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COERCIVE INEQUALITIES FOR INDEFINITE FORMS
OVER NONSMOOTH PLANAR REGIONS

BY

JAMES M. NEWMAN

Introduction

In two previous papers [3], [4] the author derived sufficient conditions
for the coerciveness of certain integrodifferential forms over complex-valued
functions defined on certain regions in the plane; roughly, these regions
are allowed to have edges and corners, but not spikes. These and all other
results known to the author involving nonsmooth regions (except for Gtrding’s
inequality [2], where a maximum number of homogeneous boundary conditions
are assumed) required that the form be formally positive (semidefinite).
This paper extends some of these results to a wider class of forms, which
now are allowed to be algebraically indefinite.

In the first part of this paper a result is stated and proved for functions
defined on a sector and vanishing on its boundary; in the second part.a
result is stated, and the method of proof indicated, in the case of certain
types of bounded regions with nonsmooth boundaries.

1. Constant Coefficients and Sectors

DEFINITIONS. For n a positive integer, let a (a, c) be a multi-
index with Ic a + + ct. Set

Du(x) D Dnu(x) where Dju(x) (1/i)Ou/Oxj.

For m a non-negative integer and f a domain in Rn, we set

lul m IO’ u(x)12dx and Ilull -  lul .
Il=m p--0

Let C(I) be the set of all complex-valued functions defined and continuous
and of compact support in f, the closure of I, and infinitely differentiable
in f.

Let C0(f) be the subset of those functions in C(f) which vanish on
df, the boundary of I; Hm(-) the completion of C() in the
and Hm,l(’) the completion of C0,(fD in the IIm-norm.
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A vector in R2 will sometimes be designated by x (x, X2) and sometimes
by (x, y), as convenience dictates; we will likewise have two notations for
the integrodifferential form in the theorem.

THEOREM 1. Let l’l be a sector in R2, and let

Q[u]= aD-aDu

2malO xul / 2blOOyul + clO ul + dOuOxDyu
2 2 2 2+ dDDrDu + eDxuDru + eDruDxu

2 2+ fDxDyuDyu + fDyDxDru

where the coefficients indicated are all complex constants. Suppose

(1) Rea >0and

(2) 8 < Re b
2Rea

where d ( + d), e ( + e),f + A), and is the
smallest simple root of the cubic polynomial (in

(Re a +)detQ det d 2Reb-2
e + f Re

Then there exists K > 0 such that for all

(3) u K ffaRe Q[u]dxdy.

Remark. Consider the "diagonal" case d e f 0. If Re a > 0
and -/Re a Re c < Re b < 0, this furnishes an example of an algebraically
indefinite coercive form, since a short computation will show that (2) is
satisfied.

Remarks about proof. 1. Since every function in Hm,() may be ap-
proximated in the IIm-norm by functions in C,(), it will suffice to prove
the theorems for functions in C,(I).

2. In our proofs we shall assume that l is the first quadrant of the
(x, y)-plane. If f is any sector other than a half-plane, we can reduce the
proofs to the previous case by a nonsingular coordinate transformation. If
f is a half-plane, we can use a similar (but simpler) proof; this would be
a special case of the results of Figueiredo [1] for regions with smooth
boundaries.
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The following lemma is used in the proof; it is here that we make use
of the boundary condition on u.

LEMMA 1. Let l’ be the first quadrant in the (x, y)-plane, and let u be
a complex-valued function in C,(f). If we define

R[u] -DxuDyu DxDy’DxDyu

then

R[u]dxdy R[u]dxdy O.

Proof of Lemma 1. We use the identity

(4) R[u] Dx(Dx-aD2yu) Dy(Dx-aDxDyu).

(Details of proof are given in [3, p. 829].)

Proof of Theorem 1. Now suppose there exists a real constant such
that the Hermitian form

Q[u] Re Q[u] + R[u] + R[u]

is positive definite with respect to (D2u DxDyu 2Dru). If u C0,(), we
can then conclude from Lemma 1 that

ffo Re Q[u]dxdy ffo Q[u]dxdy

is a positive linear combination of

ff.lO xul dxdy, ffolo O ul axay, ff.lo ul axay.
This implies conclusion (3) of Theorem 1. Hence in order to prove Theorem
1 in the special case, it now suffices to show that hypotheses (1) and (2)
assure the existence of a real that makes Q[u] positive definite.
Q[u] is a Hermitian form with the following matrix:

(5)
DxDr-

O2xu OxOyu D2yu
Rea d +i

d 2 Re b 28 f
e+8 f Rec

We know that this form is positive definite if and only if the three principal
minors of the above matrix are all positive. We now check to see if we
can satisfy these conditions with an appropriate choice of



610 JAMES M. NEWMAN

(6) Re a > 0,
Idl(7) Re a(2 Re b 25) Idl > 0 if and only if < Re b

2 Re a’
(8) det Q > 0 where Q is the 3 x 3 matrix given in (5).

Since det Q is a cubic polynomial in 5 with real coefficients, and leading
term 23, a moment’s reflection will show that hypotheses (1) and (2) guarantee
the existence of the 8 specified in (7) and (8).

This concludes the proof of Theorem 1 for the first quadrant.

2. Variable Coefficients and Bounded Regions

DEFINITIONS. If l is a domain in R2, let CT’(I) be the class of all complex-
valued functions defined and continuous on , m times continuously dif-
ferentiable on f, and such that all derivatives of order less than t vanish
on 0f, the boundary of f.
Let fl be an open sector with vertex at x0, and let B be the open disk

of radius e about x0. We will say that a domain f* is of special type if it
is of the form fl N B.
Let f be a bounded domain in RE. We say that f is of class ps if every

point x0 of df has a neighborhood such that the closure of f3 fl can
be mapped homeomorphically onto the closure of a domain f* of special
type, with fq df mapped onto 9f1, and such that the map and its inverse
are s times continuously differentiable. (This class contains polygons as
well as domains of class CS.)

THEOREM 2. Let f be a domain of class p2, and let

Q[u] a(x)DDu
0<1/1<2

where the coefficients a(x) are complex-valuedfunctions ofx; the highest-
order coefficients (those for I/ 1 2) are continuous and all other
coefficients are bounded. Ifthe highest-order coefficients satisfy hypotheses
(1) and (2) of Theorem 1 for all x f, then there exists K > 0 such that

Indication ofproof. The proof uses Theorem and more-or-less standard
"patching" techniques. A sketch of such a proof is given in [4, p. 122].
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