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DGA HOMOLOGY DECOMPOSITIONS
AND
A CONDITION FOR FORMALITY

BY
JoHN F. OPREA

Introduction

The rational homotopy theory of cofibrations has generally been approached
via the Lie algebra models of Quillen. Recently, these models also have been
used to study fibrations, so it should not be surprising that, dually, Sullivan’s
differential graded algebra models might find application to cofibrations. This
is, then, the point of view adopted in this work.

We begin by developing the notion of a cofibre sequence of DGA’s as well
as some simple analogues of topological properties of cofibrations. In this
framework we then give a new proof of the Mapping Cone Theorem of
Felix-Tanre.

Next, we describe the homology decomposition of a minimal DGA in terms
of cofibre sequences and note several of its immediate consequences (including
the uniqueness result of Toomer). The homology decomposition is then used to
give an iterative procedure for deciding whether or not a given DGA (or space)
is formal.

This paper is a revised version of material appearing in Chapter 3 of the
author’s 1982 doctoral dissertation written under the supervision of Professor
Dan Burghelea at the Ohio State University. To Professor Burghelea and to
Professor Joseph Neisendorfer, the author wishes to express his sincere ap-
preciation for the benefit of their insight, expertise and friendship.

0. Preliminaries

For the fundamentals of Sullivan’s version of rational homotopy theory the
reader is referred to [S], [6], [9] and [13]. We shall recall some relevant
definitions and results below, but we shall avoid discussing more technical
aspects of the theory such as the notion of DGA homotopy.

Recall that a differential graded algebra (DGA) over Q consists of a graded
Q-vector space A = ®A' with multiplication A’ ® 4/ —» A'*/ satisfying ab =
(—1)"ba and a graded derivation d of degree 1 with d?> = 0. A DGA M will
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DGA HOMOLOGY DECOMPOSITIONS 123

be said to be minimal if M' =0, M is freely generated by a graded vector
space V (written M = L(V)) and d is decomposable (d(M)c M*- M™,
where M*= &, M").

A DGA map ¢: 4 — B is called a quasi-isomorphism (n-quasi-isomorphism)
if ¢* is an isomorphism (in degrees < n). For any DGA 4 with H%(4) = Q,
there is a minimal DGA M(A) which is unique up to isomorphism and a
quasi-isomorphism p: M(A) = A. M(A) is the minimal model of A. A salient
property of minimal DGA’s is the following:

LIFTING THEOREM. Let M be minimal and suppose a DGA map f: M — B
is given. Then for any quasi-isomorphism ¢: A — B there is a lift f: M — A
which is unique up to homotopy with ¢f = f. In particular, there is a bijection of
sets of homotopy classes ¢,: [M, A] = [M, B].

A minimal DGA is said to be formal if there exists a quasi-isomorphism 6:
M — H*(M). Any such § is referred to as a formalization of M. Subsequently
[15], this notion was extended to maps. A DGA map f: M — N is said to be
formal if there exist formalizations 6,,, 6, such that f*8,, = 6,f. Now,
Sullivan proved that a minimal DGA is formal if and only if there exists a lift
of a grading automorphism (see Theorem 12.7 of [13] and [12]). A similar
criterion was developed for the detection of formal maps in [4].

To a space X, there is associated a DGA A(X) of rational polynomial
forms. The minimal model p: M(X) — A(X) then captures all the rational
homotopy information about the space X. Now, there is an adjoint to the
rational polynomial form functor called spatial realization and denoted | |:
DGA — TOP. Properties of this functor may be found in [1] or [13]. The only
property we shall use is that the adjunction X — |M(X)| is a rational
homotopy equivalence.

A space is formal, if its minimal model is. The determination of the
formality of a space is an important objective because, in that case, all rational
homotopy information resides in the rational cohomology algebra. The notion
of formality was first enunciated in [3] where it was shown that compact
Kéahler manifolds are formal.

A map of spaces is formal if any map in the unique DGA homotopy class
determined by it is formal. Holomorphic maps of compact Kihler manifolds
are examples, as well as H-maps and co-H maps of 1-connected co-H spaces.

Throughout this work, all spaces and minimal DGA’s are presumed to be
1-connected. Furthermore, spaces are presumed to be of the homotopy type of
CW complexes having finite rational betti numbers in each degree.

1. DGA cofibre sequences

Let F: A — B be a map of minimal DGA'’s and suppose { y; } is a set of free
generators for B. Let u; correspond to y; and definea DGA 4 =4 ® L(u,,v;)
with d|, = d, and du, = v,. Also, define F: 4 - B by F|, = F, F(u;) =y,
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and F(v,) = dy, Clearly, i A > A is a quasi-isomorphism and F is a
surjection. We obtain a commutative diagram

where K(F) = Q ® Ker F.

DEFINITION . A sequence of minimal DGA’s
J F
M—->A4A-B

is a cofibre sequence if there exists a quasi-isomorphism y: M — K(F) such
that iJ = Iy.

The following result is not hard to prove (see [16] or Prop. 15.18 in [6]).

ProrosiTION 1. If
xbrde
is a cofibre sequence of 1-connected spaces, then
J F
M(C;) > M(Y) > M(X)

is a cofibre sequence of DGA’s.
Conversely, we obtain the elementary result:

ProrosITION 2. If
J | F
M->A4-B
is a cofibre sequence of DGA’s, then
f J
|B| = 14| = |M]

is a cofibre sequence of spaces.
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Proof. By Proposition 1, the cofibre sequence of realizations
f
Bl >14] > G
induces a diagram

M(C)Ss4-5B
B i

K(F) - 4-LB

with B a quasi-isomorphism and iG = IB. Now, by hypothesis, there exists a
quasi-isomorphism y: M — K(F) with iJ = I'y. Because M is minimal, there
is a lift A: M — M(C;) with BA = y. The map A, being a quasi-isomorphism
of minimal DGA’s, is then an isomorphism. Hence we need only show that
GA =J.

From the homotopies given we obtain iGA = IBA = [y = iJ. Now i is a
quasi-isomorphism, so there is a bijection of homotopy sets,

iv: [M, A] > [M, 4.

Hence, GA = J and there is a homotopy commutative diagram

Lo

/
|Bl = 4] = G

j 11%1

with |A| a homotopy equivalence. QED

Remark. We have given the proof of Proposition 2 in detail since it
contains most of the technical results of rational homotopy theory which find
use below. The reader is referred to Chapter 10 of [5] for an exposition of these
results. Also, note that, given a DGA cofibre sequence M — 4 — B, there is
an associated long exact sequence in cohomology obtained from the cofibre
sequence of spaces |B| = |4| = |M|. In fact, using the mapping cone of
cochain complexes, an equivalent long exact cohomology sequence may be
derived directly from the definition of a DGA cofibre sequence.

The following result is the DGA analogue of the mapping extension prop-
erty for topological cofibre sequences.
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COROLLARY 3. Let
J F
M->A4->B

be a cofibre sequence. Suppose U is a minimal DGA and H: U - A is a map
with FH = 0. Then there exists B: U = M with JB = H.

Proof. Upon taking spatial realizations we obtain
f Jj
|Bl—|4|—| M|
lh
|Ul

where the top row is a cofibre sequence of spaces and Af = * (since FH = 0).
By the extension property of cofibre sequences, there exists b: |M| — |U| with
bj = h. Passing to minimal models and letting 8 = M(b) completes the proof.

QED

The following result was proved originally by Felix and Tanré using Quillen’s
Lie algebra model. As a first application of the DGA approach to cofibre
sequences, we present a new proof.

THEOREM 4 [4]. Let
PES TN

be a cofibre sequence of 1-connected spaces. If f is a formal map, then C; is a
formal space.

LEMMA (i) There exists a formal minimal DGA A and maps
a: A - M(Y), B:A-M(C)

such that JB = a, Ima* = Im J* and o* is injective.
(i) There exists a formal minimal DGA B and a map v: B - M(ZX) such
that y* is injective and

Imy* = Im(9*: H*(2X; Q) > H*(C;; Q).
Proof. (i) Because f is formal, there is a homotopy commutative diagram
43 M) 5 Mx)
4 l 0y l l 0)(
K(f S B0 5 B (x)

where K(f*) = Q @ Ker f* (with trivial differential) and (4, p) is the minimal
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model of K(f*). Note that A4 is formal since H*(K(f*)) = K(f*). Because 4
is minimal and 6, is a quasi-isomorphism, the lifting theorem for minimal
DGA'’s provides a map a: 4 = M(Y) with §,a = ip.

Without loss of generality it may be assumed that 8} = id, 6} = id. We
then have Im a* = Imi = ker f* = Im J*, where the last equality follows by
exactness in the cohomology sequence associated to

s .
X- Y—j->Cf.

Note that o* is injective because p* is an isomorphism and i is injective.
Now 8, Fa = 0 since f*ip = 0. Because 4 is minimal and 8, is a quasi-iso-
morphism, we obtain Fa = 0. By Corollary 3 and Proposition 1 there exists a
map B: 4 - M(C,) with JB = a. (Hence B* is injective and Im J* = Im 8*.)
(i) Let W be a complement to Ker d* in H*(£X). Hence W = Im 9*. Give
W the structure of a DGA by requiring multiplication and differential to be
trivial. This is compatible with the embedding W — H*(ZX) since all cup
products in H*(ZX) vanish. In fact, X is rationally equivalent to a wedge of
spheres, so is formal. Thus, there is a homotopy commutative diagram

B—+M(2X)
19

W— H*(ZX)
where B is the formal minimal model of W and y is a lifting of the
embedding. Hence, taking * = id, we have Imy* = W. (Thus, y* is injective
and Imy* = Ker J*) QED
If A and B are minimal DGA’s, then the product in the category of DGA’s
is given by AVB=Q & A*® B*. In particular, letting 4A( ) denote the

rational polynomial form functor of Sullivan (see [13] or [2]), there is a
homotopy commutative diagram (see [7]) of quasi-isomorphisms

-
—
-
—
-

If the cohomology of each of the DGA’s above is identified with
H*(C;) ® H*(ZX),

then we may take ¢* = id.
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Proof of Theorem 4. By the lifting theorem for minimal DGA’s there is a
homotopy commutative diagram

_M(CVEX)

-
g ¢

T BV
M(AVB)~>AVB —lM(C,)VM(EX)

where M(AVB) is the minimal model of 4VB and B, y are the maps of the
lemma. Note that Im A* = Im 8* & Imy* = Im J* & KerJ* = H*((,).
Now according to [8], there is a cooperation map ¢: C, = C,J/ZX which has
the effect on cohomology,
c*(u,v) =u+ d*v

for u € H*(C;), v € H*(2X). Using the induced map on minimal models

C: M(CVEX) - M(C),
we may form the composition

Ch\: M(AVB) - M(C;).
The decomposition of Im A* and the effect of C* = ¢* show that CA is a
quasi-isomorphism. Because M(AVB) and M(C;) are minimal, CA is an

isomorphism. Now M(AVB) is formal since 4 and B are, so the proof is
complete.

Remark. (i) Given a fibration
F>E>B,

a not quite dual proof may be given of the dual result: the fibre of a coformal
map is a coformal space. The proof uses the operator 2B X F — F (see [10]).

(ii) Further applications of operators and cooperators to rational homo-
topy theory may be found in [11].

2. The homology decomposition of DGA’s

If M is a minimal DGA, then it may be decomposed into a sequence of
minimal DGA’s,

QcMQ2)c --- cM(n)c --- C M,
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where M(n + 1) = M(n) ® L, (V) is an elementary extension. According to
rational homotopy theory, this decomposition corresponds to the Postnikov
decomposition of a space. In this section we will construct the Eckmann-Hilton
dual object, the homology decomposition of a DGA.

Let M be a minimal 1-connected DGA. The pair (N, o) is called a homology
n-section of M if H'(N) =0 for i > n and ¢: M — N is an n-quasi-isomor-
phism.

PROPOSITION 5.  For each n, there exists a homology n-section of M.

Proof. The idea is to “kill” the cohomology above degree n by successive
elementary extensions. Let ¥, = H"*}(M) and choose a vector space splitting
m: Vi, = Z"*Y{(M). Define M! = M ® L, (V;) with differential d(m ® 1) =
dm and d(1 ® v) = 7,(v). Plainly, H"*}(M') =0 and M - M! is an n-
quasi-isomorphism.

Now assume M*~! has been constructed so that H"*i(M*~1) =0 for
1 <i < k-1 and the inclusion M — M*~! is an n-quasi-isomorphism. Let
V, = H"**(M*~1) and choose a splitting

T Vi = Z"HE(MEY).

Define M¥ = M*~'® L, ,_,(V,) with differential d(m ® 1) = dm and d(1
® v) = 7,(v). Then H"*(M*)=0 for 1 <i<k and M > M* is an n-
quasi-isomorphism.

Define M[n] to be the direct limit of the inclusions M*~! < M*, Clearly,
H'(M|[n]) = 0fori > nand 6, M — M[n]is an n-quasi-isomorphism. QED

The rest of this section freely uses the techniques of DGA obstruction
theory. The reader is referred to Chapter 10 of [5] for the relevant facts.

If (M[n},0,) and (M[n — 1}, 0,_,) are homology sections as constructed
above, then there is a map ¢,: M[n] — M([n — 1] such that ¢,0, = o,_,. This
follows since the obstructions to the existence of ¢, lie in H/(M[n — 1)) =0
for i > n. The same argument shows that, if (M[n], o)) is a homology
n-section obtained by choosing splittings 7, then there is a quasi-isomorphism
Y: M[n] —» M[n] with Yo, = o,. Thus, M[n] and M[n] have isomorphic
minimal models and it is in this sense that M[n] is well defined.

Now, since it is preferable to work with isomorphisms instead of quasi-iso-
morphisms and minimal DGA’s instead of nonminimal ones, we consider the
model of M[n),(M,, p,). The usual lifting property provides maps 6,: M —> M,
and &, M, > M,_;, with pg, =0, and p,_,E, = ¢,p,. Because p,_; is a
quasi-isomorphism, it follows easily that there is a homotopy &,5, = 6,_,. We
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are led to the following:

DEFINITION . A homology decomposition of a 1-connected minimal DGA
M consists of a homotopy commutative diagram of minimal DGA’s,

Ex+1 &
oM —M—M,_ >

such that, for each k, (M,, 6,) is a homology k-section.

Remark. The system (M, 6,, €,) above is a homology decomposition of
M. Also, the homology decomposition of a space induces a homology decom-
position of its minimal model.

So far, the notion of a DGA homology decomposition has been rather naive.
We would now like to show that the more sophisticated structure of k’-
invariants may be incorporated into the DGA setting as well.

For this purpose use the technique of Proposition 5 to construct the DGA
analogue of a Moore space. Begin with the free algebra L,_,(V') and succes-
sively kill cohomology above degree n — 1. The limit of this construction is
denoted by L, (V) and satisfies H(L) =0 for i#n—1, H" Y(L) = V.
Our goal is then to prove the following result.

THEOREM 6. There exists a map k: M,_, — L, ,(H"(M)) so that
k —
1L

is a cofibre sequence of DGA’s.

Remark. Note that this structure is then the precise analogue of the
k’-invariant cofibre sequence described in [8].

In order to prove Theorem 6, it is convenient to work with a homology
(n — 1) section which is constructed from M{n], rather than M, using the
technique of Proposition 5. More precisely, begin with M[n] and kill V =
H"(M[n)]) by choosing a splitting A\: V' — Z"(M[n]) and forming M[n] ®
L,_,(V) with d(1 ® v) = A(v). The procedure of Proposition 5 now kills any
new cohomology which may be created. The limit of the constructions is then
an (n — 1) section and is denoted by M[n — 1]'. Also, we denote the inclusion
by a: M[n] - M[n — 1] and the induced map on models by &: M, - M,_,.
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An application of DGA obstruction theory yields a quasi-isomorphism h:
M[n — 1) - M[n — 1] which restricts to e, on M[n]. Hence h: M, > M,_
is an isomorphism with p, _,h = hp’. We havc

p,_1h& = hp'& = hap, = €,0, = p,_1&,.

~

Because p,_; is a quasi-isomorphism, we obtain k& = §,. For convenience,
denote 7~ by 6.

Now, begin to define a map 8: M[n — 1] - L,_,(H"(M)) by requiring
that the restrictions to M[n] and V = H"(M) be zero and the identity
respectively. The obstructions to the existence and uniqueness (up to homo-
topy) of an extension of B to all of M[n — 1] lie in H'(L,_,(V)) for i > n.
These groups are zero however, so the desired map 8 exists. We then have

M[n] S Mn-1) 5T

with Ba = 0 _

Now let A = Bp’: M;_, - L and define k: M,_, — L by k = Af. To reach
the conclusion of Theorem 6 we must find a map y which completes the
following diagram up to homotopy:

Proof of Theorem 6. From the lemmas below we obtain a quasi-isomor-
phism ¢: M, » K(A) and a diagram (Fig. 1) where 0 i is the obvious extension
of 8, the rlght hand cube is commutative and i& = y¢. The bottom rows are
short exact sequences of DGA’s, so the 5-Lemma is applicable to the associ-
ated cohomology sequences. Hence § is a quasi-isomorphism and the lifting
theorem for minimal DGA’s provides y: M, — K (k) with 8y = ¢. Now

bjz, = i0, = ia = Yé = Yoy = OIv.
Because 0 is a quasi-isomorphism, j&, = Iy. Hence,

&, k —
M,->M,_,—~L

n

is a cofibre sequence. QED
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Mn-l \-’
id

L id

@>

FiGc. 1

We now wish to construct the map ¢: M, — K(A). Recall that to a map f:
A — B of cochain complexes we may associate the mapping cone complex
C(f) defined by C(f)" = A" ® B"~! with d(a, b) = (—da, db + fa). If

c54lB

is a short exact sequence of complexes, then we may define a map §:
C - C(f) by g(c) = (gc,0). This map is a cochain map up to sign and thus
induces a map on cohomology. It is standard that, in fact, §*: H*(C) =

H*(C(f)). Now, the map B: M[n — 1] - L induces a short exact sequence of
DGA’s,

K(B) S Mn-11 51

Hence, if in general we denote H*(C(f)) by H*(f), we have the immediate
result:

LEMMA . A*: H*(K(B)) = H*(B).



DGA HOMOLOGY DECOMPOSITIONS 133

Now,
a B —
M[n]>M[n-1]>L

is not short exact, but Sa = 0 and we prove:
LEMMA . &*: H*(M[n]) = H*(B).

Proof. (i) H'(B) =0 for i > n: Let (a, b) € Z'(B). Then da =0 and
db + Ba = 0. Because H'(M[n — 1]) = 0 for i > n, there exists ¢ with dc = a
and then db + Ba = d(b + Bc) = 0. Thus b + B¢ is an (i — 1) cocycle in L
and, since H "‘I(Z) =0 for i > n, there exists e with de = b + Bc. Thus,
d(—c,e) = (a,b). _

(ii) @& is an (n — 1) quasi-isomorphism: If i < n — 1, then L' = 0. Thus,
C(B) = M[n — 1] for i < n — 1. Hence,

H(B)=H' (M[n—-1)) = H(M[n]) fori<n-1.

(ili) & is a quasi-isomorphism: By the first two parts, it is sufficient to
check degree n. Suppose x € Z"(M[n]) such that a(x) = d(c,0) for (¢,0) €
C(B)"". Then d(—c) = a(x) and Bc = 0. The first equality implies that
either

—ceV=H"(M[n]) or —c=a(c) <€ Ima.
Now B}, = id, so B¢ = 0 implies the second possibility. Because « is injective,
we have x = dc’. Hence &* is injective.

Now let (a, b) € Z*(B). Since b € V, there exists x € V = H"(M[n]) with
Bx = b. Note that ¢ = a + dx € Z"(M[n]). Then

(a,b) = (c — dx, Bx) = (¢,0) + d(x,0).
Thus &*([¢,0]) = [a, b] and &* is surjective. QED

Now, because Ba = 0, we obtain the commutative diagram

Mn]->Mn — 17 -oL

"’l ;\il p‘"

K(B)—M[n — 1—L

Define a map Q: C(8) = C(B8) by Q(a, b) = (ia, b). Plainly € is a cochain
map and an application of the 5-Lemma shows that * is an isomorphism. The
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definition of @ implies that Q*a* = A*¢*. Then, since &* and A* are also
isomorphisms by the lemmas, so is ¢*.

Now, by examining the relevant short exact sequences of DGA’s we see that
s: K(A) - K(B) is a quasi-isomorphism. Hence the lifting theorem provides
¢: M, - K(A) with s¢ = ¢p,.

Finally, we let p": M,_; » M([n — 1]’ denote the extension of

p': M!_, > M[n -1}
and note that
pia = ip'@ = iap, = App, = As¢ = pYé,

where i: M;_, = M/_, lifts i. Because ' is a quasi-isomorphism, we have
i = Yo

3. Consequences
Again, a simple application of DGA obstruction theory proves:
PROPOSITION 7. If M is formal, then M, is formal for each n.

Remark. This result is dual to the easily observed fact that if M is
coformal (i.e., the differential is quadratic), then M(n) is coformal for each n.

In [1], Brown and Copeland give an example of a 1-connected space having
two homology decompositions, not all of whose n-sections are homotopy
equivalent. We now show that this situation cannot arise in the rational
category. (Indeed, see [14] for a stronger result!)

PrOPOSITION 8. If X is a rational space, then any two homology decomposi-
tions have n-sections of the same homotopy type.

Proof. Let { X, } and {Y,} denote homology decompositions of X. Passing
to minimal models, we find that the DGA obstructions vanish and there is a
homotopy commutative diagram

M(X,)
1
M(X) - M(x)[k] < M,.
)
M(Y,)

The right horizontal map and the vertical maps are quasi-isomorphisms, so the
compositions M, - M(X,) and M, — M(Y,) are isomorphisms. Then
M(X,) = M(Y,)and X, = Y,. QED
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Our final (and main) application makes full use of the refined structure
provided by Theorem 6 to indicate how a formal space is built up from its
formal n-sections. Perhaps more importantly, we find certain obstructions to
formality which arise in the step-by-step construction of a space from its
homology decomposition.

Define a map 7: L — L as follows: let t € Q/{0} and set 7(x) = ¢"x for
x € V. Extend freely to L,_,(V'). Now, the obstructions to the existence and
uniqueness (up to homotopy) of an extension to all of L lie in H'(L) for
i = n. These groups are, of course, zero. Hence 7 exists and has the cohomo-
logical effect 7*[x] = t"[x].

Remark. We point out explicitly that = is not the lift of a grading
automorphism (the degrees are wrong), so the following theorem bears no
obvious relationship to the characterization of formal maps given by Felix-
Tanré in [4].

MAIN THEOREM. Let
z, k —
M,>M, > L, (H"(M))

be a cofibre sequence of DGA’s and suppose that M,,_, is formal. Then M,, is
formal if and only if there exists a lift of a grading automorphism T € Aut(M, _,)
such that vk = kT.

Proof. Note that 7 and T are defined with respect to the same t € Q/{0}.
Also, recall that T is a lift of a grading automorphism if T*[x] = ¢'[x] for any
[x] € H(M,_,) and all i.

Suppose T exists with 7k = kT. Now kT& = 7k& = 0 since k& = 0. Corollary
3 provides a map R: M, - M, with T¢ = §R. Passing to spaces via the
functor | |, Proposition 2 gives a homotopy commutative diagram of cofibre
sequences,

L->X,_, —»X 3L

T T R 1=
L-X,_,—X, —2L

where we have abused notation for convenience and the last square is the
natural extension of the Puppe sequence. Now, clearly (R*)" = (27*)" by
exactness of the cohomology sequences and (Z7*)"[Zx] = S(7*[x]) = 2¢"[x]
= t"[Zx]. Now, (R*)' = (T*)' for i < n and T* is a grading automorphism.
Hence M, is formal by Sullivan’s condition (see Theorem 12.7 of [13]).



136 JOHN F. OPREA

Now suppose that M, is formal and take a homology decomposition.
Passing to spaces via | |, there is a homotopy commutative diagram

> X 12X 2 Xy

Convert these maps to cofibrations (inclusions) and then, using the homotopy
extension property, convert the homotopy commutative triangles to strictly
commutative ones. The resulting system is a homology decomposition of
X, = |M,| homotopy equivalent to the original system. Now, applying the full
strength of Toomer’s naturality results (see [14]) we see that a lift of a grading
automorphism R (which exists since M, is formal) induces a homotopy
commutative diagram

_I<, - Xn-l - Xn

1oodr e

K - Xn—l - Xn
where T=R| and K’ = K'(H,X,,n —1). Comparing the long exact
cohomology sequences, we see that 7*[x] = ¢"[x] since R* has this property.

Since M(K’) = L and the homology decomposition is equivalent to the
original system, then we obtain 7k = kT. QED

Example. Consider the homology decomposition
85> S%Ws?-> 83 x §3

where the first map is given by the Whitehead product of the inclusions i;, i,:
S3 — §3VS3. This translates into a DGA cofibre sequence

M(S? x §%) - M(SVS?) S M(S%)
where
M(S’ X 8%) = Ly(x, ),  M(S*®) = Ls(w)
and
M(S?*VS?) = Ly(x,y) ® Ly(z) ® - -+

with dz = xy. Now k is trivial on x and y and k(z) = w. Clearly k is not
homotopic to zero and therefore is not formal since (k* = 0).

Now define T on M(S?) by 7(w) = t°w and T on M(S3VS?) by Tx = ¢3x,
Ty = t3y and extending. Then dT = Td implies Tz = t°z and kT = k. Hence
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our Main Theorem says that M(S> X $3) is formal, which is certainly the
case.

Remark. The discussion above furnishes an example of a map which is not

formal but induces a formal cofibre. This also occurs, for example, in the case

of

the Hopf map S3 — S§2. It is hoped that our Main Theorem sheds some

light on this phenomenon.

10.

11.
12.

13.

14

15.

16.
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