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1. Introduction

Among various embeddings of a group G into G G G are the embed-
dings

qb’g- (g,g, 1) and 2"g (1, g,g)

which yield a weak form of permutability between the isomorphic groups G*x

and G.2, namely, g,lg,t,2 g2g,t,1 for all g G. This natural situation leads
to the study of the double group

D(G) (G*x, G*2; g’Ig’ g’g’x for all g G)

as the quotient group of the free product G*a .G.2 by the commutator
relations [g*, g*2] 1 for all g G. When G is finite, D(G) is finite (Sidki
[4]), and when G is a finite p-group of order pk, p odd, D(G) is of order
dividing p2kpkk-1)/2 (Rocco [3]). In this paper we develop commutator
calculus for the double group D(G) and obtain a detailed description of its
lower central series 3,i(D(G)), >_ 1, in terms of the lower central series of G.
We prove that if G is an m-generator nilpotent group of class at most c with
m > 2, c > 1, then D(G) is nilpotent of class at most max(m, c + 2). Further-
more, ifm > c + 3 then /c+ 3(D(G)) is an elementary abelian 2-group of rank at
most

m

kffic+3

(Theorems 3.2 and 3.3).
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2. Preliminaries

We use standard commutator notation (see, for instance, [2]). For elements
x, y, x, y in a group G,

[x, y] x-ly-lxy x-lxY;
x,+ l x,],

Ix, ny Ix, Yx,--., Y,] with y y,, y;

[x,..., Xm; y,,..., y,l [[x,..., xl, [Yl,"-, y,]]

and so on. If G1,... Gn are subgroups of G, then [G1,..., G,] is the subgroup
of G generated by all commutators [g,..., g,], g G. In particular, ,,(G)

[G,..., G,] with G G, G, is the n-th term of the lower central
series of G.
For elements x, y, z in G, the following commutator identities are standard

and will be used without reference"

[x, y [x, y-]-Y [x -, yl-X;

[x, yz] [x, zl[x, y]= [x, zl[x, yl[x, y, z];

[xy, z] Ix, z]Y[y, z] Ix, z][x, z, y][y. z];

[X, y-l, z]y[y z-l, x]Z[z, x-l, y]X 1;

or equivalently

[z,[x, y]] [z, y-, xz]Y[z, x-, y-1]xy (Witt identity)

x, y, z ][ y, z, x ][ z, x, y 1 mod ,:(/:(x, y, z)) (Jacobi Congruence)

We simplify our notation by redefining the double group D(G) of G as

D=D(G)=(G,G*; [g,g*] =1 for allgG),

where : G G is an isomorphism (note that in Sidki [4] and Rocco [3] the
notation for D(G)js x(G)). In the following lemmas we derive some funda-
mental relations which hold in the group D(G).

LEMMA 2.1.
(i)
(ii)
(iii)

(iv)
(v)

For all x, y, z, Yi, zi G we have:
[x, y] [x,
[x, y]* [x, y]; and more generally,
Ix*, y],(zp z.) [x,, y],(zl z.) for e {1, }
(z, z,) G;
[x, y, x] [x, y, x]; and more generally,
[x ’t’, y,..., y,, x] [x, Yx,..., Y,, x’]

and o
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Proof of (i). We use the commuting relations (xy-1)(xy-1)*
(xy-X)*(xy-), xx* x’x, yy* y*y to obtain, in turn

xy-lx*y-* x*y-*xy-1;
Xx-*y-Ix* y-*xy*y-1;

Ix*, Ix, y*].

x-,xy-x* y-*xy-y*;
x-*y-x*y x- Xy-*xy*;

Proof of (ii). We use (i) to write Ix*, yz] [x, y’z*] which, when ex-
panded, yields, in turn

[x*, zl[x*, ylZ [x, z*l[x, y*lZ*"
[x,,yl=[x,y,l*;

Proof of (iii). Let (z1, z2,..., zn) -glh*lg2h gmh so that

(Z1, Z2,..., Zn) glhxg2h2 gmhm

We prove by induction on m > 1 that

[x*, yl ";"’"* [x*, y] gxhx’’’gmhm.

For m 1,

[x*, ylgxh* [x*, ylgh*x (by (fi)) [x*, y](gxhl)*= [X*, ylghx (by (ii)).

For the inductive step, we assume [x*, y]gh*x gmhC, IX*, y]gh gmhm. Then,

Proof of (iv). We use (iii) to write 1 [y, x*; y, x*] [y, x*; y, x]. Then,
expansion of [y, x’x] [y, xx*] yields, in turn,

[Y, xl[y, x*] [y, x*, x] [y, x*ltY, xl[y, x, x*];
[y, x*, x [y, x, x’l; [x*, y, x] -ty’* [x, y, x*]-[y,x].
[x*, y, x] [x, y, x*] (by (iii)).
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Proof of (v). By induction on n > 1. For n 1 the result is given by (iv).
We assume that n > 2 and that the result holds for n 1. Thus,

xq’, Yl,..., Yn-2, (Yn-lYn), X] IX, Yx,’" Yn-2, (Yn-XYn), X]
which upon expansion yields,

[[ x, YI,.-., Yn-2, Yn][ Xq’, YI,’’’, Yn-2, Yn-1] X, Yl,’’’, Yn-2, Yn-X, Yn], X]
[Ix, YX,’’’, Yn-2, Yn][ x, Yl,’’’, Yn-2, Yn-1]

X [X, YI,’", Yn-2, Yn-1, Yn], Xq’]

Therefore,

Yl Yn-2, Yn, x
tx*, Yl Yn-2, Yn-ll[x Yl Yn-2, Yn-1, Ynl

xq’, Yl,"’, Y,-2, Y,-x, x] t’*’y y.-2,y.-,y,l

x, Yl,’", Y,,-2, Y,,-, Y,,, X]
[X, YI,’", Yn-2, Yn, X] [x’yx Yn-2’Yn-I][X’Yl Yn-2,Yn-I,Yn]

X [X, Yl,-’-, Yn-2, Yn-1, Xq] [x’y Yn-2,Yn-l,Yn]

[x, y, Y,, 2, Y,,-, Y,,, x’t’]
which by the induction hypothesis, together with (iii) yields

Yl,’", Yn, x X, Yx,..., yn, x
as desired. This completes the proof of Lemma 2.1.

For subgroups H, K of a group G, we set [H, Ok] H and denote by
H, nK] the subgroup

[H, Kx,..., K,] with K K (1 < < n).

In particular, 3’,+ x(G) [G, nG]. We now prove:

LEMMA 2.2. (i) [G*, G, G*,..., G*"] [G*, (n + 1)G] for all n > 1 and
all e {1, q};

(ii) [G*, raG; v,(G)] < [G4’, (m + n)G] for all m > O, n > 1;
(iii) [G*,..., G*"] < [G*,(n 1)G],,(G)O,(Gq’), where HI) denotes the

normal closure ofH in D D(G).

Proof The proof of (i) is an immediate consequence of Lemma 2.1 (iii).
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The proof of (ii) is by induction on n > 1. For n 1, there is nothing to
prove. For the inductive step we assume n > 2 and that the result holds for
n 1. With x Vn_l(G), y G, z [G q’, mG], the equivalent form of the
Witt identity [z,[x, y]] [z, y-l, xz]y[z, x-l, y-1]xy, together with Lemma
2.1 (iii), yields

[G, mG, ),n(G)] < [G, (m + 1)G, 7_(G)] 6[G, mG, /_(G), G]
< [G, (m + 1)G, _x(G)] [G, mG, /_(G), G]
< [Gq’,(m + n)G].

For the proof of (iii) we may assume n > 2 and

(el,..., en) , (1,...,1),(,...,

Then, without loss of generality,

Thus

(e,. e,) (q,..., b,1, ei+2,..., e,,) for some 1 _< < n.

to",..., a a’,+,-

[3’i(G)*, G, (n 1)G], (by Lemma 2.1 (iii))

[’/i(G), G*,(n- i- 1)G]
[G*, 3/i(G),(n- i- 1)G]

< [G*, (n 1)G] (by (ii)).

As a ,corollary of Lemma 2.2 we obtain:

LEMMA 2.3. Let ),+(G)= {1) and D D(G). Then
(i) [),,. + (D), 3’2(D)] ( 1 },
(ii) [3,i(D), 3,2(D),(2c- 1 i)D] {1) for all i> 2.

Proof.
Thus,

For the proof of (i) we have, by Lemma 2.2 (iii), 3’+ 1(D) [G*, cG].

(e, e2 (1,,})
(by Lemma 2.1 (iii))

(by Lemma 2.1 (iii))
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For the proof of (ii) we make repeated application of the inclusion

s, c] _< c, s][s, c,

for normal subgroups A, B, C of D to obtain, for > 2,

[’i (D), 2 (D), (2c 1 i)D] < I-I 3% (D), /,(D)]
m+n=2c+l

m,n>_2

Since m >_ c + 1 or n >_ c + 1, the result follows by (i).
As in Levin [1], an immediate consequence of Lemma 2.3 yields:

LEMMA 2.4. If ),+x(G) (1), then for all gi G and e {1, },

630 0(2c+ 1)o]2c+1

for all permutations o of {3,..., 2c + 1}.

An important consequence of Lemma 2.4 is the following Lemma on local
nilpotency of D(G).

LEMMA 2.5.
nilpotent.

If G is a locally nilpotent group then D(G) is also locally

Proof Let (hx,...,h,} be a set of dements of D D(G) and let
(gt,-.-, g,,) be its support in G. We wish to prove that (ht,..., hn) is a
nilpotent subgroup of D. Clearly, we may assume m >_ 2. Since (g,..., gin) is
a nilpotent subgroup of G, say of class c, by Lemma 2.2 (iii), it suffices to
prove that

Ix y, Z1,... Zc. 1

for some large c* > c and all x, y, z (gt,..., g,,). With c* > 2cm, by
Lemma 2.3 and 2.4, Ix *, y,z,...,z,] can be written as a product of
commutators of the form

[x’, y, kg,..., kmg’m]

where ( g g’m} ( g, gin} kx > > k,, > 0 and E tk > c* >
2cm. It follows that k > 2c and, therefore, it suffices to prove that [x, y, kz]

1 for all k>2candx, y,z
Let G (x, y, z). Then, by hypothesis, Yc+ t(G) { 1 ). By Lemma 2.3, we

may use the Jacobi congruence to write

[x, y, z,(k 1)z] [x *, z, y,(k 1)z][x*,[y, zl,(k 1)z]
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and

[x*, [y, z],(k 1)z] [z, y, x*,(k 1)z]
[z, y,(k- 1)z,.x]

"-1.

Thus,

[x*,y,z,(k- 1)z] [x*, z, y, (k -1)z]
[z*, x, y, (k z]
[z, x, y, (k 2)z, z ’t’] - (by Lemma 2.1 (iv))

-----1.

This completes the proof of Lemma 2.5.

3. The main results

Let G be a nilpotent group of class at most c, c >_ 1. Then, by Lemma 2.1.
(iv), D D(G) satisfies the identity

x, Y2,’", Yc+l, X] 1 (3.1)

for all x, Yi G.
If G (x, y) then, modulo Yc+3(D), Yc+2(D) is generated by elements of

the form [x*, z2,..., Z+lX and [y*, z2,..., Zc+l, y], with zl (x, y), each
of which is trivial by (3.1). It follows that 3,+2(D)= ,/c+3(D). Since D is
nilpotent (Lemma 2.5), we have -/+2(D) (1). We record this as follows:

THEOREM 3.1. If G is a 2-generator nilpotent group of class at most c, then
D(G) is nilpotent of class at most c + 1.

We now investigate the general case with "rc+(G)= (1). Working modulo
Yc+ 3(D), the identity (3.1) yields

1 [x’t’yx*, Y2, Yc+, xYtl =- xq’ l[,Y2,...,Yc/,Yl Y ,Y-,...,Yc+,x

which on commuting with x and using (3.1) gives

[Y, Y2,..., Y+I, x, x] -= 1 (mod 3%+4(0)) (3.2)
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for all x, y; G. Furthermore, modulo Yc+4(D), for 2 < k < c, we have

[[Yl, Y:z yk],[x, Yk+l], yk+9.,..., Y+1, x]
[[Y, Y:z,’", Y], x’t’, Y/I, Y+:z,’", Y+I, xl
[[ t -1x*, yk+l [Yl,-.., Yk], Yk+2,’’’, Yc+l, X

[[X, Yk+l], [Yl,’", Yk], Yk+2,..’, Yc+X, X’] -1 (by (3.1))
1 (since "Yc+l(G)= (1)).

We record this as

[[Yl’/’, Y2,-.-, Yk],[X, Yk+x], Yk+2,-’’, Yc+l, X] 1 (mod 3’+4(D)) (3.3)

for all x, Yi G and all 2 < k < c. By (3.3), for 2 < k < c, we have

[Ylq’, Y2,’", Y/C, X, Y/C+I, Y/C+2,’", Yc+X, X]
[yl*,y:,.,...,y/c+,x,y/c+v.,...,y+,x]

=- [yx*, yc+l,X,X]
1 (by (3.2)).

Also, [Yl*, x, y:,..., Yc+t, x] [x "t’, Yl,.-., Yc+l, x] -1 1 by (3.1). Thus we
have

[Ylq’, Y2,"’, Yk, X, Y/C+I Yc+l, X] =-- 1 (mod "gc+4(D)) (3.4)

for all 1 < k < c + 1. Replacing x by xz in (3.4) and expanding modulo
c+ 4(D) yields the congruence

[1 [1 1-1y yk, x, y/c+,..., Yc+, z Y Y/c, z, Yk+l Yc+l, x

(by Lemma 2.1 (iii))

Using (3.5) it follows that every commutator of weight c + 3 in D with a
repeated entry x can be expressed, modulo Yc+4(D), as a product of commuta-
tors of the form

[Y,’’’, Yk, X, Yk+x,’’’, Y+x,X], 1 < k < c + l,

which is trivial by (3.4). In particular, if G is an m-generator group with



282 NARAIN GUPTA, NORAI ROCCO AND SAID SIDKI

Yc+l(G) {1} and rn < c + 2, then "Ym+3(D)= Ym+4(D) {1}, by
Lemma 2.5. We have thus proved:

THEOREM 3.2. Let G be an m-generator nilpotent group of class at most c
with m > 2, c > 1. Then for rn < c + 2, Yc+3(D(G))= {1}.

Let G be nilpotent of class at most c. The congruence (3.5) also yields

[Yl*,-.-, Yc+l, x, z]

so that

Y Yc+l, Z, X

--[y*x,...,yc+l,x,z] -1 (by Lemma 2.3(i)),

[Y, Y+I, x z] 2 1 (mod Vc+,(D))

By Theorem 3.2 every commutator of weight c + 4 in D with entries from the
set

{Yl,..., Yc+l,X, Z }

is trivial. Thus we have

Y,. Yc+ 1, x, z ]9_ 1. (3.6)

Repeated application of (3.5) yields

Y, Y2,..., Yc+3 Y, Y2o,..., Y(c+3)o

where o is a permutation of {2,..., c + 3} and Iol 1 or -1 according as o
is even or odd. Thus, if G is an m-generator group with m > c + 3, then for

c + 3 < k < m, there are choices for distinct k-element sets from the
generators of G. This fact her with (3.6) gives us the following theorem.

THEOREM 3.3. Let G be an m-generator nilpotent group of class at most c
with rn > 2, c > 1. Then, for rn > c + 3, ,/,+ 3(D(G)) is an elementary abelian
2-group of rank at most

m

k=c+3

COROLLARY 3.4. (c.f. Rocco [3]) Let G be a p-group of class c with p odd.
Then D(G) is a p-group of class at most c + 2.
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