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O. Introduction

In control theory the comparison between attainable sets obtained through
different solutions has been widely studied. The same problem, for multivalued
differential equations on R", was intrqduced by Lobry [5]. In his paper he
showed that if F is a locally Lipschitz multivalued function with the property of
Lipschitz selection, then the closure of the attainable set by piecewise smooth
solutions coincides with the closure of the attainable set using absolutely con-
tinuous solutions.

In general, the Lipschitz continuity of F with respect to the Hausdorff dist-
ance does not imply the Lipschitz selection property. In [9] it can be seen that
this property, for multivalued, convex, compact, non-empty functions is a con-
sequence of the Lipschitz continuity with respe_ct to a suitable definition of
distance.

As in most applications, the natural environment for a multivalued differen-
tial equation is a manifold M, and, in particular, a Lie group G, and it seems
natural in this environment to introduce a qualitative study of such functions.
To this aim we shall study the properties of a multivalued field, that is, of a
function F: M UxeM (2TxM\{o}) such that F(x) Tx M. As JM (2T’M\{0})
cannot be endowed with a reasonable vector bundle structure, we limit our-
selves to the case where

F(x) C(TxM {A TM, convex, compact, non-empty}.

In this case we can embed C(T, M)in the normed space (TxM) [9]. In general,
with the natural projection on M, 9(TM)= ,M 9(TM)does not admit a
natural (not even C) vector bundle structure. However, we can still give a
Lipschitz continuity definition for F which depends only upon the differential
structure of M. We can therefore extend in a natural way the results of [5].
Moreover, in the case of a Lie group G, we show that the set 9(TG) can be
endowed with C vector bundle structures, i(TG), with i=0,
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MULTIVALUED DIFFERENTIAL EQUATIONS 561

n dim G. Therefore, we prove that the multivalued fields F, which are Lip-
schitz sections of ,(TG), have the Lipschitz selection property, and that they
are also the convex hull of extremal selections.

Finally, we present examples of applications of our results to control theory.
In particular, we show that the attained results apply to the case of control
problems linear in the control.

1. Convex sets in n-Euclidean vector spaces

In the sequel (E, .) and (F, ") will be Euclidean vector spaces of dimension n
and m respectively. Hom (E, F) will denote the space of linear maps from E to
F with the usual norm given by Ilfll supll =x f(x)ll. The i-tuple oforthon-
ormal vectors in E is denoted by i(E), or by fi if there is no confusion. The
collection of convex, compact, non-empty sets of E will be denoted by C(E), or
by (9. If A (9(E), the support function of A is defined by q(A; x)=
max, A a x for each x E. If A (9(E), for each 1,..., n, the/-face func-
tion is unductively defined by

Va(A; x) {a A’a. x q(A; x)}

V//(A; x Xi)-- VI(V/_ I(A; X1, Xi_l) Xi)

for each x e E,

for each (xl, xi) Ei.

It is known that the support function is sub-additive and positively homogen-
eous and that the 1-face multifunction has the property VI(A; rx)= V(A; x)
for each r e R +. It is also known that the Hausdorff distance can be defined in
(9(E) by

h(A, B) max ]q(A; x) q(B; x)].
X6fll

In [9] it is proved that, for each i= n, hi. (9(E) x (9(E)--, R defined by

hi(A, B)= sup h(V/(A; X1, Xi) Vii(B; Xl, Xi)
(xl xi) i

is a translation invariant distance and also h < h <... < h". In [9] it is also
proved that ((9, hi) can be embedded in a natural way in a normed vector space
i defined as follows" i (9 x (9/p where p is given by (A, B)p(C, D) if and
only if A + D B + C, and [(A, B)lll - h (A, B). We recall here the vector
space operations

[(A, )] + [(C, O)] [(A + C, + O)1,

[(2A, 2B)] if 2 > 0,
2[(A, B)] [(-2B, -2A)] if2 < 0.

In the sequel the equivalence class [(A, B)] will be denoted by (A, B).
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LEMMA 1.1. Let {x,, xi) E be such that (x,, xi) :/:: (0,..., 0). Then
there exists an orthonormal set of vectors Yl, Yj in E such that

span {x,, xi} span {y,, yi}
and

V/(A; x,, xi)= V(A; y,, yj) for every A C.

Proof Ifx =0then V(A; Xl)= A. Let xk be the first vector different from
0 in (Xl, xi). Then Vk(A; x,, x)= VI(A; x)= VI(A; x/llxll)=
VI(A; y). The proof follows by induction, taking into account that, for all
A C and all x E, V(A; x)- V(A, x’), where x’ is the projection of x on
subspace parallel to the minimal affine sub-variety containing A. |

Iff belongs to Hom (E, F) we denote the transposed map offby f*; that is,
f(x). y =f*(y).x, for each x e E and y F.

LEMMA 1.2. For each f belonging to Horn (E, F) we have"

(i) q(f(A); y) q(A;f*(y)),for all A C(E) and all y F;

(ii) V(f(A); y,..., y,) =/(V(A; f*(y), ...,/*(Yi))),

for all A C(E)and all (y, Yi) Fi.

Proof (i) q(f(A); y)= max f(a)" y max a "f*(y)= q(A;f*(y)).
aA aA

(ii) VI(f(A); y) {f(a)’a A,f(A)" y q(f(A); y)}

=f{a A" a f*(y)= q(A;f*(y))}

f(VI(A;U*(y)).

By induction it is easy to see that V(f(A); y, y,)=f(v(a;f*(y),
f*(Yi))) for each/= 1, n. |

PROPOSITION 1.1. For every A, B C(E) and for each f Hom (E, F) we
have

h’(f(A),f(B)) <_ fllh(A, B), i= O, 1, m;j min (i, n).

Proof Taking into account Lemma 1.1, Lemma 1.2(ii)and using the
property h <_ hg+, we get

h(f(A),f(B)) max q(f(A); y) q(f(B); Y)
y 1 (F)

max Iq(A; x)- q(B;
1 (E)

--Ilfllh(A, n),
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and

PROPOSITION 1.2.
map

hi(f (A), f(B)) sup h(Vi(f(A); Y,, Yi),
(Y Yi fi(F)

M(f(B), y, y,)) _< IIf*ll sup h(Vi(A;f*(yl), ...,f*(Yi)),
(Yl Yi) 2i(F)

Vi(B; f*(Yi), f*(Yi))) <-IIfllh(h, B). !
COROLLARY 1.1. Let g and g’ be scalar products on E. Then the induced norms

i, and II I1’i are equivalent for each i= O, 1,..., n.

The proof follows applying the previous Proposition to the identity map.
I

Let f belong to Horn (E, F). For each O, 1 n, the

j: _i(E) )j(F), j min (i, m),

given by (A, B)-- (f(A), f(B)) is linear and continuous.

Proof. Asf(A + C) =f(A) +f(C), for each A, C (9(E), it follows thatfis
well defined and additive, f is clearly positively homogeneous. If 2 R-, then
we get

f(2(A, B)) f(-B, -2A) (-2f(B), -2f(A)) (f(A),f(B)).

Proposition 1.1 completes the proof. |

PROPOSITION 1.3. For every f, g Hom (E, F) andfor each A C(E) we get

h(A, 0).Ilf(A),g(A)10 < Ilf-g A o where A o=

Proof. If (f- g)*(x) 4 O, from the subadditivity of q, we have

q(f(A); x) q(g(A); x) q(A; f*(x)) q(A; g*(x))

_(__f_ )*()

II1- vii I1, Io,
and

q(f(A); x) q(g(A), x) q(A, f*(x)) q(A, g*(x)) > g -/I AIIo.
If (f-g)*(x)= 0 we get trivially q(f(A); x)- q(g(A); x)= O. Otherwise, we
obtain

If(A), g(A)]lo max ]q(f(A); x)- q(g(A); x)] _< Iio -/III111o, !
Xl
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PROPOSITION 1.4. If n >_ 2, the map Hom (E, E)-, Horn ( i(E), i(E)),
defined byf-is not continuous at anyfwhich is an isomorphism,for each 0,
1, n.

Proof Since h < h <.’.< h" it is sufficient to prove the statement for
i= 0. Let f, 9 e Hom (E, E)and let f be an isomorphism. We have ]If-
11 < Ilfll ]lid-(f-lg)~l]; therefore it is sufficient to show that the map
~" Horn (E, E) Horn (o, o) is not continuous at the identity map.
Let x, y be orthonormal vectors in E. For each e (0, r/2) we define

9" E E as the rotation by the angle e in span {x, y}, that is

9(z) z .x(x cos + y sin e) + z.y(-x sine + y cos )
+ z- (z’xx + z’yy).

We see that g tends to the identity map as e tends to zero. We want to calculate

II idlo sup Ilg(A) + B, g(B) + Allo.
(A,B)I1

For each r e R + let (A, B,) be defined by

Ar={ay’ae[O,r]}, Br={b(x+ry)’be[0, 1]}.
We get I(A, B)II o 1. Moreover if r cot g e, then g(B)= {(b/sin )y" b e

[0, 1]}. Therefore

A + 9(Br)= {cy’c e [0, (cos e + 1)/sin e]}.
On the other hand (x + ry) e B + g(A) and so

II(A / (B), B r- O.(A))llo > inf IIx + ry zll- 1,
A, + g.(Br)

Finally 9 -idll o _> for every e (0, t/2). This proves the statement. |

2. Multivalued vector fields on a manifold

Let M be a paracompact connected C n-dimensional manifold without
boundary. We denote the tangent bundle of M by r" TM M, and we denote
the tangent map of a mapfbyf,. Most of the following results are still valid in
the case of C manifolds, r >_ 2.

DEFINITION 2.1. A multivalued vector field (m.v.f.)on M is a map
2TxMF" M ) M \{0} such that F(x) c T M, for all x M. Let e and - be

C vector bundles on M. Let the pair of morphisms

and o" M M
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be a C vector bundle morphism, (see [4 p. 43]). We denote, for each x e M,
the induced map on the fiber by x: gx 0tx).

In the following, F(x) will be compact, convex, and, identifying F(x) with
(F(x), 0), one can assume that f takes its values on 9(TM)= ,M 9(TM).
Let {(Ui, zi)} be a trivialising covering for TM; that is, an open covering {Ui} of
m and a set {zi} of bijections "i: n- I(Ui) -- Ui x R" such that, for each x
the induced map on the fiber Zi, x: n- (x) R" is an isomorphism (see [4 p. 42]).
Denoting by/t: (TM)- M the projection defined by t: 9(TM)- x, a nat-
ural trivialising covering for (TM)would seem to be {(U/, i)}, where

is defined on each fiber by i,(A, B)= (Zi,x(A), Z i,x(B)), for each (A, B)e
(Tx M). For each pair (i, j) and x U, U) the map

is a linear isomorphism. But, since (R") is an infinite dimensional space, we
need also the condition that the map from U Uj to Hom ((Rn), (Rn)),
given by

is CP (see [4 p. 43]). Now, the previous map results from the composition

u, nom (R", R") nora ((R"), (R"))

given by x(vj i ) ). Since the map

-"Som (R", R") Som ((R"), (n"))

is not continuous at any isomorphism one cannol be sure that the previous
map is continuous, unless x (jo v-1), is constant for each pair (i, j).

But, even if TM is trivial, two different trivialisations can give different
topological structures on 9(TM), so it seems reasonable to consider 9(TM)as
a vector bundle only if a canonical trivialisation exists on TM, as in the case of
Lie groups. Nevertheless, the following proposition allows us to give a reason-
able definition of local Lipschitz continuity for an m.v.f.
We note that every map defined on TM induces a map on 9(TM). For

simplicity the two maps will be denoted by the same symbol.

PROPOSITION 2.1. Let z" TU - U x R" and t" TU --, U x R" be two local
trivialisations of TM. Let n2: U x R"--, R" be the canonical projection. If
n2 z F" U o(R") is a locally Lipschitz map, then n2 F" U - o(R") is
also a locally Lipschitz map.
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Proof Let z U, and let V c U be a compact neighborhood ofz such that
1.2 " F[ V is a Lipschitz map with respect to a distance in U induced by any
chart. Let ax z-x. R" R" be denoted by ?x. If x, y V, then

h(nzoo F(x),n oo F(y)) =h(xOrx’ o F(x),r r;x oF, F(y))

h(y o F(x), yro zro F(y))

h(7 o F(x), 7 Zx F(x))

+ h(7, z F(x), 7 r, V(y))

I- ,11 I1 Ftx)llo
+ II,llh( F(x), F(y)).

Since 2 F and x7 are continuous maps, there exist, max IIo F()llo and ma
xeV xeV

Then

hO( = F(x), F()) , I- 1 + h( Ftx), o F(y)).

The statement follows from Lipschitz continuity of 2 z F and of

The previous proposition implies that the following definition is coordinate
free.

DEFINITION 2.2. A multivalued vector field is said to be locally Lipschitz if
for each x e M there is an open neighborhood U, and a trivialisation
z" TU U x R" such that 2 T, F" U ---, o(Rn) is a locally Lipschitz map.

DEFINITION 2.3. Let x C c M. w TxM is said to be tangent to C in x if
w is tangent to any n-dimensional submanifold (possibly with boundary)
N c M, containing C.

(For the definitions of submanifold, boundary and related topics we follow [4
pages 25, 40]).

DEFINITION 2.4. A m.v.f. F is said to be tangent to the set C c M if for each
x C and w F(x), w is tangent to C in x.

In the case M R" the previous definitions are the same as those given by
Lobry in [5]. That is, let C c R" be a set; w e R" is tangent to C in x if w. v < 0,
for all outward normals v to C in x. (We recall that a unit vector v is an outward
normal to C in x if there exists r e R + such that
d(x + rv, C)-- infy c IIx + r Yll r).
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3. Attainable sets

DEFINITION 3.1. A solution of the equation / F, 7(0)= Xo e M, is an
absolutely continuous curve 7: [0, b) M such that (t) F(7(t)) a.e. and
(0) Xo.

In the sequel we need of the following Lobry Lemma [5].

LEMMA 3.1. Let F be a locally Lipschitz m.v.f, on Rn, and let C be a closed set.

If F is tangent to C, then every solution of j F, 7(0) Xo C, belongs to C.
The proof of the lemma follows by estimating the distance between 7(t) and

C and using the Gronwall Lemma. |

LEMMA 3.2. Let C c M be a closed set, and let F be a locally Lypschitz m.v.f.
tangent to C. Then every solution of / F, 7(0) Xo C, belongs to C.

Proof Suppose not. Then, possibly changing the initial point Xo, we can
assume that 7(t) q C for all > 0. Let q: U --, R" be a chart at Xo such that
4)(U) R". C’ q(C U) is a closed set. From Definition 2.2 it is easy to see
that F’ g2 (]), F (D-l: R R is tangent to C’. On the other hand

rt2 (b 7) rt2 qS, rt2o b,o F 7 F’ (b 7),

4 7(0) e C’, and 4 7(t) C’ for all > 0, a contradiction to Lemma 3.1.
I

LEMMA 3.3. Let i" N - M be an immersion [4 p. 25], and let F be a locally
Lipschitz m.vf tangent to S (that is F i(x) i, TxS for each x S). Then
every solution of / F, 7(0) xo i(S), belongs to i(S).

Proof Let x e N. There is a neighborhood V of x in N and a neighborhood
U of i(x) in M, such that i(V) is a closed set of U. On the other hand, FI is a
m.v.f, on U tangent to i(V,). The statement follows from Lemma 3.2 applied to
Fly and i(V,). |

In the following ,(Xo, T, F) will denote the set which is attainable at time
T > 0 by means of solutions of the equation /e F, 7(0) Xo, and ,’(Xo, F) will
denote j,l.>_ o ,’(Xo, T, F). If D is a family of Lipschitz vector fields locally
defined on M let

A(xo, T, D)= {x X, Xr(xo)" r N, Xi D, ti R
i=l

where (x, t)--, Xi(x) denotes the one parameter local group generated by the
vector field X’. Moreover let A(xo, D)= ’r>_o A(xo, T, D).

DEFINITION 3.2 (see [5]). A m.v.f. F is said to have the Lipschitz (Cl) selec-
tion property if, for each x e M and for each w F(x), there exists a Lipschitz
(C) local selection f of F such that f(x) w.
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LEMMA 3.4. Let F be a locally Lipschitz m.v.f. If there is a family D of local
Lipschitz selections such that co D(x) F(x)for each x M, then F is tangent to
cl A(xo, D).

Proof Suppose there exists x ecl A(xo, D), an n-dimensional submani-
fold with boundary N cl A(xo, D) and a w F(x)such that w TN. Since
co D(x) F(x), there is a 3 D such that 3(x) q TN. Now, x must belong to
t3N, so N (M N) w N is a n-submanifold with boundary and 3(x) belongs
to the interior of TN . So there is a > 0 such that 3,(x) belongs to the interior
of N1. Let V be an open set such that 3,(x) V int N1. We have that 3_,(V)
is an open neighborhood of x 3_, 3,(x). Then there is z 3-,(V)
A(xo, D) and we get

s,(z) v O)).
Since 3,(A(Xo, D)) A(xo, D), then 3,(z) V c A(xo, D), a contradiction be-
cause A(xo, D) N and V int N.

THEOREM 3.1. Let F be as in Lemma 3.4; then cl A(xo, D) cl (Xo, F).

Proof The proof follows from Lemma 3.2 and 3.4. |

COROLLARY 3.1. Let F be as in Lemma 3.1. Then cl A(xo, T, D) cl s/’(x o,

T, F) for all T > 0.

Proof The proof follows from Theorem 3.1 applied to the m.v.f. F: M x
R ---, TM x (R x R) defined by F(x, t)= (F(x), (t, 1)).

THEOREM 3.2. Let F be a locally Lipschitz m.v.f, and let D be afamily oflocal
Lipschitz vector fields such that F(x)=co D(x) for each x M. If
id: A(xo, D) M is a C immersion, >_ 1, then A(xo, D)= (Xo, F).

Proof Since id: A(xo, D) M is an immersion, we easily get F tangent to
A(xo, D). The theorem follows by applying Lemma 3.3. |

COROLLARY 3.2. Let F and D be as in Theorem 3.2. IfD is a symmetricfamily
of C, > l, vector fields, then A(xo, D)= ,N’(xo, F).

Proof The proof follows from Theorem 3.2, taking into account that in
such a case A(xo, D)is a C immersion (see [11]). |

COROLLARY 3.3. Let F be a locally Lipschitz m.vf. with the C, > 1, selection
property such that the null vector of T M belongs to the interior of F(x) relative
to the minimal linear subvariety ofTxM containing F(x). IfD denotes the set ofall
local C selections, then A(xo, D)- sc/(xo, F).

Proof From the hypothesis it follows that for each 3 e -D and each
x M, there is e > 0, a neighborhood U of x, and r/e D, such that 3 er/on U.
So it is easy to see that A(xo, D)= A(xo, D w {-D}). Now Corollary 3.2 can
be applied. |
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The following propositions give some examples of classes of locally Lipschitz
m.v.f, with the Lipschitz selection property.

PROPOSITION 3.1. Let A (ff(Rm) and let f: M --, Hom (M x Rm, TM) be a
locally Lipschitz (Ct) section. Then the m.vf F defined by F(x)=f(x)(A) is

locally Lipschitz.

Proof Let x e M and let 4" U U’ be a chart in x. If y, z U’, then, from
Proposition 1.3,

h(b,,yo F - l(y), ,,z F b- X(z))
<_ ,,x f(b-l(y)) b,,z f(-l(z)) IIAllo-

The proof follows because fisa locally Lipschitz map and 4), 4), are C maps.

PROPOSITION 3.2. Let A be an index set and let 3," M - TM be a locally
Lipschitz (C) vector field for each u A. The m.vf F defined by F(x)=
cl co {3,(x)" u A} is locally Lipschitz continuous if the followin9 conditions are

satisfied"
(i) {3,(x)" u A} is bounded for each x M.
(ii) For every x e M there exists a chart c])" U U’ at x, and k R + such

that k is a Lipschitz constant for every map 2 (]), u dD-1, u A.

Proof Let x, 4) be as in (ii). For every y, z U’ we have

h(r2 4), F b-l(y), nzo q,o F -l(z))
h(b,,y(cl co {3,(4)-l(y))’u A}), b,,z(cl co {j,(b-l(z))’u A}))
h(co 4),,,{3,(- l(y))" u 6 A}, co b,,z{3,(q-l(z))’u A})

<_ h(qS,,,{3,(q5 l(y))" u a}, qS,,z{3u(qS-’(z))’u a}.
On the other hand we have

sup inf 05,,yo 3,(4)- l(y)) 05,,o 3v(4)- l(z))
uA vA

_< sup 4),,yo J,(4)- l(y)) 4),, 3,(4- I(Z)) < k y Z

and

sup inf 114),. j,(4)--1(2)) (),.y v((-l(y)) < lly zll. I
ueA yeA

4. Further results on Lie groups

Let G be an n-dimensional C Lie group; that is an n-dimensional C
manifold G with a group structure such that the group and the inverse opera-
tions are C maps. We denote the group operation by (x, y)---, xy. Then, for
each x G, the left translation :x: G G, given by zX(y) xy, is a C map. Let
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e be the unit element of G. It is known that we can obtain a trivialisation of TG
by the vector bundle isomorphism .Y-: G Te G TG defined by Y-(x, v)-
r,(v). A vector field 3 over G is called left invariant if r 3 3 ’, for all
x G. We denote by 1G the Lie algebra of G; that is, the set of all left invariant
vector fields on G with the usual addition and bracket operation. Now, for each
v T G, let -v: G TG be the map defined by --v(x)= -(x, v). The map
v--,- is a vector space isomorphism from TG into lG. Let 9 be a left invariant
riemanian structure on G; that is,

(*) r/(x) 3(x)= r/(e) 3(e) for x e G, r/, j lG.

We observe that every metric structure on TeG induces such a riemanian
structure on G. Let

Note 4.1. Let x G; every element u TxG can be extended to an element
yx-of lG by 3(Y) z, (u). Therefore any orthonormal i-tuple in TG can be

extended to an element of fi because of (*).

LEMMA 4.1. Let A belong to C(Te G) and let x G. Then

(i) q(r,(A); 3(x)) q(A, 3(e)), for all 3 )1, and
(ii) V/(z(A); og(x)) (V/(A; og(e))),for all 09 f,, 1, n.

Proof.
(i) q(r,(A); 3(x))= sup r(a) 3(x)

aeA

sup a" 3(e) q(A; 3(e)).
aA

(ii) VI(r,(A); 3(x))= {a, r(A)" a, "3(x)= q(r(A), 3(x))}

{z,(a)" a A, r,(a)" 3(x)= q(A; 3(e))}

r,(V, (A; 3(e))).
The proof is completed by induction. |

The following proposition allows us to give a natural definition of differen-
tiability for m.v.f, on a Lie group.

PROPOSITION 4.1. For each 0, 1,..., n, the map

-," G x ,(T G) ,(TG) 9,(T G),

defined by

.’i(X, (A, U))= (z,(A), z,(B)) for x G, (A, B) gi(T G),
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defines a unique structure of trivial vector bundle i" gi(TG) G. Moreover

-. ,(T G) ,(Tx G)
is an isometry.

Proof
that -O,x is an isometry. In fact, if (A, B) belongs to o(T G)we have

1l(*2(a), v(u))llo sup Iq(z(A)); v(x)- q(z:(B); v(x))

sup [q(A; v(e))- q(B; v(e))]

(A, s)Io.
In an analogous way we obtain the statement for 1,..., n.

The proof of the first part follows easily from [4 p. 43]. We prove

From Proposition 4.1, if A e (9(T, G)is identified with (A, 0) 9(Tx G), then
m.v.f. F is a section of the C vector bundle/i(TG) -+ G, 0, n. If such
a section is of class C (locally Lipschitz) we say that F belongs to CI (i-
Lipschitz). Since h < h < < h", it is obvious that F e C implies F Co In
particular, if F Cti, > 1, F is a locally Lipschitz m.v.f, as in Definition 2.2.

PROPOSITION 4.2. The following maps are C vector bundle morphisms"

(i) For all j "1, qs" o(TG) G x R given by

(A, B)- (x; q(A; 3(x)) q(B; 3(x))) for (a, B) e o(Tx G).

(ii) For all,i= 1,...,n- l, I/" (TG)-+o(TG)ienby

(A, B)- (V(A; co(x)), V(B; co(x))) for (A, B)+ gi(TxG).

(iii) For all co f,, v" 9,(TG) TG given by

(A, B)- V.(A; co(x))- V,(B; co(x)) for (A, B)

Proof (i) It is sufficient to show that qstx)" o(TxG)--+ R is a continuous
linear map, and that the map from G to Hom (o(TeG), R) defined by

is C [4 44]. For linearity and continuity of qo,) see [9].x q ix)
,,

O,x P.
Moreover from Lemma 4.1 we have

q(,) ffO,x(a, B) q(,)(z,(a), z,(B)( q(e)(a, B),
is thefor each x G and (A, B) &o(TG). Then the map x --* q3(x) 0’ o,x

constant map x- q3(e)"
(ii) For linearity and continuity of V,,(x)" ((Tx G)--, (9o(Tx G)see [9]. More-

over, from Lemma 4.1 we have -lo,x V,(x) ,,(A, B)= V,,(e)(A,B), for
each x e G and (A, B) ((Te G).

(iii) This can be shown by an analogous procedure. I
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PROPOSITION 4.3. If F belongs to C1, (n-Lipschitz), then F has the C
(Lipschitz) selection property.

Proof Let Ext F(x) be the set of extremal points of F(x) [12 p. 87]. F(x)
co Ext F(x). So, for u F(x), u Z=, 2ib,, bi Ext F(x). For each i, there
exists a orthonormal base fli of T, G, such that b V,(F(x); if)[8], [9]. For any
such a base if, let co f, be such that fli coi(x). The field

f= Z=, 2i vo,, F" G - TG is a C (Lipschitz) selection such that f(x) u.

COROLLARY 4.1. Let F be n-Lipschitz. IfD {v, F: co f,}, then

clA(xo, D)=clC(xo, F) and clA(x0, T,D)=cl(x0, T,F)

for each xo G and T R +.
The proof follows from Theorem 3.1 and Corollary 3.1, taking Proposition

4.3 into account. |

COROLLARY 4.2. Let F C,, >_ 1, and let F(x) be symmetricfor each x G.
If D is defined as in Corollary 4.1 then A(xo, D) /(X0, F) Mx0 for each
Xo G, where id: Mxo G is a C immersion.

Proof By Corollary 3.2 it is sufficient to prove that D is symmetric. In fact
for each A C(T G), and for each va, v, e T, G, we have

V,(A v v,) V,( A Vl, v,).
So, since F(x)= -F(x), we have -v,oo F v_o,o F if co (1, ,) and

The following propositions give some examples of classes of n-Lipschitz
m.v.t’.

PROPOSITION 4.4. Let F(x) cl co {3,(x)" 3. lG}. A, where A is an index
set. If F(x) belonos to (Tx G)for each x G, then F is a C, m.vf

Proof We have 0-1 F(x)= (x, (zx.-1 F(x), 0)). Moreover,

x-’(cl co {3,(x)}. A)= cl co {3.(e)}, A

so o-- F is a constant map. |

PROPOSITION 4.5. Let A (9(Rm) be an r-convex set (that is a finite intersec-
tion ofr-balls). Letf: G Hom (G R", TG) be a locally Lipschitz section such
that rank f(x) nfor each x G. Then F" G (TG), defined by F(x) (f(x)
(A), 0), is an n-Lipschitz m.v.f.

Proof As rank f(x) n, then ker (f(x))* 0 for each x G. So since A is
a strictly convex set for each o (3,...) we have

V.(A; (f(x))*(co(x))) V (A; (f(x))*(3(x))).
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Then, taking Lemma 4.1 into account we get
_x- F(y))h (C.,x F(x), z.,,

sup (11 Z.,x U(x)[VI(A; (f(x))*(J(X)))- VI(A; (U(Y))*(3(Y)))]

.,, (/(y))*(J(y)))]ll).
Moreover, as A is r-convex, VI(A; .)" Q(Rm) R is a Lipschitz map with
Lipschitz constant r [7]. So VI(A; ")" R{0} R is locally Lipshitz. The proof
follows taking into account that f is Lipschitz and 3, z are C maps.

5. Applications

In the following, M will be as in Section 2 and G will be as in Section 4.

PROPOSITION 5.1. Let jr: M R"- TM be such that f(x, .)" R"--} TIM is

an affine map for each x M, and that f(’, u)" M - TM is a locally Lipschitz
vector field for each u R". Ifwe consider the control system 2(t) f(x(t), u(t)),
then, for each xo M and A C(R"), we have

cl s(Xo, M(A)) cl ,d(Xo, C(Ext A))
and

cl ,d(xo, T, M(A))= cl d(Xo, T, C(Ext A)),
where ,(Xo, M(A)) is the set attainablefrom Xo by means of the family M(A) of
measurable controls with values in A, and C(Ext A) is the set of piecewise con-
stant controls with values in Ext A.

Moreover, iff(’, u) is a C vector field for each u R", we 9et the fotlowin9
results"

(a) If, for each x M, the null vector of Tim belongs to the interior of
f (x, A), relative to the minimal linear variety of TIM containing f (x, A),
then

(xo, M(A))= d(xo, C(A))

(b) If, for each x M, f(x, O) 0 T M and A is a symmetric set, then

,(xo, M(A))= (xo, C(Ext A)).

Proof For the first part it is sufficient to apply Proposition 3.1, Theorem
3.1 and Corollary 3.1, noting that, from the above assumption, that f(x, u)=
f (x) + fz(x)(u) with fz(x) e Hom (R", T M). For (a) and (b) it is sufficient to
apply Corollaries 3.2 and 3.3.
We note that an explicit form of control system in Proposition 5.1 is

Z
i=1
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where u,(t)6 R and X (j O, 1 m) are Lipschitz vector fields on M.
Moreover, if X --0 and X (i- 1, m) are C vector fields on M, the
previous system satisfies condition (b).

PROPOSITION 5.2.
by B we 9et

and

Letfbe as in Proposition 5.1. Denotin9 the unit cube ofR

cl /(xo, M(Rm))= cl /(xo, C(Ext B))

cl (XO, T, M(Rm)) cl q[XO, T, U C(Ext .B)],
/

where M(Rm) is the set of measurable, essentially bounded control functions with
values in Rm. Moreover, iff(x, O)= Ofor all x M, and iff u)is a C vector

field for all u R", we 9et
z/(Xo, M(R’))= /(Xo, C(Ext B))

Proof Let B, nB and F.(x)=f(x, B.). By Proposition 5.1,

cl (Xo, M(B,))= cl ,(Xo, C(Ext B.)).
Since ,(Xo, C(Ext B,)= (Xo, C(Ext B)), we obtain

(Xo, M(R)) (Xo, M(B.)) cl ,(Xo, C(Ext B)).

In an analogous way we get

cl (xo, T, M(R))= cl (Xo, T, U. C(Ext nB)).
The second statement follows from Proposition 5.1(b).

PROPOSITION 5.3. Let A R be a compact set. Let f: M x A TM such
that

f(x, .): A TxM
is a continuous map for each x M, and the set of vector fields

{. =/(., .):. A}

satisfies condition (if) of Proposition 3.3. If we consider the control system
.(0)  he.

cl (Xo, M(A)) cl (xo, C(A))
aM

cl (xo, T, M(A))= cl (xo, T, C(A)).
Moreover suppose

(i) for every x M, the null vector of T M belongs to the interior off(x, A),
relative to the minil linear variety of TxM containin9 f (x, A), and

(if) for every u A, 3. is a C vector field.
rh . C(A)).
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Proof For the first part it is sufficient to apply Proposition 3.2, Theorem
3.1 and Corollary 3.1. For the second part it is sufficient to apply Theorem
3.2. |

PROPOSITION 5.4. Let fo be a C, >>_ 1, vector field on G. Let A R" be a

compact set. Let f: G x A TG. be such that f(x, ")" A T,G is a continuous
map andf(., u) is a left invariant vector field on Gfor each u A. Ifwe consider
the control system

5c(t) fo(x(t)) + f(x(t), u(t)),
then we obtain the same results as in Proposition 5.3.
The proof follows as in Proposition 5.3, taking Proposition 4.4 into

account. |

REFERENCES

1. R. CONTI and R. M. BIANCHINI, Processi di controllo bilineari, Parte I, Ist. di Mat. U. Dini,
Univ. di Firenze, Internae Report 1976/77, n. 6.

2. R. M. HIRSCHORN, Controllability ofnonlinear systems, J. Differential Equations, vol. 19 (1975),
pp. 46-61.

3..V. JURDIJEVIC and H. J. SUSSMAN, Control Systems on Lie 9roup, J. Differential Equations,
vol. 16 (1972), pp. 313-329.

4. S. LANG, Differential manifolds, Addison Wesley, Reading, Mass., 1972.
5. C. LOBRY, Sur l’ ensemble des points atteignables par le solutions cf une equation differentielle

multivoques, Publ. Math. Univ. Bordeaux, vol. (1973), pp. 43-60.
6. , Bases mathematiques de la theorie des systbmes asservis non linb.aires, U.E.R. de Math-

6matiqu6s e informatique, Bordeaux, 1976.
7. S. LOJASIEwICz, JR., The convexity of accessible sets in non linear control system, unpublished

paper.
8. C. OLECH, A note concernin9 extremal points of a convex set, Bull. Acad. Polon. Sci. S6r. Sci.

Math. Fis. Nat., vol. 13 (1965), pp. 347-352.
9. G. STEFANI and P. ZECCA, Properties of convex sets with applications to differential theory of

multivalued functions, Nonlinear Anal. Theory, Methods and Applications, vol. 2
(1978), pp. 583-595.

10. -, Multivalued vector fields and multivalued differential equations, Atti del Convegno
"Equadiff 78" Firenze 1978, pp. 458-470.

11. H. J. SUSSMAN, Orbits offamilies of vector fields and inteorability ofa distribution, Tran. Amer.
Math. Sot., vol. 180 (1973), pp. 171-187.

12. F. A. VALENTINE, Convex sets, McGraw-Hill, New York, 1964.

UNIVERSIT, DEGLI STUDI DI FIRENZE
FIRENZE, ITALY


