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NOTE ON HIGHER TORSION IN THE HOMOTOPY
GROUPS OF SINGLE SUSPENSIONS

BY

F. R. COHEN, J. C. MOORE AND J. A. NEISENDORFER

O. Introduction

In a previous paper [2] we showed that higher torsion exists in the homotopy
groups of a Moore space. More precisely, we showed that, if p is a prime greater
than 3 and m >_ 4, the homotopy groups of the Moore space S ,, em,
denoted by pm(p,,), contain infinitely many Z/pr/lZ summands. Since Moore
spaces are universal examples for homotopy groups with coefficients, this result
gave as an easy corollary the existence of infinitely many summands of higher
torsion in the homotopy groups of many double suspensions E2X. The restric-
tion to double suspensions was made solely for the technical reason that
H,(fE2X; Z/pZ) is a primitively generated Hopf algebra while
H,(flEX; Z/pZ) may not be. The restriction to primes greater than 3 was made
for the reason that Samelson products do not make the mod 3 homotopy
Bockstein spectral sequence into a spectral sequence of Lie algebras.

In the present note we show that our result on higher torsion remains true if
a double suspension is replaced by the single suspension EX of a simply con-
nected space X which has a suitable vanishing condition on two cohomology
products. The method of proof is that of[2, Theorem 14.1] with the addition of
a little information on primitive generation of certain auxiliary Hopf algebras.

Samelson products give the mod 3 homotopy Bockstein spectral sequence E
an anti-symmetric bilinear pairing. Since the writing of [2], we have observed
that the Jacobi identity is valid if r > 1. This means that the results of [2] on
higher torsion of order p’/l are valid if p 3 and r > 1. Accordingly, we
include 3-primary information in the theorem of this note. The result on the
mod 3 homotopy Bockstein spectral sequence will appear in [4]. While we do
not discuss it here, this implies that the methods in [2] suffice for the construc-
tion of a map t: ’2s2n+ ._ S2n of spaces localized at 3 and n > so that the
composition

7.,2. s2n _. ,-2s2n+ s2n

has degree 9.
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1. Statement of the theorem

Throughout this paper let p be an odd prime and let X be a simply connected
space with g,(X)(p)and H,(X)(p)of finite type.
Denote by E(X), E%(X), and E(X) the mod p homotopy, homology, and

cohomology Bockstein spectral sequences of X, respectively. The Bockstein
differentials are denoted by fit,), fit,), and fit,), respectively. There is a Hurewicz
map

U(): E(X) H(X)
and a dual pairing ( ): Eft(X) (R) E]I(X Z/pZ. Both of these are compa-
tible with the differentials [1], [2], [4].
Our first hypothesis is the following.

Hypothesis 1. Let e generate a Z/ffZ summand in 7b._ 1(2) with tn _> 4,
r > 0, and suppose that the Hurewicz image b(e) generates a Z/ffZ summand
in H,,-1 (X).

If e" S __, X is a homotopy class as above, then e has an extension to a
homotopy class 6" P"(ff)- X in ,,(X; Z/ffZ). Let/ be the image of e under
the mod p reduction map

(x) (x; z/pz)

and let v be the image of 6 under the mod p reduction map

z/e z) z/pz).

Then/ and v survive to nonzero elements in the rth term E(X)of the mod p
homotopy Bockstein spectral sequence and

Similar remarks apply to generators of Z/ffZ summands in H,(X). Let u and
v denote the Hurewicz images b(/) and q(v), respectively. It follows that u and
v survive to nonzero elements in the rth term U,(X) of the mod p homology
Bockstein spectral sequence and fl(r)v U.

Choose classes u* and v* in the rth term E/(X) of the mod p cohomology
Bockstein spectral sequence such that (u*, u) and v* flt,)u*. Note that
(v*, v) 1)deg ,.
Our second hypothesis is the following.

Hypothesis 2. The elements u* and v* can be chosen so that in the rth term
of the cohomology Bockstein spectral sequence

and
(u,)p (u,)P-1/)* 0

if m is even,

if m is odd.

THEOREM. Suppose there is an element oforder p" in zm_ 1(X) which satisfies
Hypothesis and 2 above. Ifp is equal to 3, require either that r > or restrict to
k in the conclusion below.



(1)
(2)
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If m is even, rpk,,_ I(:EX) contains a Z/pr+XZ summand for each k >_ 1.

If m is odd, rczvm-I(EX) contains a Z/pr+IZ summand for each k >_ 1.

2. Proof of the theorem

If x is an even degree element in a differential Lie algebra over Z/pZ, then, for
k >_ 1, the elements zk(x and ak(x)are defined as in [2] by

and

1
j)[adj-’(x)(dx), advk ’(x)(dx)],} p- (j,

where ad (x)(y) [x, y] and ad"+ (x)(y) ad (x)ad"(x)(y). Recall that
dr(x) da(x) 0 by [2, Corollary 4.6].

If p is a prime greater than 3, the mod p homotopy Bockstein spectral
sequence Er(f2YX) is a spectral sequence of Lie algebras [2], [4]. Hence,
/)(x) /)a(x)= 0 for even degree elements x in E(f22X).

If p equals 3 and r > 1, the Samelson product on Er(f2EX) is an anti-symme-
tric bilinear pairing which satisfies the Jacobi identity [4]. The other identity for
a Lie algebra, [y, [y, y]] 0 for odd degree y, is not needed in the proof of
dk(x) 0 for even degree x. Hence, r)(X) 0 for even degree elements x in
Er(f22X) with p 3 and r > 1.

If p equals 3 and r 1, the Samelson product is an anti-symmetric bilinear
pairing on E(DYX) (= r.(fZ;X; Z/3Z)) which satisfies the Jacobi identity
provided that any one of the three elements involved is the reduction of an
integral homotopy class. Since //t)x is the reduction of an integral class, a
simple computation gives that //t):(x)=0 for even degree elements x in
EI(’]X) mod 3.
The statements of the above three paragraphs are also valid for the relative

Samelson products used in [2]. Hence, if we impose the appropriate restrictions
on r and k when p equals 3, we can use some results from [2] which are stated
only for primes greater than 3.
The natural map X -, f2X induces a map E(X)--, E(f22X)and we denote

by /’ and v’ the respective images of / and v under this map. Note that

Suppose that the degree m of v’ is even. Then /()z(v’)= 0, so that :(v’)
survives to Er+ l(f21;X). We claim that /tr+ ):(V’):/: 0. If SO, then standard
properties of the Bockstein spectral sequence imply that rv,,_ 2(f21;X) contains
a Z/p+IZ summand, which is equivalent to the theorem.

If m were odd, a similar argument with zk([v’, v’]) replacing z(v’) would prove
the theorem. Hence, for the remainder of this proof, we will assume that m is
even.
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Recall that X YX induces an injection E(X) E,,(fZX)and E(fZX)
is the enveloping algebra of the differential coalgebra E(X). That is, E(fZX)
is the Hopf algebra which is the differential tensor algebra T(E’n(X)) with
diagonal given on generators by the diagonal of E(X). We will identify E(X)
with its image in E,t(fZX).
The image of the Hurewicz map is primitive. Hence, we may write

U(b): E(fZX)-, PE(fZX). This is a map of differential Lie algebras, where
PE]r(fZX) is given the usual Lie bracket defined by [z, w]= zw-
(- 1)degz d2WZ. Consider the induced homology map HU(b): E/ (fZX)
HPE(fZX). By [2, Corollary 10.5], HU(ck)(fltr+l’Zk(V’))is the homology class
of 2ak(V), where 2 4:0. If ak(V)represents a nonzero homology class in
HPE(fZX), then we are done. If E(X) were a coalgebra with a trivial diag-
onal, then [2, Corollary 4.11] asserts that ak(V) represents a nonzero class. We
shall show that there is a differential Hopf algebra morphism 9" E(fZX)-
T(V) where H, V- 0, V has a trivial diagonal, and 9v 4:0 4: 9u. Then [2,
Corollary 4.11], applied to T(V), finishes the proof.

Let S be the free commutative differential Z/pZ algebra generated by two
elements x and dx of degrees m and m, respectively. Let B be the quotient of
S by the ideal generated by (dx)p and (dx)p- ix. (If m were odd, the ideal would
be generated by xp and xp- dx.) Hypothesis 2 implies that there is a differen-
tial algebra morphism f" B - Et(X) such that f(x) u* and f(dx) ff)u*.
Passing to dual coalgebras gives a map f*: EI(X) B* and hence a map of
enveloping algebras f*: E]t(fZX) T(B*). The next lemma completes the
proof.

LEMMA. T(/*) is isomorphic to a differential tensor HopfalTebra T(V) where
V is primitive and H, V O.

Proof If A is a Z/pZ Hopf algebra with commutative multiplication, then
[3, Proposition 4.21] implies that PA QA is a monomorphism except in
degrees of the form 2pn with A 2, 4: 0. Since T(B*) has a commutative diagonal,
QT(*) - B*, and B,* 0 if n < m- or n >_ p(m- 1), the dual statement
implies that PT(B*) QT(B*) is an epimorphism.

Since HQT(B*)= 0, QT(B*)is a projective in the category of differential
vector spaces and differential morphisms. Hence, the map PT(B*)--, QT(B*)
has a right inverse 9 and we take V the image of 9. |

Remark. The proof remains valid if v’ and p’ are replaced by any nonzero
pair of elements 7 and d7 in the free differential Lie algebra generated by v’ and
#’= fl)v’. See [2, Theorem 14.3] for details. Hence, one gets infinitely many
more Z/ff+IZ summands in t,(EX), even if p 3 and r 1.
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