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ORDERED FIELDS SATISFYING ROLLE’S THEOREM

BY

RON BROWN, THOMAS C. CRAVEN AND M.J. PELLING

1. Introduction

Throughout this paper F will denote an ordered field. We say F satisfies
Rolle’s theorem for polynomials (with respect to the given ordering) if for each
polynomial f F[x] with distinct roots a and b in F, the formal derivative f’
of f has a root in F between a and b. Note that the usual proof from
elementary calculus shows that such a field will also satisfy the mean value
theorem for polynomials.
The purpose of this paper is to give a complete characterization of the

ordered fields which satisfy Rolle’s theorem and to investigate some of their
properties. The main result of the paper is Theorem 2.1, which characterizes
the fields satisfying Rolle’s theorem for polynomials as fields which are
Henselian with respect to ,some valuation with real closed residue class field
and with a value group which is n-divisible for each odd integer n. The reader
is referred to Ribenboim [16] or Endler [10] for the concepts we need from
valuation theory. This paper completes the partial results obtained by Craven
and Csordas [9]. The fields were already known to be pythagorean (every sum
of squares is again a square in the field). They are now shown to be hereditarily
pythagorean (and hence superpythagorean [1, Theorem 2, p. 89]). These
properties make such fields attractive as local objects in the study of general
fields. Indeed we indicate in Section 5 how their Witt rings of quadratic forms
[13] can be used in a natural way in the "exact" representation theory of the
reduced Witt ring [8, 3] in place of the "Witt rings modulo a fan arising from
a place into R".

In Section 3 we show that a field satisfies Rolle’s theorem for all rational
functions if and only if it is real closed. We raise, but don’t solve, the question
of when Rolle’s theorem will hold for all functions which are integral over the.
polynomial ring of our field. The brief fourth section contains an approximate
version of Rolle’s theorem for arbitrary fields (and certain families of order-
ings); our less-than-inspiring result does serve to indicate the limits of our
techniques in the absence of special hypotheses on the field.
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In the last section of the paper we characterize those fields with n orderings
which have exactly 2n 1 minimal proper extensions in some fixed algebraic
closure. This result implies that fields with n < oo orderings will satisfy Rolle’s
theorem for polynomials if and only if they have exactly 2n- 1 minimal
proper extensions and admit exactly one place into R. The number s of
minimal proper extensions of a field F turns out (cf., Proposition 6.5) to be the
unique integer s such that F is "s-maximal" in the sense of McCarthy [14].
Fields which are 1-, 2-, or 3-maximal have been studied by several authors
(e.g., see [11]); the key idea of considering subfields of an algebraically closed
field which are maximal with respect to the exclusion of certain elements is
attributed by Lang to E. Artin.

2. Rolle’s Theorem for polynomials

In this section we characterize the family of fields which satisfy Rolle’s
theorem for polynomials. Let r denote the unique place from F into the real
numbers R with r(P) > 0 [2]. Let v: F’---, F be the associated valuation onto
the additively written value group I" and let V--,r-l(R) be the associated
valuation ring. We shall call an additively written group A odd divisible if
n A A for all odd integers n.

THEOREM 2.1. The following are equivalent:
(a) F satisfies Rolle’s theorem for polynomials;
(b) F is Henselian with respect to some valuation with real closed residue class

fieM and odd divisible value group;
(c) iff V[x] and if fl R is a root of r(f ) of odd multiplicity, then there

is a root a off in F with r(a) ft.

In (c) above, we have let r act on IX[x] in the obvious way, i.e., on
coefficients. One should note that a Henselian field with real closed residue
class field admits a unique place into R (it is Henselian with respect to its
canonical real extended absolute value [4, Corollary, p. 395]). Indeed any place
into R on a Henselian field must factor through the place with respect to which
the field is Henselian.

In the proof below, we often write ] for ,r(f).

Proof of Theorem 2.1. (a) = (c) We can write

n

i- m

where m is odd and s, :# 0. We may assume/3 0 (otherwise replace f(x) by
f(x + 1)) and that for some even integer we have s 0 (otherwise replace
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f(x) by xf(x)). Assume is the least even integer with s :#: O. Then for all
e>0,

ff[7 fA, x) ax Y’. siuidu 2stet*l(t + 1) -1 + et+2h(e)
-ei,..rn

where h(x) R[x]; similarly, for some k(x) - R[x],

B, := f;+_f(x- fl)f(x) dx 2Sm(m + 2)-1em+2 + 8m+3k(E).

Hence, as e approaches zero, B,/A approaches either o (if > m + 1) or
Sm/S (if t m + 1). Hence by choosing e sufficiently small we can guarantee
that

and also that

A,=0, B,=0 and f(8)=0 forall6(/3-e,/3+e),8=fl.

Hence we can findp, qQ, withfl-e<p<fl<q<fl+esuchthat

A (x)d,O, ’.=f;xf(x) dx,O and [fl- (/A-)I >,.

It follows that

A :=f;f(x) dxandB:=f;xf(x)dx
are units in V and

(/A) /a (- , + ).

Since

f(x)(x BA -1) dx B (BA-1)A O,

we may apply Rolle’s theorem to ff(t)(t- BA -1) dt F[x] to find a F
with p < a < q and f(a)(a BA -t) 0. But a 4 BA - since otherwise

/.= r(Ba -) r(a)
_

( p, q) c ( fl e, [3 + e),
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a contradiction. Hence f(a) 0. Further, f(r(a)) 0 and

,r(a) [p, q] c (fl + e,/3 + e),

so r(a)= fl by the choice of e.
(c) = (b). Let fl R be algebraic over the residue class field F r(V).

Then there is a monic irreducible polynomial f V[x] with ] the irreducible
polynomial_of/3 over F. By h_ypothesis, f has a root a F with ,r(a)=/3.
Thus fl F. This shows that F is real closed. Next suppose a ,r-(0) and n
is an odd positive integer. By hypothesis x n a has a root, say a, in F and
clearly v(a) v(a)/n. Thus F is odd divisible. Finally, F is Henselian at v by
Corollary 16.6(iv) of [10].

(b) = (a). Let a < b be roots in F of f Fix]. We must show that f’ has
a root between a and b. We may suppose a 0 and b 1 (otherwise replace
f(x) by f((b a)x + a)), so

f(x) x(x -1) Esix for somes F.

We may also suppose_ f V_[x] and ]_4:0 (otherwise replace f by s-if where
s maxis/I). Since f(0) f(1) 0, f’ has a root fl R of odd multiplicity
between 0 and 1. Since F is real closed, /3 F, whence/3 ,r(a0) for some
ao F. Hence for some g V[x] we can write ]’(x) ,r((x ao)’g(x))
where m is odd, m + deg g < deg f’ and x -/3 ,r(x a0) does not divide
r(g). Thus by Hensel’s lemma [16, 3) on p. 186] there is a divisor h F[x] of
f’ of degree m with ,r(h) (x fl)m. The polynomial h must therefore have
an irreducible factor of odd degree; let a be a root of any such factor (in some
algebraic closure of F). By a theorem of Ostrowski [16, p. 232], the odd
number [F(a): F] is the product of the ramification index "co" and the
ramification degree "Co" of the extension F(a)/_F, so both fo and eo are odd.
But they are also both powers of two since F is real closed and F is odd
divisible. Hence both equal 1 and therefore a F. In fact a V (since V is
integrally closed and the leading coefficient of h is a unit), so ,r(a) fl (0,1).
Thus a is a root of f’ between 0 and 1, as required.
The first example of a field satisfying the hypotheses of Theorem 2.1 but not

real closed was given by the third author [15]. In his example the residue class
field is the field of real algebraic numbers and the value group is isomorphic to
the additive group of integers localized at 2.

COROLLARY 2.2. IfF satisfies Rolle’s theorem forpolynomials with respect to
some ordering, then it does so with respect to all of its orderings.

The corollary is immediate from condition (b) of Theorem 2.1, which is
independent of the ordering on F. The proof of (b) = (a) above yields another
corollary. (We’ll squeeze a bit more out of this argument in 4 below.)
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COROLLARY 2.3. Suppose F satisfies Rolle’s theorem for polynomials and a
and b are distinct roots in F off F[x]. Then f’ has a root c in F which is
between a and b with respect to eoery ordering ofF; in fact, (a c)(c b) F" 2.

Proof. We have seen that the derivative of f((b- a)x + a) has a root
tx F with 0 < or(a) < 1. But then c := (b a)a + a is a root of f’(x) and
0 < a < 1 for every ordering of F (since they all induce the same place
hence c is between a and b for all orderings of F. Since F is pythagorean, F" 2

is precisely the set of elements of F which are positive in every ordering. Thus
(a c)(c b) -. F"2.

COROLLARY 2.4. If F satisfies Rolle’s theorem for polynomials, then so does
eoery (ordered) algebraic extension of F. Hence F is hereditarily pythagorean
and superpythagorean.

The first sentence follows from the fact that the conditions of Theorem
2.1(b) are all preserved by ordered algebraic extensions. The same reasoning
shows that all Henselian fields with real closed residue class field are not only
pythagorean, but are even hereditarily pythagorean (and hence superpytha-
gorean [1, p. 89]). The following observation follows immediately from Theo-
rem 2.1(b)or (c).

COROLLARY 2.5. An archimedean real closed field which satisfies Rolle’s
theorem is real closed.

COROLLARY 2.6. Let F be a field which satisfies Rolle’s theorem for poly-
nomials. Then eoery polynomial of odd degree ooer F has a root in F. In
particular, eoery element of F has an m-th root in F for each odd positioe inte-
ger m.

Proof. Let f F[x] be a polynomial of odd degree. Dividing by the
leading coefficient, we may assume f is monic. Let rn be the degree of f and let
c be a coefficient of f of minimum value. _Replacing f(x) by c-"*f(cx), we may
consider the polynomial ] R[x]. Since f has odd degree, it has a root fl R
of odd multiplicity. Thus f has a root in/7 by Theorem 2.1(c).

3. Roile’s Theorem for other functions

Throughout this section f will denote a function whose domain and range
are in our ordered field F and which is continuous in the order topology. The
"derivative" of f can be defined as in elementary calculus: f’(a) denotes the
unique number (if there is one) such that for all positive e in F. there exists a
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positive 8 in F such that if b is in the domain of f and 0 < b a < $, then

If’(a) (f(b) -f(a))(b- a)-’ < e.

Most of the familiar rules for calculating derivatives are valid in this gener-
alized setting, since their proofs do not depend on the completeness axiom or
the Archimedean property of the real numbers.
We say F satisfies Rolle’s theorem for f if whenever f is zero on the

endpoints of a bounded dosed interval of F and differentiable at every interior
point, then f’ has a zero in the interior.

THEOREM 3.1. The fieM F satisfies Rolle’s theorem for all rational functions
(i.e., quotients ofpolynomial functions) if and only if F is real closed.

Proof The assertion that F satisfies Rolle’s theorem for rational functions
is equivalent to a countable family of elementary statements, each of which is
valid for the real numbers, and hence is valid for any real closed field by the
Tarski principle [17]. Now suppose F satisfies Rolle’s theorem for rational
functions. It then satisfies Rolle’s theorem for polynomials, and hence (b) of
Theorem 2.1. Moreover the value group of F is 2-divisible. For, if 0 <
rr-(0), then the rational function x(x + t-t)(x 2)- is defined everywhere
on the interval [- t-1, 0] and is zero on the endpoints. Thus the derivative must
have a zero, and hence (by the quadratic formula), 16 + 8t-t is a square in F.
But then

v(t) -o(16 + 8t-1) 2r.

It follows that F is real closed [4, 4].

QUESTION 3.2. Suppose F satisfies Rolle’s theorem for polynomials. Must
it then satisfy Rolle’s theorem for all algebraic functions which are integral
over F[x]? Some cases are easily checked; for example, if f(x) g(x)/ for
an integer n > 0 and polynomial g(x) F[x], then an easy application of the
chain rule shows that F satisfies Rolle’s theorem for f.

4. General fields

Suppose a polynomial f(x) in our ordered field F has distinct roots a and b
in F. What can we say about the behavior of f’ between a and b? We can
write

x a)f(x) (x- al(x- b)

_
s, b a

O<i<t
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for some s,. F. We will show that we can find c F between a and b such
that f’(c) is "small", at least in comparison with

(Ib- almaxoitlsil) -1.

Moreover, a single such choice of c can be made to work simultaneously for a
whole family of orderings of F. Let us now be more specific.

Let Y be a family of orderings on F, possibly infinite, such that only a finite
number of places into R, say ,rl, ,r,..., ,r,, are induced by the orderings of Y.
For each < n, let v be the valuation associated with the valuation ring
V/:= ’tri-X(R).

LEMMA 4.1. There exists s F with

vi(s ) =min(vi((b-a)sk)’0<k< t} forall < n.

Proof. For each < n, pick
_

(So,..., St} with

oi(t,) min( vi(s,): 0 < k <_ t).

Then for any 4: j, vi(ti) < vi(tj) and vj(tj) < t)j(ti). Hence

iViVj D_ tjViVj tjVjV D_ iVjV iViVj.

Now apply Theorem 2.1B of [3].

THEOREM 4.2. Let f and s be as above. Let 0 < q Q. Then there exists
c F such that with respect to every ordering in Y, [f’(c)[ < q ls[ and c is
between a and b.

Proof. Let g(x) s-l(b a)-lf((b- a)x + a), so that

g(x) x(x- 1) E s-l(b- a)sixi
O<_i<_t

Let < n. By the choice of s, r(g(x)) is a nonzero polynomial in R[x] with
roots 0 and 1. Hence r(g’(x)) r(g(x))’ has a root between 0 and 1. Thus
there exist nonzero rational numbers fl in (0,1) with Ir(g’(fl))l < q. Apply-
ing Theorem 2.1A of [3] to the map assigning to each ,ri the dement fl, we can
find fl F with 0 < ,r(fl) < 1 and Irr(g’(fl))l < q for all < n. Now set
c (b a)fl + a. Then for any ordering in Y, the element c lies between a
and b since 0 < ,r(fl)< 1, where ,r denotes the R-place induced by the
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ordering. Moreover

q > Is-lf’(c)l

since

q > Iri(g’(fl))l ri(ls-lf’((b a)fl + a)l ).

Therefore If’(c)l < qlsl.

Example 4.3. If Y consists of a single Archimedean ordering, then we may
take s 1 and Theorem 4.2 says we can make f’(c) as small as we like; this is
clearly the best we can hope for since f’ need not have a root in F. Next
suppose Y consists of the unique ordering on the field F .’= Q(t)(t 2-n" n
1, 2, 3,... ) obtained by joining all the 2n-th roots of to the field of Laurent
series in the indeterminant over Q. Let f(x) xa + tx 1. This polynomial
has two roots in F, near -1 and + 1. Its derivative f’(x) 4x + has no
root in F, but f’(t)= 4t + is less than every rational number; this is a
somewhat stronger statement than can be made in Theorem 4.2. On the other
hand, the root of f’(x) in the real closure of F cannot be approximated
arbitrarily closely by elements of F since it lies in a "gap" with no elements of
F near it.

5. Quadratic Forms

By Corollary 2.4, any field satisfying Rolle’s theorem for polynomials is
hereditarily pythagorean and superpythagorean. Such fields have been inten-
sively studied; one can compute the absolute Galois groups, the Brauer groups,
and the Witt rings of such fields very explicitly in terms of their value groups
(e.g., see [1], [6]). The next proposition (specifically, part (d)) shows that fields
which satisfy Rolle’s theorem for polynomials can be used as "local objects" in
a theory of quadratic forms over formally real fields.

THEOREM 5.1. Let F be an ordered field. Let r be the induced place into R
and let F be the value group. Let K be an algebraic extension of F. The following
statements are equivalent, and they are satisfied by a unique (up to F-isomor-
phism) algebraic extension of F:

(a) K is a minimal ordered extension of F satisfying Rolle’s theorem for
polynomials.

(b) K is a Henselian ordered extension ofF with real closed residue class field
and with value group (//n: F, n is an odd integer ).

(c) K is a maximal extension of F admitting a place rrr into R such that
every ordering of F inducing rr extends to an ordering of K inducing rr.
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(d) K is a maximal extension of F with respect to being Henselian with real
closed residue class fieM and having the natural map W(F) W(K) induce an
isomorphism W(F/T,,) W(K), where T,, F’2rr-I(R’2).

In (d) above, W(F) denotes the Witt ring [13] of F and W(F/T) denotes
W(F) modulo the ideal generated by all (1, -t) where T,, (cf., [8]). For
the role of the ring W(F/T,) in the study of the reduced Witt ring of F (i.e.
W(F) modulo its nil radical) see [8, Theorem 3.2], which describes the reduced
Witt ring as a particular subdirect product of the tings W(F/T), where r
ranges over all places from F into R. Many conditions equivalent to the four
conditions of Theorem 5.1 are easily formulated. For example in (c) we could
require that all the orderings of 2-power level extend to K (cf. [1]), or that the
orderings extend uniquely.

Proof We can construct a field extension E of F which is Henselian with
real closed residue class field and which has value group A := (3t/n: F, n
is odd) (use the standard techniques of value group and residue class ad-
junction to the Henselization). All the orderings of F associated with ,r extend
uniquely to E (essentially because A/2A _= F/2F, cf. [2]). If K is another field
satisfying (b), then K and E are F-isomorphic by the isomorphism theorem of
[7]. We next show that E also satisfies conditions (a), (c) and (d). For (a), we
see that E satisfies Rolle’s theorem by Theorem 2.1. The field E is minimal
since any subfield of E satisfying Rolle’s theorem will have the same residue
class field and value group (namely, A) as E, and so will equal E [16, p. 236].
For (c), we know that the orderings of F associated with ,r extend to E. If L is
a minimal proper algebraic extension of E which admits any orderings at all,
then L is obtained by adjoining the square root of an element of odd value [5,
proof of Theorem 1.2]. There is an ordering P of E making this dement
negative [2]. Then P F cannot possibly extend to L. Thus E is maximal in
the sense of (c). Finally for (d), the isomorphism of W(E) with W(F/T,)
follows from the natural isomorphism F’/5: T’-, E’/+ E "2 (i.e., of 1’/21’
and A/2A) [8, Proposition 3.1]. Since E is Henselian and A is odd divisible,
any proper extension of E will kill some ordering. This ordering corresponds
uniquely to a minimal prime ideal of W(F/T,,), so the induced Witt ring
homomorphism cannot be an isomorphism.
Now we show that any field satisfying (a), (c) or (d) must be isomorphic to

E. This will complete the proof. Let K satisfy (a). Its value group must contain
that of E. Hence some (ordered) totally ramified extension of E has the same
value group as K, and hence is isomorphic to K [7]. Thus E is F-isomorphic to
K by minimality. Next assume K satisfies (c). The maximality allows us to
immediately conclude that K is Henselian with real closed residue class field
and odd divisible value group, since otherwise these could be extended as in
the construction of E above. Assume K has an element a 0 with 2o(a)
I’ \ 21’, where o denotes the valuation associated with rr. Then there exists
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b F with 0 < rK(a2b) < oo, and so a2b K "2 by Hensel’s lemma. Now b
has odd value in I" and hence is not positive in some ordering P associated
with ,r. But then P cannot possibly extend to an ordering of K since b K 2.
Therefore no such a can exist. This implies v(K’) A, and so K is isomorphic
to E. Finally, assume that K satisfies (d). The hypothesis on K says that its
value group tb is as large as possible, subject to the requirement that F/2F -"

/2 [8, Proposition 3.1]. But this means A and again K is isomorphic
to E.

6. Fields with finitely many minimal extensions

Let F alg be an algebraic closure of F. By a minimal extension of F, we mean
a minimal proper field extension of F in F*a. For example, all quadratic
extensions of F in Fmg are minimal. Thus if F has only finitely many minimal
extensions, it must have only finitely many orderings (otherwise the square
factor group, and hence the number of quadratic extensions, is infinite). In the
theorem below we characterize a class of fields with finitely many orderings
which admit only quadratic minimal extensions.

THEOREM 6.1. Let F be a field with n orderings, where 0 < n < oo. The
following are equivalent:

(a) F has exactly 2n 1 minimal extensions.
(b) F is superpythagorean and all minimal extensions are quadratic.
(c) F is Henselian with respect to a valuation with odd divisible value group

and with a residue class field k such that for s equal to 1 or 2, k has exactly s
places into R and k is maximal with respect to exactly s orderings.

COROLLARY 6.2. Suppose F has n orderings, 0 < n < oo. Then F satisfies
Rolle’s theorem for polynomials if and only if F has exactly 2n 1 minimal
extensions and exactly one place into R.

Proof of 6.2. By Theorem 2.1, F satisfies Rolle’s theorem for polynomials
if and only if it satisfies condition (c) of 6.1 and F admits a unique place in R
(i.e., "s" 1).

Remark 6.3. (A) The hypothesis (appearing in 6.1(b)) that F is a field all
of whose minimal extensions are quadratic is equivalent to the hypothesis that
F has no extensions of odd degree. After all, if F has no extensions of odd
degree and E is some minimal extension (say contained in a finite Galois
extension K of F), then the Galois group G(K/F) has 2-power order [12,
Theorem 57, p. 67] and hence by Sylow’s theorem admits a subgroup H

_
G(K/E) of index 2; clearly minimality says E is the fixed field of H, so ElF
is quadratic.
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(B) The condition on the residue class field k in 6.1(c) really says that
either k is real dosed (if s 1) or k is 3-maximal with two places into R (if
s 2). For this fact, and many characterizations of 3-maximal fields, see [11],
especially Theorem 2.

(C) Suppose F satisfies the conditions of 6.1(c). Each ordering of F
induces an ordering on k, so n sIF/2F I, where F is the value group of F
[2]. For example, if F-- R, we have F 0 and s 1, so R has a unique
minimal extension. If F R((t)) (field of Laurent series), then F is infinite
cyclic and s 1, so F has two minimal extensions.

Proof of 6.1. (a) = (b).
squares in F. Then

Let EF"2 denote the set of nonzero sums of

2n <_ IF’/YF’2I < IF/F’2I _< 2n,

where the first inequality follows from the fact that each ordering of F
corresponds to a character of F)/EF"2, and the last inequality follows from
the hypothesis since the quadratic extensions of F correspond bijectively to the
nontrivial square classes of F. It follows that F is superpythagorean [6,
Theorem 1] and that all of the minimal extensions are quadratic.

(b) (c). Every quadratic extension of F, and thus every proper algebraic
extension, must kill an ordering of F. Therefore F has no immediate exten-
sions with respect to ,, the maximal place through which all places from F to
R factor, and thus F is Henselian with respect to ,. Clearly the value group of

is odd divisible. The residue class field k of has at most two orderings [6,
Theorem 1], and hence the number s of places into R is at most two. The field
k is also pythagorean with no extension of odd degree. If s 1, then k has a
unique ordering, and hence every element is a square or its negative is a square
and every polynomial of odd degree has a root. It follows that k is real closed,
so it is maximal with respect to its ordering. If s 2, then k contains an
element a such that + 1, + a represent the four square classes and a is in only
one ordering of k. Any proper extension of k must contain one of the
quadratic extensions k(/-L-T), k(v/-d) or k(fZ- ), so the orderings of k cannot
both extend. Thus k is maximal with respect to its two orderings.

(c) (a). By maximality, k has no extensions of odd degree. Since F is
also Henselian with odd divisible value group, it follows that F has no
extensions of odd degree [16, p. 236]. Hence the minimal extensions of F are
quadratic, and correspond bijectively to nontrivial elements of F’/F"2. But

IFyF’21 Ikyk’211F/2rl

where F is the value group of F. Now since k has at most two orderings, it is
superpythagorean (by maximality and [6, Theorem 1]) and has 2s square
classes. Also n/s 1I’/2FI by Remark 6.3C.
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Thus the number of minimal extensions of F is

IF/F’21- 1 (2s)(n/s) 1 2n- 1.

This completes the proof of Theorem 6.1.
The last implication of (6.1) (and "necessity" in Corollary 6.2) can also be

deduced from the following general property of Henselian fields.

PROPOSITION 6.4. Let F be a Henselian field with value group F and residue
class field k. Suppose k has characteristic zero and exactly n minimal extensions.
For each prime p, let s(p) be the dimension of F/pF as a vector space over
Z/pZ and let t(p) denote the number of p-th roots of unity in k. Then F has
exactly

n+ E
p prime

[k’/k’P[(p(p 1)p(p- 1)-it(p) -1

minimal extensions if this number is finite, and infinitely many minimal exten-
sions otherwise.

We leave the details of the proof of 6.4 to the interested reader. It is a
straightforward counting argument using the computation in [5, 1] of all
tamely ramified extensions of F.
We end this section with the observation that F has n minimal extensions if

and only if F is "n-maximal" [14].

PROPOSITION 6.5. Let F be any field (not necessarily formally real). Then F
has exactly n minimalproper extensions in some algebraic closure Fag if and only
if n is the least integer such that there exists a set A of cardinality n in F alg which
is disjoint from F but intersects every proper extension of F in F alg nontrivially
( i. e., F is "n-maximal ").

Proof If F is (bl,..., bn)-maximal with n minimal, then F(bl),..., F(bn)
are clearly minimal extensions of F. On the other hand, any minimal extension
of F must contain some b;, hence must be the extension F(bi).

Conversely, if F(al),..., F(an) is an exhaustive list of minimal extensions
of F, then F must be (a,..., a }-maximal. If F were s-maximal for s < n,
then F would have only s minimal extensions as in the first half of the proof.
Thus F is n-maximal.
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