. Choose a set G in B(X) x B(Y) such that
K = G and such that pu x v¥(K) = pu x v(G). Then n(X x Y — G) = u x v*
(empty set) = 0, so that A(X x Y — G) = 0. Hence, A(G) > O since 4 is nonzero.
Since n(K) = 0 and since 4|4, < 7, we have 4(K) = 0. Hence, (G — K) > 0.
However, 1 ® v(G — K) =0, so that 1 is not absolutely continuous with re-
spect to 4 ® v. From Theorem 1.1, we see that u x v can be extended to a
nonregular Borel measure on X x Y.

Under what conditions can there exist a nonzero Borel measure Aon X x Y
such that 4|, < 7, where S(K) and = are the g-algebra and measure given in
Theorem 3.1? If n can be extended to a Borel measure on X x Y, then that
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extension will serve as the measure A. Such an extension is possible for
example, if the domain of completion of n includes the Borel sets of X x Y.
More generally, we have the conditions of the following theorem:

THEOREM 3.2. Let 7t be the measure described in Theorem 3.1. Let n° be the
smallest (countably additive) measure on B(X x Y) such that n*(E) < n%(E) for
all Borel sets E in X x Y. If 0 < n®(D) < oo for some Borel set D, then there
exists a nonzero Borel measure A on X x Y such that A|sy, < n. Hence, pn x v
can be extended to a nonregular Borel measure on X x Y in this case.

Proof. Of course, n° |4, < n. Now suppose 0 < n°(D) < oo for some Borel
set D. Let A = ). That is, A(E) = n°(D n E) for all E in B(X x Y). Then 4 is
a nonzero Borel measure on X x Y such that A5y, < =
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