SOME STRUCTURE THEOREMS FOR COMPLETE H-SURFACES IN HYPERBOLIC 3-SPACE \mathbb{H}^3

BEATE SEMMLER

1. Introduction

Let M be a properly embedded connected constant mean curvature surface (nonzero) in hyperbolic 3-space \mathbb{H}^3 with boundary a strictly convex curve C. We assume M is complete and C is contained in a geodesic plane P. Let \mathbb{H}^3_+ be one of the two half-spaces determined by P.

In [NR] it is shown that when M is compact and transverse to P along C, then M is entirely contained in a half-space of \mathbb{H}^3 determined by P. Then all the symmetries of C are also symmetries of M; in particular, M is spherical if C is a circle.

In Euclidean 3-space, some interesting results on complete noncompact *H*-surfaces are obtained in [RS.1]. Our main contribution is to extend this work to the hyperbolic case.

We study complete noncompact M of finite topology that are transverse to P along C.

In the first part of this paper, we further assume that M is contained in \mathbb{H}^3_+ . We will prove that if M is contained in a solid half-cylinder (i.e., the integral curves of the Killing vector field associated with the hyperbolic translation along a geodesic at a bounded distance from this geodesic) orthogonal to P of \mathbb{H}^3_+ outside of some compact set of \mathbb{H}^3 , then M inherits the symmetries of C.

Then we give a generalisation of this result; we allow M to have a finite number of cylindrically bounded ends orthogonal to P contained in \mathbb{H}^3_+ . In this case, M also inherits the symmetries of C. In particular, M is equal to a Delaunay surface when C is a circle.

In the second part of this paper, we give conditions that ensure M is contained in \mathbb{H}^3_+ when M is contained in \mathbb{H}^3_+ only near C and when the ends of M are annular ends orthogonal to P.

2. Symmetries of complete noncompact H-surfaces in a half-space of \mathbb{H}^3

Let P be a geodesic plane in hyperbolic space \mathbb{H}^3 and let \mathbb{H}^3_+ be one of the two half-spaces determined by P.

Received December 31, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 53A10, 53C42.

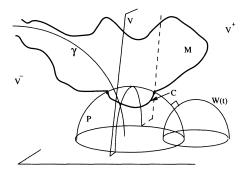


Figure 1

THEOREM 2.1. Let M be a properly embedded complete noncompact constant mean curvature surface of finite topology in \mathbb{H}^3 . Suppose $\partial M = C$ is a strictly convex curve in P, and M is transverse to P along C. If $M \subset \mathbb{H}^3_+$ and M is cylindrically bounded outside of some compact set of \mathbb{H}^3 , then M inherits the symmetries of C.

Remark 2.2. The hypothesis that M is contained in a solid half-cylinder Z, outside of some compact set, implies that M has mean curvature greater than one:

First, cylinders of hyperbolic radius R have mean curvature $H_Z = \coth(2R)$ and so $H_Z > 1$.

Second, the mean curvature of M is at least as big as the mean curvature of Z. The proof of this latter result is inspired by [RS.2]. The idea is to deform a compact annulus, say K, of height 4R of the half-cylinder Z (we choose K such that $\partial K \cap M$ is empty) along the one-parameter family of Delaunay surfaces with constant mean curvature H_Z that have maximum bulge at the height of ∂K . The family converges to one period of a chain of spheres, so there must be a Delaunay surface in the family that first makes one-sided tangential contact at an interior point of M. Hence the mean curvature of M is at least that of Z.

Remark 2.3. In [KKMS] it is proved that any noncompact properly embedded constant mean curvature surface of finite topology in \mathbb{H}^3 , which is cylindrically bounded and has a compact boundary, must approach a Delaunay surface exponentially at infinity. So our first theorem works for one-end surfaces.

Proof of Theorem 2.1. We will prove that M is invariant by reflection in every plane V that is a plane of symmetry of C. The idea is to show that M is almost invariant by reflection in ε -tilted planes from V, for every $\varepsilon > 0$.

Let γ be the geodesic orthogonal to P such that M stays in the solid half-cylinder about γ in \mathbb{H}^3_+ outside of some compact set. Denote $\gamma \cap P$ by q. The end has asymptotically the direction of γ .

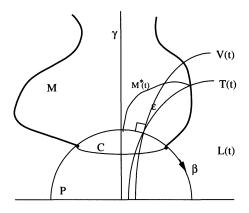


Figure 2

Now we will prove that γ must lie in V. Suppose, on the contrary, that γ is in one of the half-spaces determined by V, say V^- . Let W(t) be a family of planes in V^+ orthogonal to P along a geodesic in P such that W(0) = V. The part of M in V^+ is compact. For t large, W(t) is disjoint from M. We apply the Alexandrov reflection technique to M and the planes W(t) (we will explain this technique in more detail later). By increasing t, no accident will occur (i.e., the symmetry of an interior point of M will not touch C) before reaching t=0 and then, at the two points $C\cap W(0)$, the boundary maximum principle implies that M is invariant by reflection in V and therefore compact, which contradicts the assumption that γ is in V^- (Figure 1).

Let β be the geodesic in P orthogonal to $V \cap P$ at q. Let $\varepsilon > 0$ and let T be a plane that forms an angle ε with V at q and $T \cap P = V \cap P$. Since the end of M has asymptotically the direction of γ , one can translate T along γ (i.e., every geodesic uniquely determines a one-parameter group of hyperbolic translations) to a plane \tilde{T} so that C and the end of M are in distinct half-spaces of \mathbb{H}^3 determined by \tilde{T} . Let L be the half-space of $\mathbb{H}^3 \setminus \tilde{T}$ that contains C.

Let $D \subset P$ be the simply connected domain bounded by C. Notice that $M \cup D$ is a properly embedded submanifold of \mathbb{H}^3 (with corner along C) hence separates \mathbb{H}^3 into two components. Parametrize β so that $\beta(0) = q$ and for $\beta(t) \subset L$, t will be positive.

Let T(t) be the family of ε -tilted planes along $\beta(t)$, $0 \le t < \infty$, such that T(0) = T. For t large, T(t) is disjoint from M. We apply the Alexandrov reflection process to M and the planes T(t).

Let L(t) be the half-space of $\mathbb{H}^3 \setminus T(t)$ that contains $\beta(\tau)$ for τ larger than t. Let $M(t)^*$ denote the symmetry of $M \cap L(t)$ through T(t). Notice that the symmetry of $P \cap L(t)$ through T(t) intersects P only in $T(t) \cap P$ since T(t) is ε -tilted (Figure 2).

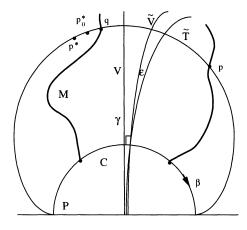


Figure 3

As the planes T(t) approach T, consider the first point of contact of $M(t)^*$ with M. This point cannot be the image of an interior point of M since this implies by the maximum principle that M is invariant by this tilted plane, which is impossible (the end of M is orthogonal to P).

Another possibility is that at the first contact point M is orthogonal to T(t). Then the boundary maximum principle implies that M is invariant by reflection in the tilted plane T(t), which is not possible. Therefore, the first point of contact must be the image of a point of C or there is no contact point until t=0. This is still true for ε as small as we want.

Now we will prove that M is invariant by reflection in V. Suppose, on the contrary, that M is not symmetric in V. Then there are points p,q on M such that the Killing segment [p,q] (i.e., the integral curve of the Killing vector field associated with the hyperbolic translation along β) joining p to q is orthogonal to V, p and q are on opposite sides of V, and d(p,V) > d(q,V). (Each orbit of the Killing field of β is invariant by symmetry in V.) Thus the symmetry p^* of p through V is on the other side of q, i.e., $[q,p] \subset [p^*,p]$ (Figure 3).

Now move V along β towards p to a plane \tilde{V} that is orthogonal to P, so that the symmetry p_0^* of p through \tilde{V} still satisfies $[q, p] \subset [p_0^*, p]$. If \tilde{V} is close to V, then this is always the case.

It follows that the symmetry of M through \tilde{V} (the side of M containing p) intersects M in more than just $M \cap \tilde{V}$, i.e., in interior points of $M \setminus \tilde{V}$. If \tilde{T} denotes the planes \tilde{V} tilted an angle ε at $\beta \cap \tilde{V}$, then for ε sufficiently small, the symmetry of M through \tilde{T} still intersects M in more than $M \cap \tilde{V}$. (\star) (There are two ways to tilt \tilde{V} . We do this so that the symmetry C^* of the shorter arc of $C \setminus \tilde{T}$ through \tilde{T} is in \mathbb{H}^3_+ and does not touch P.)

Now M is transverse to P along C, so for ε sufficiently small, C^* intersects M only at the endpoints of C^* ; i.e., $C^* \cap \tilde{T}$. Also, one can choose $\varepsilon > 0$ so that this last condition holds for symmetry in all planes sufficiently close to \tilde{T} and ε -tilted along β .

Notice that C^* is not tangent to M at its endpoints because C is strictly convex.

Let V(t) be a plane orthogonal to P along β and on the same side of \tilde{V} as p, intersecting C in two points, or one point. Since M is transverse to P along C and V is a plane of symmetry of C, there is an $\varepsilon > 0$ such that if T(t) denotes V(t) tilted by ε along β , then the symmetry of the short arc of $C \setminus T(t)$ through T(t) intersects M only at its endpoints. Moreover, ε can be chosen to work for all planes sufficiently close to T(t) and ε -tilted along β .

Now by compactness of the shorter arc of $C \setminus \tilde{V}$, there is an $\varepsilon > 0$ such that this property holds for all planes T(t) on the same side as p.

For t sufficiently large, T(t) is disjoint from M. As the planes T(t) approach \tilde{T} , consider the first point of contact of $M(t)^*$ with M.

As we have shown before, this first point of contact must be the image of a point of C. However, by our choice of \tilde{T} , there is no such point of C.

This contradicts (\star) and, therefore, M is symmetric in V and we have proved Theorem 2.1. \square

THEOREM 2.4. Let M be a properly embedded complete noncompact constant mean curvature surface of finite topology in \mathbb{H}^3 . Suppose $\partial M = C$ is a strictly convex curve in P and M is transverse to P along C. If $M \subset \mathbb{H}^3_+$ and M has only cylindrically bounded ends with asymptotic axes all orthogonal to P, then M inherits the symmetries of C. In particular, M is equal to a Delaunay surface when C is a circle.

Proof. Let V be a plane of symmetry of C. We have only to show that the axes of all the ends are contained in V, then by a similar reasoning as in the proof of *Theorem* 2.1. we can prove Theorem 2.4.

Consider one of the half-spaces determined by V in \mathbb{H}^3 , say V^- . Let $\beta(t)$ be a geodesic in $V^- \cap P$ orthogonal to $V \cap P$, t positive. Let $\varepsilon > 0$ and let T be a plane passing through $V \cap P$ that forms an angle ε with V at $\beta(0)$ such that $T \cap \mathbb{H}^3_+ \subset V^-$. Let T(t) be the family of ε -tilted planes along β such that T(0) = T and denoted by $T(t)^-$ the half-space of \mathbb{H}^3 determined by T(t) contained in V^- .

Notice that M is transverse to P along C, so for ε sufficiently small, the symmetry of $C \cap T(t)^-$ does not touch M, for all t.

M has a finite number of cylindrically bounded ends, so for t large T(t) is disjoint from M. We apply the Alexandrov reflection process to M and the planes T(t). As the planes T(t) approach T, consider the first point of contact of the symmetries of $M \cap T(t)^-$ through T(t) with M. This point cannot be the image of an interior point of M by the maximum principle. Also, by our choice of ε , this point is not the image of a point of C.

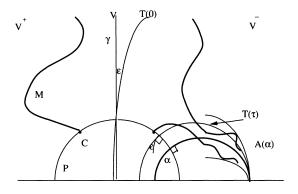


Figure 4

However, another possibility is that T(t) meets M at infinity and we cannot apply the maximum principle. This means that M has an end in V^- ; let α denote its axis. The end stays in the Killing cylinder about α and approaches a Delaunay surface $D(\alpha)$ exponentially at infinity. By our way of tilting T, if $\alpha \cap \partial \mathbb{H}^3 \subset T(\tau)$ so $\alpha \subset T(\tau)^-$. Let $A(\alpha)$ be the Killing cylinder tangent to $D(\alpha)$ and containing $D(\alpha)$. For $\tilde{\tau} > \tau$ and close to τ , the symmetry of $T(\tilde{\tau})^- \cap A(\alpha)$ through $T(\tilde{\tau})$ is not contained in $A(\alpha)$. Hence the symmetry of $M \subset T(\tilde{\tau})^-$ intersects M (Figure 4).

This implies that there occurred a first contact point before reaching $t = \tau$. Therefore there is no end in V^- . We can repeat this process in V^+ .

So the result follows. \square

3. Conditions on complete noncompact H-surfaces to be in a half-space

Now we study surfaces M satisfying the hypothesis of Theorem 2.4 except we do not assume M is globally contained in \mathbb{H}^3_+ . Our interest is to obtain natural geometric conditions that force such a surface to be in a half-space. In Corollary 3.2 of this section we will see that Theorem 3.1 gives such conditions.

With each annular end of M we associate its axis α_i (i.e., a half-geodesic in \mathbb{H}^3_+ orthogonal to P) and write $\mathcal{A}(\alpha_i)$, $1 \leq i \leq n$. Let $\mathcal{D}(\alpha_i)$ denote the limited Delaunay surface which we parametrize by τ_i , the radius of a smallest circle orthogonal to α_i . For mean curvature H, one has $\tanh(2\tau_i) \leq \frac{1}{H}$. Let γ be any geodesic orthogonal to P and let $P(\gamma)$ be the Killing vector field associated with the hyperbolic translation along γ . We choose the orientation of the vector field such that $P(\gamma)$ on $P(\gamma)$ is pointing in \mathbb{H}^3_+ .

Let D be the domain in P bounded by C.

THEOREM 3.1. Let M be a properly embedded complete noncompact constant mean curvature surface in \mathbb{H}^3 . Suppose $\partial M = C$ is a strictly convex curve in

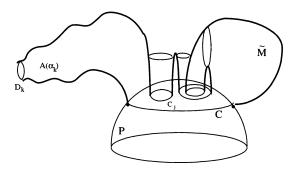


Figure 5

P and M is transverse to P. If M has a finite number of cylindrically bounded ends, topologically an annulus with asymptotic axes all orthogonal to P, in \mathbb{H}^3_+ and $M \subset \mathbb{H}^3_+$ near C, then either $M \subset \mathbb{H}^3_+$ or there is a simple closed curve in $M \cap \text{ext } D \cap P$ that generates $\pi_1(\text{ext } D)$, and

$$\int_{D} |Y(\gamma)| < \sum_{i=1}^{n} \pi \cosh \left\{ \operatorname{dist}(\alpha_{i}, \gamma) \right\} \sinh(\tau_{i}) \left(\frac{\cosh(\tau_{i})}{H} - \sinh(\tau_{i}) \right).$$

COROLLARY 3.2. Assume M satisfies the hypothesis of Theorem 3.1 and ∂M is a circle of radius R with center at $\gamma \cap P$. If $\sinh^2 R \ge nd \frac{H - \sqrt{H^2 - 1}}{2H}$, then M equals a Delaunay surface. (Here n is the number of ends and $d = \sup_i \cosh \{ \operatorname{dist}(\alpha_i, \gamma) \}$.)

Proof of Theorem 3.1. Let D_i be a disk orthogonal to α_i whose boundary is a simple closed curve of $\mathcal{A}(\alpha_i)$, a generator of $\pi_1(\mathcal{A}(\alpha_i))$. Let ν_i denote the conormal to M along ∂D_i , oriented such that $\langle \nu_i, Y(\alpha_i) \rangle$ is negative, and let ν denote the conormal to M along C oriented to point in \mathbb{H}^3_+ .

Notice that each Killing vector field associated with a geodesic orthogonal to P is orthogonal at each point in P.

First we prove that $M \cap \text{ext } D = \emptyset$ and $M \cap \text{int } D \neq \emptyset$ is impossible. So we assume the contrary and arrive at a contradiction.

Let \tilde{M} be the connected component of $M \cap \mathbb{H}^3_+$ that contains C, $\partial \tilde{M} = C \cup C_1 \cup \cdots \cup C_m$ where the C_j , $1 \leq j \leq m$, are the simple closed curves of M in int D. \tilde{M} together with a proper subdomain D_0 of int D bound a 3-dimensional domain noncompact in \mathbb{H}^3_+ .

For each annular end $\mathcal{A}(\alpha_k)$ in \tilde{M} , we consider the disk D_k . We form a compact embedded cycle \bar{M} by removing from $\tilde{M} \cup D_0$ the part of each $\mathcal{A}(\alpha_k)$ that is above ∂D_k and attaching D_k (Figure 5).

Let $Y(\gamma)$ be the Killing vector field of \mathbb{H}^3_+ associated with the hyperbolic translation along γ , a half-geodesic orthogonal to P. The flux of $Y(\gamma)$ across \bar{M} is zero and this

yields the balancing formula [KKMS]:

$$\frac{1}{2H} \int_{\partial D_0} \langle Y(\gamma), \nu \rangle = \int_{D_0} \langle Y(\gamma), n_{D_0} \rangle + \sum_k m_k \tag{*}$$

where m_k is the mass of the end in direction α_k :

$$m_k = \pi \cosh \left\{ \operatorname{dist}(\alpha_k, \gamma) \right\} \sinh(\tau_k) \left(\frac{\cosh(\tau_k)}{H} - \sinh(\tau_k) \right)$$

 $(m_k \text{ is positive})$ and n_{D_0} is the normal orienting D_0 .

We indicate how (\star) is derived: since the flux is zero across \bar{M} ,

$$\int_{D_0} \langle Y(\gamma), n_{D_0} \rangle + \int_{\hat{M}} \langle Y(\gamma), n_{\hat{M}} \rangle + \sum_k \int_{D_k} \langle Y(\gamma), n_{D_k} \rangle = 0$$
 (i)

where
$$\hat{M} = \bar{M} \setminus (D_0 \cup \bigcup_k D_k)$$
, $n_{\hat{M}} = \frac{\vec{H}}{|\vec{H}|}$ and $n_{D_k} = -\frac{Y(\alpha_k)}{|Y(\alpha_k)|}$.

Here n_{D_0} is a unit vector field of \mathbb{H}^3 orthogonal to P and pointing in \mathbb{H}^3_+ . The reason for this is that \vec{H} points towards D_0 along C because there are no exterior intersection curves of M with P by assumption.

Furthermore one has

$$\int_{\hat{M}} \langle Y(\gamma), n_{\hat{M}} \rangle = -\frac{1}{2H} \int_{\partial \hat{M}} \langle Y(\gamma), \nu \rangle, \tag{ii}$$

 ν the inward pointing conormal to \hat{M} .

Each annular end $\mathcal{A}(\alpha_k)$ converges geometrically to a Delaunay end $\mathcal{D}(\alpha_k)$. Thus

$$\begin{split} \int_{D_k} \langle Y(\gamma), n_{D_k} \rangle &- \frac{1}{2H} \int_{\partial D_k} \langle Y(\gamma), \nu_k \rangle \\ &= \pi \cosh \left\{ \operatorname{dist}(\alpha_k, \gamma) \right\} \sinh(\tau_k) \left(\frac{\cosh(\tau_k)}{H} - \sinh(\tau_k) \right) \end{split}$$
 (iii)

Here τ_k is the radius of a smallest circle orthogonal to α_k of $\mathcal{D}(\alpha_k)$. The hyperbolic distance between the geodesics α_k and γ is realized by a geodesic segment in P since both are orthogonal to P. To prove this last formula, one constructs a compact cycle and applies the divergence theorem. Choose a planar disk \tilde{D}_k , whose boundary approximates a "shortest parallel" circle of $\mathcal{D}(\alpha_k)$ and do this so that $\partial \tilde{D}_k \cup \partial D_k$ bounds an embedded annulus on $\mathcal{A}(\alpha_k)$. Then, using (ii) also,

$$\int_{D_k} \langle Y(\gamma), n_{D_k} \rangle - \frac{1}{2H} \int_{\partial D_k} \langle Y(\gamma), \nu_k \rangle = -\int_{\tilde{D}_k} \langle Y(\gamma), n_{\tilde{D}_k} \rangle + \frac{1}{2H} \int_{\partial \tilde{D}_k} \langle Y(\gamma), \tilde{\nu}_k \rangle$$

where $n_{\tilde{D}_k} = \frac{Y(\alpha_k)}{|Y(\alpha_k)|}$ and $\langle Y(\alpha_k), \tilde{\nu}_k \rangle > 0$.

As the \tilde{D}_k get higher, $\partial \tilde{D}_k$ converges geometrically to a shortest circle of $\mathcal{D}(\alpha_k)$ and hence \tilde{v}_k converges to $\frac{Y(\alpha_k)}{|Y(\alpha_k)|}$. Therefore the right side of the above equation is constant and equals to the flux of the Delaunay surface evaluated with respect to γ (we explain this calculation in more details in the appendix). This quantity m_k is positive since $\tanh(2\tau_i) \leq \frac{1}{H}$.

Taking (i), (ii), (iii) together into account, one obtains (*).

Now $\langle v, Y(\gamma) \rangle$ is positive along ∂D_0 , so (\star) implies

$$\frac{1}{2H} \int_{C} \langle Y(\gamma), \nu \rangle < \int_{D_0} \langle Y(\gamma), n_{D_0} \rangle + \sum_{k} m_k. \tag{**}$$

Next consider the cycle $M \cup D$. The flux of $Y(\gamma)$ across this cycle is also zero; more precisely, one obtains a compact cycle from $M \cup D$ as before, attaching D_i to each annular end $A(\alpha_i)$ and removing the part of $A(\alpha_i)$ that is above ∂D_i . The same type of calculation as above yields

$$\frac{1}{2H} \int_{\partial D} \langle Y(\gamma), \nu \rangle = \int_{D} \langle Y(\gamma), n_{D} \rangle + \sum_{i=1}^{n} m_{i}. \qquad (\star \star \star)$$

Clearly $(\star\star)$ and $(\star\star\star)$ both together are impossible since $\sum_{i=1}^n m_i \ge \sum_k m_k$ and $\int_{D_0} \langle Y(\gamma), n_{D_0} \rangle < \int_D \langle Y(\gamma), n_D \rangle$. This proves that not all components of $M \cap P$ can be in int D. So we may assume $M \cap \text{ext } D \ne \emptyset$.

Next we will show that there cannot be more then one Jordan curve in ext D that generates $\pi_1(\text{ext }D)$.

The idea is to apply the Alexandrov reflection principle using ε -tilted planes. We must do some cutting and pasting along the cycle of $M \cap \operatorname{int} D$, to obtain a manifold that separates \mathbb{H}^3 . This enables us to be sure that the mean curvature vectors are pointing in the same direction when we do Alexandrov reflection.

Let σ be a geodesic orthogonal to P at a point of int D and let P(t) be the family of planes orthogonal to σ such that P(0) = P and $-\infty < t < \infty$. Let C_1, \ldots, C_m be the Jordan curves of $M \cap \operatorname{int} D$. For each C_j , let $C_j^+(\epsilon)$ be the planar curve on M, near C_j , obtained by intersecting M with the plane $P(\epsilon)$. Similarly, let $C_j^-(\epsilon)$ be the curve $M \cap P(-\epsilon)$ that is near C_j . We form an embedded surface \tilde{M} by removing from M the annuli bounded by $C_j^+(\epsilon) \cup C_j^-(\epsilon)$ and attaching the planar domains $D_j^+(\epsilon) \cup D_j^-(\epsilon)$ bounded by $C_j^+(\epsilon) \cup C_j^-(\epsilon)$. Also, we attach D to M along C.

To ensure that \tilde{M} is embedded, one uses different values of ϵ , when several C_j are concentric (Figure 6). \tilde{M} is a properly embedded submanifold (with corners) of \mathbb{H}^3 , $\partial \tilde{M} = \emptyset$, hence each connected component of \tilde{M} separates \mathbb{H}^3 into two connected components.

Let \bar{M} be the component of \tilde{M} that contains C. We orient \bar{M} by the mean curvature vector \vec{H} of M. Notice that this makes sense since, abstractly, \bar{M} is a submanifold of M (hence \vec{H} is defined over it) to which one has attached D and the disks $D_i^{\pm}(\epsilon)$.

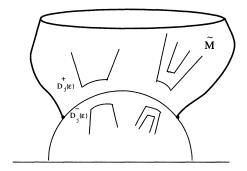


Figure 6

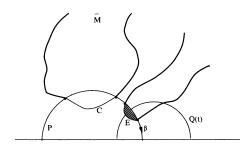


Figure 7

Clearly \vec{H} extends across the disks to define a normal field to \vec{M} . The corners of \vec{M} along the boundaries of the disks do not affect this.

Now we start to prove that $\bar{M} \cap \text{ext } D$ is at most one cycle, that generates $\pi_1(\text{ext } D)$. First we show that $\bar{M} \cap \text{ext } D$ has no components that are null homotopic in ext D. To see this, suppose that E were such a component. Let $\beta(t)$, $0 \le t \le \infty$, be a geodesic in P starting at a point of int D and intersecting E in at least two points. Let Q(t) be the family of ε -tilted planes along $\beta(t)$ and denote by $Q(t)^-$ the half-space of $\mathbb{H}^3_+ \setminus Q(t)$ that contains $\beta(\tau)$ for τ larger then t (Figure 7).

There are two ways to tilt the planes. We do this so that the symmetry of $P \cap Q(t)^-$ through Q(t) is contained in \mathbb{H}^3_+ .

We apply the Alexandrov reflection process to \bar{M} and the planes Q(t). For t large, Q(t) is disjoint from \bar{M} . Now if we approach \bar{M} by Q(t), there will be a first contact point of some Q(t) with \bar{M} . One continues to decrease t and considers the symmetries of $\bar{M} \cap Q(t)^-$ through Q(t). Since β intersects E in at least two points, there will be a $Q(\tau)$ where the symmetry of E touches \bar{M} at an interior point of \bar{M} near E. This occurs before reaching C since C is convex. Thus, \bar{M} has a plane of symmetry, with C on one side of this plane which is impossible.

We remark that our manner of tilting the planes ensures that no Q(t) touches \overline{M} at infinity for $t > \tau$ (we refer to the argument in the proof of Theorem 2.4).

Second we show that $\bar{M} \cap \text{ext } D$ has no more than one component that is a generator of $\pi_1(\text{ext } D)$. Suppose that E_1 , E_2 were two such components. Each of them bounds a domain in P that contains D, so β meets both of the cycles in at least two points. As before, Alexandrov reflection gives a plane of symmetry; more precisely, there is one position of Q(t) before reaching C where a symmetry of E_1 touches \bar{M} at a interior point near E_2 (assuming E_1 is the exterior cycle). Thus \bar{M} has a plane of symmetry before reaching C which is impossible.

This proves that $\overline{M} \cap \text{ext } D$ is at most one cycle E and E generates $\pi_1(\text{ext } D)$. The mean curvature vector \overrightarrow{H} points towards C along E hence \overrightarrow{H} points towards ext D along C.

Now we use the balancing formula

$$\frac{1}{2H} \int_{\partial D} \langle Y(\gamma), \nu \rangle = \int_{D} \langle Y(\gamma), n_{D} \rangle + \sum_{i=1}^{n} m_{i}$$

where $\langle Y(\gamma), \nu \rangle$ is positive along C. Since \vec{H} points towards ext D along $C, \langle Y(\gamma), n_D \rangle$ is negative. Hence

$$\int_{D} |Y(\gamma)| < \sum_{i=1}^{n} \pi \cosh \left\{ \operatorname{dist}(\alpha_{i}, \gamma) \right\} \sinh(\tau_{i}) \left(\frac{\cosh(\tau_{i})}{H} - \sinh(\tau_{i}) \right). \quad \Box$$

Proof of Corollary 3.2. Consider the flux function $m(\tau)$ of the one-parameter family of Delaunay surfaces with constant mean curvature H:

$$m(\tau) = \pi \sinh(\tau) \left(\frac{\cosh(\tau)}{H} - \sinh(\tau) \right).$$

This function is zero at $\tau=0$ corresponding to a chain of spheres and takes its maximum at τ_C where $\coth(2\tau_C)=H$ corresponds to the cylinder of radius τ_C . It is straightforward to check that $m(\tau_C)=\pi\frac{H-\sqrt{H^2-1}}{2H}$ and so

$$m_i = \pi \cosh \left\{ \operatorname{dist}(\alpha_i, \gamma) \right\} \sinh(\tau_i) \left(\frac{\cosh(\tau_i)}{H} - \sinh(\tau_i) \right) < \cosh \left\{ \operatorname{dist}(\alpha_i, \gamma) \right\} m(\tau_C)$$

for $1 \le i \le n$. Since $\int_D |Y(\gamma)| = \pi \sinh^2 R$ we get by assumption

$$\int_{D} |Y(\gamma)| \ge \pi nd \frac{H - \sqrt{H^2 - 1}}{2H}$$

where $d = \sup_{i} \cosh \{ \operatorname{dist}(\alpha_i, \gamma) \}$.

So Theorem 3.1 implies that M is contained in the half-space and therefore M inherits the symmetries of its boundary (by Theorem 2.4). \square

4. Appendix

Let γ be any geodesic orthogonal to a fixed plane P and let $Y(\gamma)$ be the Killing vector field associated with the hyperbolic translation along γ . We choose the orientation of the vector field such that $Y(\gamma)$ on P is pointing in \mathbb{H}^3_+ .

We calculate now the flux of a Delaunay end $\mathcal{D}(\alpha)$ in \mathbb{H}^3_+ with respect to a Killing vector field $Y(\gamma)$ where the axe α is a geodesic orthogonal to the plane P. Let τ be the radius of a smallest circle of $\mathcal{D}(\alpha)$ orthogonal to α .

We work in the upper half-space model of hyperbolic space, that is,

$$\mathbb{H}^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 > 0\}$$

with the hyperbolic metric, i.e. the Euclidean metric divided by x_3 . After an ambient isometry, we can assume that P is $\{x_1^2 + x_2^2 + x_3^2 = 1\}$. Let γ be $\{x_1 = x_2 = 0\}$, so $Y(\gamma)$ is the radial vector field in \mathbb{H}^3 : $Y(\mathbf{x}) = (x_1, x_2, x_3)$. We translate $\mathcal{D}(\alpha)$ along α such that $\mathcal{D}(\alpha) \cap P$ is a planar disk denoted by D of radius τ .

We want evaluate

$$(\diamond) m = -\int_{D} \langle Y(\gamma), n_{D} \rangle + \frac{1}{2H} \int_{\partial D} \langle Y(\gamma), \nu_{D} \rangle$$

where $n_D = \frac{Y(\alpha)}{|Y(\alpha)|}$ and $\nu_D = \frac{Y(\alpha)}{|Y(\alpha)|}$. Notice that by the divergence theorem the choice of the planar disk orthogonal to α of radius τ where its intersection with $\mathcal{D}(\alpha)$ is a smallest circle, does not affect m.

At each point x in P, $Y_x(\alpha)$ and $Y_x(\gamma)$ are both orthogonal to P so we must only find an expression of the norm of $Y_{\mathbf{x}}(\gamma)$ for the points in $D \subset P$. This norm depends on the hyperbolic distance from \mathbf{x} to (0, 0, 1), i.e., on the x_3 coordinate of \mathbf{x} .

Let d be the distance between α and γ . This distance is realized by a geodesic segment in P, denote it by β . The points $\mathbf{x} \in D$ are parametrized by (ϕ, t) where ϕ is the angle between the geodesic segment in P joining \mathbf{x} to the center c of D (i.e., $c = \alpha \cap P$) and β , and t is the hyperbolic distance of this segment, $\phi \in [0, 2\pi]$ and $t \in [0, \tau].$

Using hyperbolic trigonometry formulas (cf.[B]), we have

$$|Y_{(\phi,t)}(\gamma)| = \cosh t \cosh d - \sinh t \sinh d \cos \phi$$

and so

$$\int_{\partial D} \langle Y(\gamma), \nu_D \rangle = \int_{\phi=0}^{2\pi} |Y_{(\phi,\tau)}(\gamma)| \sinh \tau d\phi$$

$$\int_{D} \langle Y(\gamma), n_{D} \rangle = \int_{t=0}^{\tau} \int_{\phi=0}^{2\pi} |Y_{(\phi,t)}(\gamma)| \sinh t d\phi dt.$$

This equations together with (\diamond) imply

$$m = -\pi \sinh^2 \tau \cosh d + \frac{\pi}{H} \sinh \tau \cosh \tau \cosh d$$

The mean curvature of $\mathcal{D}(\alpha)$ is at least as small as the mean curvature of the cylinder of radius of the smallest radius of $\mathcal{D}(\alpha)$. Therefore $\tanh(2\tau) \leq \frac{1}{H}$ and this implies that

$$m = \pi \cosh d \sinh \tau \left(\frac{\cosh \tau}{H} - \sinh \tau \right) > 0.$$

REFERENCES

- [B] W. BALLMANN, Manifolds of nonpositive curvature, Birkhäuser.
- [RS.1] R. SA EARP and H. ROSENBERG, Some structure theorems for complete Constant mean curvature surfaces with boundary a convex curve, Proc. Amer. Math. Soc. 113, (1991), 1045–1053.
- [RS.2] ______, Some remarks on surfaces of prescribed mean curvature, Differential Geometry, Pitman Monographs and Surveys in Pure and Applied Mathematics, no. 52, (1991), pp. 123–145.
- [KKMS] N. KOREVAAR, R. KUSNER, W. H. MEEKS III, and B. SOLOMON, Constant mean curvature surfaces in hyperbolic space, Amer. J. Math. 114, (1992), 1-43.
- [NR] B. NELLI and H. ROSENBERG, Some remarks on embedded hypersurfaces in hyperbolic space of constant curvature and spherical boundary, Annals of Global Analysis and Geometry 13, (1995), 23–30.
- 15, Rue Danielle Casanova, 75001 Paris semmler@math.jussieu.fr