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1. Introduction and results

In the present work we shall be concerned with three classical decision
problems of group theory, the word problem, the generalized word problem
and the conjugacy problem. It is now known that all three problems have
negative solutions even in the class of finitely presentéd soluble groups. The
first example of a finitely presented soluble group with insoluble word problem
was given by Harlampovi¢ [8]. Further examples have been found by
Baumslag, Gildenhuys and Strebel [3].

In the light of these negative results it is of interest to discover finiteness
conditions which are strong enough to imply solubility of one or more of the
three decision problems. Indeed some such conditions are already known.
Baumslag, Cannonito and Miller [1] showed that the word problem is soluble
for nilpotent-by-polycyclic-by-finite groups which satisfy max-n, the maximal
condition on normal subgroups; in particular this conclusion applies to finitely
generated abelian-by-polycyclic-by-finite groups, by a well-known theorem of
P. Hall [7]. At this point it is as well to note that Harlampovi¢’s example has
derived length 3 and is nilpotent of class 4-by-abelian; of course the group
does not have max-n. Another cautionary remark; there are soluble groups of
derived length 3 satisfying max-n which are not recursively presentable and
thus have insoluble word problem; such examples are constructed in [16].
However it remains an open question whether a finitely presented (or even
recursively presented) soluble group with max-n necessarily has soluble word
problem.

Another positive result on the word problem was recently obtained by
Cannonito and Robinson [4]; it was shown that a finitely generated soluble
group with finite Priifer rank has soluble word problem if and only if the
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198 DEREK J.S. ROBINSON

group is recursively presented; furthermore the word problem is soluble for
finitely generated soluble groups of finite Priifer rank which are residually
finite. On the other hand, cardinality arguments establish the existence of
finitely generated soluble groups of finite Priifer rank which have insoluble
word problem.

Much less is known about the generalized word problem and the conjugacy
problem. Both problems have positive solutions for polycyclic-by-finite groups
since such groups have separable subgroups (Mal’cev [11]) and are conjugacy
separable (Remeslennikov [13], Formanek [6]). Also it has been observed by
Romanovskii [17] that the generalized word problem is soluble for finitely
generated abelian-by-nilpotent groups. Finally a recent article by Noskov [12]
gives a positive solution to the conjugacy problem for finitely presented
metabelian groups.

Soluble groups with finite rank. The aim of the present work is to determine
to what extent the three decision problems can be solved for the various
classes of soluble groups with finite rank. In this investigation we shall not
restrict ourselves to finitely generated groups.

We begin with a review of the classes of soluble groups involved. If 4 is an
abelian group, r,(4) and ry(A) denote respectively the p-rank and the
torsion-free rank of A. The total rank of A is

ro(A) + Xr,(4),

the sum being formed over all primes p.

A soluble group has finite total rank if for some series of finite length with
abelian factors each factor has finite total rank. It is clear that a soluble group
of finite total rank has finite Priifer rank (i.e. there is g finite upper bound for
the minimum number of generators of a finitely generated subgroup).

A minimax group is a group having a series of finite length whose factors
satisfy either max (the maximal condition) or min (the minimal condition). It
is straightforward to show that the soluble minimax groups are exactly the
poly- (cyclic or quasicyclic) groups. If G is a finite extension of a soluble
minimax group, the number of infinite factors in a series with cyclic or
quasicyclic factors is an invariant

m(G)

called the minimality of G. Obviously every soluble minimax group has finite
total rank. Finally it should be mentioned that for finitely generated soluble
groups the properties “finite Priifer rank”, “finite total rank” and “minimax”
coincide; for more on this see [14].
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Results. Our conclusions relate to soluble groups which have finite total
rank or are minimax and which have a recursive presentation. There are three
main results.

THEOREM 2.3*, Let G be a finite extension of a soluble group of finite total
rank. Then the word problem can be solved for a presentation of G if and only if
the presentation is recursive.

THEOREM 3.1. Let G be a finite extension of a soluble minimax group.
Assume that G has a recursive presentation and that H is a subgroup of G which
is recursively enumerable in terms of the presentation. Then there is an algorithm
which decides membership of elements of G in H.

THEOREM 4.1. Let G be a finite extension of a soluble minimax group.
Assume that G has a recursive presentation and that g is an element of G given in
terms of the presentation. Then there is an algorithm which decides if an element
of G is conjugate to g.

Of these theorems the first is a generalization of the main result of [4]; it in
turn is a special case of a more general but less quotable result (2.3) in §2. The
third theorem represents a positive solution to a weak form of the conjugacy
problem, the point being that the algorithm constructed is not uniform in g.
Indeed Collins [5] has demonstrated that this form of the conjugacy problem is
definitely weaker. We do not know if a uniform algorithm exists in the
situation of Theorem 4.1. In addition it should be said that the algorithm of
Theorem 3.1 is not uniform in H.

Examples are given which show that Theorems 3.1 and 4.1 are not valid for
soluble groups of finite total rank. Thus the class of soluble-by-finite minimax
groups seems to represent the natural setting for theorems of this type.

As a consequence of the main theorems one concludes that the following
properties coincide for a group G which is a finite extension of a soluble
minimax group:

(i) G has a recursive presentation,

(ii) G has soluble word problem,

(ii)) G has soluble generalized word problem,

(iv) G has soluble (weak) conjugacy problem.

In particular all four properties are enjoyed by finitely presented soluble
groups of finite Priifer rank, and by finitely generated residually finite soluble
groups of finite Priifer rank.

It does not seem possible to obtain results like Theorems 3.1 and 4.1 by
appealing to separability of subgroups of conjugacy separability, as in the case
of polycyclic groups. Indeed Jeanes and Wilson [10] have proved that a finitely
generated soluble group has separable subgroups if and only if it is polycyclic,
while Wehrfritz [20] has exhibited a finitely presented soluble minimax group
which is not conjugacy separable.
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Notation. If A is a module over a group Q, the set of Q-fixed points is
written 49, Also [4, Q] is the submodule generated by all [a, x] = a(x — 1),
a€ A, xe€ Q.

2. The word problem

DEFINITION . A normal subgroup W of a group G is said to be weakly
minimal normal if it is not a torsion group but all its proper G-invariant
quotient groups are torsion. The subgroup generated by all weakly minimal
normal subgroups of G is called the weak socle,

wsoc(G);

this is taken to be the identity subgroup should G turn out to have no weakly
minimal normal subgroups.

Recall that a set of normal subgroups of a group is termed independent if
the subgroup which they generate is their direct product. It is a consequence of
Zorn’s Lemma that any group G possesses a maximal independent set of
weakly minimal normal subgroups. Let {W,|A € A} be such a set of sub-
groups of G, presumed non-empty. Choose an element g, of infinite order
from W,; then the set { g,|A € A} will be called a basis of wsoc(G). It follows
easily from the definitions that

wsoc(G)/(gSIA € A)

is a torsion group. Also of course {g¢) is weakly minimal normal in G.
Finally, a prime base of a group G is a set of elements of prime order whose
conjugates exhaust the set of all elements of prime order in G.
With the aid of these definitions a rather general criterion can be given for a
group to have soluble word problem. The proof of this result is in the spirit of
arguments used by Huber-Dyson [9].

2.1. Let G be a group with a recursive presentation such that
(i) wsoc(G) has a recursively enumerable (r.e.) basis (in terms of the

presentation),

(i) either G or its maximal normal torsion subgroup has a r.e. prime
base P,

(iii) if N is a non-trivial normal subgroup of G, then either N N wsoc(G) # 1
or else N contains a non-trivial normal torsion subgroup of G. Then the word
problem for the given presentation can be solved.
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Proof. Let
T
R»F->»G

be the given presentation, F being free. Suppose that {a,, a,,...} is a r.e.
basis of wsoc(G), and let u; be a preimage of a; under 7. Also let {v,, v,,...}
be a r.e. set of preimages under 7 of the elements of P. Suppose that f is a
given element of F; it must be shown how to decide if f is in R or not. Put
g=f" and N = (g€); of course it is a question of deciding whether N is
trivial.

If NN P is empty, then N contains no non-trivial normal torsion sub-
groups of G. If N # 1, then by hypothesis N N wsoc(G) # 1. Writing N, =
(af), we have

L=NNnDrN#1, i=12,...
1

so that the projection of L into some direct factor N, is non-trivial, and of
course normal in G. Since N, is weakly minimal in G, some positive power of
a; must lie in NM; where

M, = (Njj # iy.

Therefore N # 1 if and only if either N N P is non-empty or else a” € NM,
for some positive i and m.

The algorithm which decides whether f is a relator consists of three
procedures:

(i) enumerate the set of all relators R;

(ii) enumerate all words of the form xv; where x € ( f F Yand i =1,2,...;

(iii) enumerate all words of the form wu; "xw;,...w,_w,,,...w, where
i, r,m are positive integers, x € (f*) and w; € (uf).
Either f will be obtained by procedure (i), in which event f is a relator, or else
a relator will be produced by procedure (ii) or (iii), which means that f is not
a relator.

DEFINITION. A group is said to satisfy the weak minimal condition for
normal subgroups, wmin-n, if in every descending chain of normal subgroups
all but a finite number of the factors are torsion groups.? For example, every
group with finite torsion-free rank satisfies wmin-n (a group has finite torsion-
free rank if it has a series of finite length whose non-torsion factors are infinite
cyclic).

2Zaicev [21] has used this terminology in a different sense.
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The following is an application of 2.1.

2.2. Let G be a group satisfying the weak minimal condition on normal
subgroups and let a presentation of G be given.

(i) If the word problem is soluble for the presentation, then the presentation is
recursive and G has a r.e. prime base.

(ii) If the presentation is recursive and if either G or its maximal normal
torsion subgroup has a r.e. prime base, then the word problem is soluble for the
presentation.

Proof. (i) This is clear; for if the word problem is soluble, the set of all
elements of prime order can be enumerated and taken to form a prime base
for G.

(ii) Let N be a non-trivial normal subgroup which contains no non-trivial
normal torsion subgroups of G. If N did not contain a weakly minimal normal
subgroup of G, there would exist an infinite descending chain of normal
subgroups of G with non-torsion factors, violating wmin-n. It follows that
N N wsoc(G) # 1. Observe that wmin-n implies the existence of a finite basis
of wsoc(G) (which may be empty). The result now follows from 2.1.

2.3. Let G be a group which satisfies the weak minimal condition on normal
subgroups. Assume that the maximal normal torsion-subgroup T of G is a
Cernikov group. Then the word problem is soluble for a presentation of G if and
only if the presentation is recursive.

Proof. It is well known that the elements of prime order in a Cernikov
group fall into finitely many conjugacy classes. Hence there is a finite prime
base of T; the result is now a consequence of 2.2.

In particular this result applies to a finite extension of a soluble group with
finite total rank; thus Theorem 2.3* follows at once. On the other hand, there
is no such result for soluble groups of finite Priifer rank, as a very simple
example shows.

2.4. There is a recursively presented abelian torsion group with finite Priifer
rank such that the word problem is insoluble for every presentation.

Proof. Let 7 be a r.e. but non-recursive set of primes. Define G to be the
group with generators x, where p is any prime, and relations

[x,, x,] =1=x} (Vp,q),
together with

x,=1lif pe .
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Evidently G = Dr,.,.C, and the above is a recursive presentation. Suppose
that the word problem were soluble for some presentation of G. Then it would
be possible to compute the orders of the generators in that presentation, and
hence to list all primes p for which there is an element of order p in G.
However this is absurd since 7’ is not r.e..

Next we give an algorithm which decides if an element is contained in the
maximal normal torsion subgroup; this will prove useful in the sequel.

2.5. Let G be a group with finite torsion-free rank whose torsion-factors are
locally finite and whose maximal normal torsion subgroup T is a Cernikov group.
Assume also that G is recursively presented. Then there is an algorithm which
decides membership in T. Thus G/T has soluble word problem.

Proof. 1t will be argued first that T is r.e. in terms of the given presenta-
tion. By a slight extension of a result of Mal’cev (cf. [14, Lemma 9.34]) the
group G/T has a series of normal subgroups of finite length whose infinite
factors are torsion-free abelian groups of finite rank. By [14, Theorem 9.39.3]
there is a torsion-free normal subgroup of finite index in G/T. Consequently
there is a positive integer m such that G”T/T is torsion-free and G/G™T is
finite.

Let F denote the set of all elements of finite order in G. Then F is r.e. since
one can enumerate all pairs (g, n) with g € G, n = 1,2,..., and in each case
decide whether g” equals the identity, using the positive solution of the word
problem furnished by 2.3. Since G™ is obviously r.e., so is G™ N F. Moreover
G™" N F=G™N T since G"T/T is torsion-free. But T/G™ N T is certainly
finite, so it follows that T is r.e..

Finally G/T has a recursive presentation and by 2.3 the word problem is
soluble for this group.

3. The generalized word problem
The main result in this section is the following:

3.1. Let G be a finite extension of a soluble minimax group. Assume that G
has a recursive presentation and that H is a subgroup of G which is recursively
enumerable in terms of the presentation. Then there is an algorithm which decides
membership of elements of G in H.

Proof. Let m be the minimality of G. If m = 0, then G is finite and the
result is clear. Assume m > 0. The proof is by induction on m. The group G
contains an infinite abelian normal subgroup—for example, the centre of the
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Fitting subgroup of a soluble normal subgroup of finite index. Consequently
there is a non-trivial normal abelian subgroup 4, which is either torsion-free
or a divisible p-group for some prime p. If 4, is torsion-free, define 4 to be
the normal closure in G of some non-trivial element of A,; then A is r.e.

Suppose, on the other hand, that A, is a divisible p-group. Let T be the
unique maximum normal torsion subgroup of G. Then T is r.e. by 2.5. Also T
is a Cernikov group, so some T" is a r.e. divisible abelian torsion group
containing A,. Since the word problem is soluble in G, the p-component of
T" is r.e.; define 4 to be this subgroup.

Using the r.e. subgroup A4 constructed in the last two paragraphs, one
observes that m(G/A4) < m(G), while G/A has a recursive presentation. Since
HA /A is r.e., induction shows that there is an algorithm to decide membership
in HA/A.

Let g be a given element of G. One first decides whether g4 belongs to
HA/A. If it does not, then certainly g & H. Suppose that g € HA. Enumerate
all elements of the form A~g with 4 in H, and in each case decide if A~ g
belongs to A. This is possible because the word problem is soluble in G/4. By
this means an element a = h~'g of 4 with 4 in H can be found. Now g € H
if and only if a € H N A. Thus it suffices to solve the word problem for
A/H N A.But H N A isr.e. since both H and A are r.e. Hence A/H N A has
a recursive presentation and the result follows from (2.3).

In the proof of (3.1) it is essential that we are dealing with a quotient-closed
class of groups. Soluble groups of finite total rank do not form such a class,
and in fact the theorem fails for this class.

3.2. There is a recursively presented torsion-free abelian group of rank 1 with
a recursively enumerable subgroup H such that no algorithm can decide member-
ship in H.

Proof. Let G be the additive group of rational numbers with square-free
denominators. Let 7 be a r.e. non-recursive set of primes and define H to be
the subgroup of G generated by the reciprocals of the primes in 7. Then G has
a recursive presentation and H is r.e. in terms of this presentation. However
G/H is isomorphic with the group of 2.4, and this group has insoluble word
problem for every presentation. Therefore it is impossible to decide member-
ship in H algorithmically.

4. The conjugacy problem

The object of this section is to prove the following result.

4.1. Let G be a finite extension of a soluble minimax group. Assume that G
has a recursive presentation and that g is an element of G given in terms of the
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presentation. Then there is an algorithm which decides if an element of G is
conjugate to g.

The major difficulty of the proof resides in establishing the following result,
in reality a special case.

4.2. Let Q and A be minimax groups, A being abelian and Q soluble-by-finite.
Assume that Q and A have recursive presentations and that A is a Q-module by
means of an explicit action of Q on A expressed in terms of the presentation. Let
a be a fixed element of A. Then there is an algorithm which decides of a given
element b of A whether there is a q in Q such that b = aq.

Deduction of 4.1 from 4.2.

Let us assume for the present that 4.2 has been proved. The proof of 4.1 is
by induction on m(G). If m(G) = 0, then G is finite and the result is obvious.
Assume therefore that m(G) > 0.

(1) There is an infinite r.e. normal abelian subgroup A, of G.

In the first place there is an infinite normal abelian subgroup 4 of G, for
example, the centre of the Fitting subgroup of soluble normal subgroup of
finite index in G. If A4, is reduced, some A7* with m > 0 is torsion-free. Define
A, to be the normal closure in G of any non-trivial element of A]". Then 4, is
certainly r.e.

If, on the other hand, A4, contains a p®-subgroup for some prime p, the
maximum normal torsion subgroup T of G will also contain this p® subgroup.
Also T is a Cernikov group, so some T™ with m > 0 is divisible abelian. Let
A, be the p-component of T™. By 2.5 the subgroup T is r.e., whence so is T™.
Finally A, is r.e. because the word problem is soluble in G.

(2) It may be assumed that [ g, Gl < A,. Moreover it suffices to decide conjugacy
to g of elements x such that x = g mod A,

Since A4, is r.e., G/A, is recursively presented, and because m(G/4,) <
m(G), there is an algorithm to decide conjugacy to g4, in G/A4,. If an element
x of G is not conjugate to g modulo A4, it is certainly not conjugate to g.
Thus one can assume that x4, is conjugate to g4,. Replacing x by a suitable
conjugate, one can further assume that x = gmod 4,. Put K = C;(g4,);
then (x, g, 4,) < K and x is conjugate to g in G if and only if it is conjugate
to g in K. Also X is r.e. since the word problem for G/A, is soluble (by 2.3).
Hence K has a recursive presentation. One can therefore replace G by K and
assume that [g, G] < 4,.

(3) Conclusion.
Consider the r.e. subgroup [4,, g], which is normal in G because [g, G] <
A,. If this subgroup is infinite, then m(G/[4,, g]) < m(G) and there is an
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algorithm to decide conjugacy to g mod[A4,, g]. Therefore it is enough to
consider elements x such that x = g mod[A4,, g]. But then x~'g = [a,, g] for
some a, € A,, and x = g?; thus such elements are always conjugate to g.

Now assume that [4,, g] has finite order m. Then [A4F, g] = 1. Clearly one
can replace A, by A7 and then make the reductions of (2). Hence one can
assume that 4 = (4, g) is a normal abelian subgroup of G. Of course 4 is
recursively presented, as is Q = G/4; also 4 is a Q-module via conjugation
and the Q-action is explicitly known. Hence 4.2 can be applied to decide
conjugacy to g of any element x satisfying x = g mod 4,,.

Proof of 4.2. We begin with some terminology. Let Q be a group and let A
be a Q-module. If a, b are elements of A, then b is said to be Q-conjugate to a
if b = aq for some g in Q. Thus our goal is to find an algorithm that decides
Q-conjugacy to a.

Next assume that A4 is Z-torsion-free. Then, of course, 4 is Q-rationally
irreducible if 4 ®, Q is a simple QQ-module. If 4 is K-rationally irreducible
for every subgroup K with finite index in Q, then 4 will be called a Q-plinth.
This is an extension of the terminology of [18].

The proof of 4.2 is by induction on m(A4) + m(Q). Notice that m(A4) may
be assumed positive; otherwise 4 and Q/Cy(A) are finite and the result is
clear.

(1) There is a non-zero Q-submodule A, of A which is either Z-torsion-free or a
divisible p-group for some prime p.

If A has a p®-subgroup for some prime p, let A, denote the maximal
divisible p-subgroup of A. If however A is reduced, its torsion-subgroup is
finite and there is a positive integer m such that 4™ is torsion-free; in this case
let A, = A"

(2) The case A, a divisible p-group.
We begin with an important reduction.

(2a) It may be assumed that A = {a, A*) where A* is a non-zero r.e. divisible
p-group and a Q-submodule, A/A* is infinite, Q/Cy(A*) is abelian-by-finite
and [a, Q] < A*. Furthermore it suffices to decide Q-conjugacy to a of elements
b such that b = a mod A*.

In the first place observe from its construction that A4 is r.e. since the word
problem is soluble in 4. Next Q acts on A4, as a linear group over the ring of
p-adic integers. By the Lie-Kolchin-Mal’cev Theorem (see for example [14])
there is a m > 0 such that N = (Q™)’ acts unipotently on A4,. Hence there is
a i 2 0 for which [4,, ;N] >[4, ;,1N]=0. Put 4* =[A4,, ;N], observing
that this Q-submodule is divisible and r.e.. Also Q/C,(4*) is abelian-by-finite
since Cy(A4*) = N and Q/N is abelian-by-finite.
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Since A/A* is recursively presented and m(A4/A*) < m(A4), there is an
algorithm to decide Q-conjugacy of b + A* to a + A*. It is therefore clear
that it suffices to discuss elements b satisfying b = a mod 4*. Now

Cola + A*/A4*)

is r.e. because the word problem is soluble in A /A4*. Hence one may replace Q
by Cy(a + A*/A*) and assume that [a, Q] < A*. If 4/4* is finite, then 4
satisfies min; in this situation one need only enumerate the finite set of
elements of A with the same order as a and check each element for Q-con-
jugacy to a. Thus one can suppose that 4/A4* is infinite. Finally, it is clearly
in order to replace 4 by (a, A*) since the latter is a Q-submodule contain-
ing b.

(2b) The case Q/Cy(A) abelian-by-finite.

There is a positive integer m such that [4, M’] = 0 where M = Q™. Clearly
M is recursively presented and Q/M is finite. In fact it suffices to be able to
decide M-conjugacy to a. For let {u,,..., u,} be a transversal to M in Q. Let
q € Q and write ¢ = xu; with x € M and 1 < i < k. Then b = aq holds if
and only if bu; ! = ax; thus it is enough to check each of the k elements bu; !
for M-conjugacy to a.

First consider the case where M acts unipotently on 4*, so that[A4*, ,M] =0
for some least i > 0. Put B = [A*, ;_,M]; then B is a r.e. Q-submodule and
[B, M] = 0. Thus one can replace 4* by B—making once again the reduc-
tions of (2a)—and assume that [4*, M] = 0.

In this case [a, M] actually consists of elements of the form a(x — 1),
x € M. Hence b is M-conjugate to a if and only if b — a € [a, M]. Now
[a, M] is r.e., so the word problem is soluble in A4 /[a, M]. Therefore M-con-
jugacy to a is decidable.

Now consider the case where M does not act unipotently on A*. Then there
is an element x, of M which does not act unipotently on M. Consequently
there is an integer j with the property [A4*, ;x,] = [4*, ;,1x,] # 0. One now
replaces 4* by [4*, ;x,] and Q by M and makes the reductions of (2a). Thus
one may assume that

A* = [A4*, x,];

this implies that (4*)¢*> is finite, say of order n. Hence [4, x,] < 4* =
[4*, x,] and A = A* + A0, 1t follows that A<*> is not a torsion group.
Next,

[40), M] < (4%)&
since [4, M’] = 0. Hence

[(4)n, M] = [4C, M]n < (4*)%n = 0.
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Therefore (A<*?)n < AM and so AM cannot be a torsion group. It follows that
|A: AM + A*|is finite, equal to d say.

The next step is to show how to decide if ad and bd in AM + A* are
M-conjugate. Let ¢ = bd — ad € A* and write ad = a, + a* where a, € AM
and a* € A4*. Then ad(x — 1) = a*(x — 1) for all x in M. Clearly ¢ + a* is
M-conjugate to a* if and only if bd is M-conjugate to ad. This is certainly
decidable since A* is r.e..

These considerations show that one can assume bd to be M-conjugate to
ad, say bd = (ad)x with x in M. Then b — ax belongs to L = {u € A*|ud =
0}. Thus one can assume that b = amod L.

Let K= Cy(a+ L/L)and K, = Cx({a, L)). Then K/K, is finite since L
is finite. It suffices to decide K-conjugacy, and hence K,conjugacy by a
previous argument. But b € (a, L), so b is K -conjugate to a if and only if
b = a; the latter is certainly decidable.

(2¢) The general case.

By construction, Q/C,(A4*) is abelian-by-finite. Hence there is a positive
integer n such that N = (Q")’ acts trivially on 4*. Of course N is r.e.. Also
[a, N] =[A4, N] < A*. By (2b) one can decide Q-conjugacy of b to a modulo
[4, N] since Q/N is abelian-by-finite. Assume therefore that b =
a mod[ A4, N]. But then b is automatically N-conjugate to a since b — a = a(x
— 1) and b = ax for some x in N. This completes the proof in the divisible
case.

(3) The case A, torsion-free.
Here too we need to make a number of initial reductions.

(3a) There is a r.e. subgroup K with finite index in Q and a r.e. K-submodule A*
of A, which is a K-finitely generated K-plinth.

Write K, = Q. If A, is not a Kplinth, there is a subgroup K; of finite
index in K, and a K;-submodule 4; of A, such that 0 < ry(A4,) < ry(4,).
The same argument may be applied to 4, if it is not a K;-plinth, and so on. It
follows that there must exist a subgroup K; with finite index in Q and a
K -plinth A4, contained in A4,. Set K = Q where t = |Q: K| and define A* to
be the K-submodule of 4; generated by some non-zero element.

(3b) It may be assumed that A = {(a, A*), A/A* is torsion-free, A* is a
Q-finitely generated Q-plinth and [a, Q] < A*. Furthermore it suffices to be able
to decide Q-conjugacy to a of elements b satisfying b = a mod A*.

In the first place it suffices to decide K-conjugacy because |Q: K| is finite.
Since m(A/A*) < m(A), one need only discuss elements b in a + A* and
clearly it is K; = Cg(a + A*)-conjugacy which is at issue. If |K: K| is
infinite, then m(K;) < m(K) = m(Q) and the induction hypothesis applies.
Assume therefore that |K: K| is finite, so that A* is a K,-finitely generated
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K, -plinth. It is clear that one can replace Q, 4, and A4 by K;, A* and
(a, A*).

Suppose that 4/A* is finite and let T be the Z-torsion subgroup of A.
Then T is finite. Assume that Q-conjugacy to a + T in A/T is decidable.
Then one may restrict attention to elements b of a + T. Write b = a + ¢ with
t in T. Now b = aq with ¢ in Q if and only if ¢ = a(q — 1). However,
a(q — 1) € A* N T = Osince [a, Q] < 4*. Hence b is Q-conjugate to a if and
only if b = a, which is certainly decidable. Consequently one may assume that
A is torsion-free.

(3¢c) The case A = A*.

Since A4 is a torsion-free abelian group of finite rank and the word problem
is soluble in A, the group Cy(A) is r.e. and therefore Q/C,(A) has a recursive
presentation. Hence one may suppose Q to act faithfully on 4.

Now 4 is rationally irreducible; it is a well-known theorem of Mal’cev (see
[14])) that Q is abelian-by-finite. Replacing Q by a suitable power one can
assume that Q is abelian. Note that 4 remains a plinth for Q. By [14, Lemma
5.29.1], the group Q is finitely generated.

Write S = Z(Q, the integral group ring. Then S is a finitely generated
commutative ring, so it is submodule computable [2]. Let R be the ring of
endomorphisms of 4 generated by Q. Then R = S/L where L is the annihila-
tor of 4 in S. Since A is rationally irreducible as a Q-module, L is a prime
ideal of S. Thus R is a finitely generated integral domain of characteristic 0. It
follows by a result of Samuel ([19]) that the group of units R* of R is a finitely
generated abelian group. Clearly Q < R*.

It must be shown how to decide if a given element b of 4 is Q-conjugate to
a; one can, of course, assume that a # 0 and b # 0. Since 4 is rationally
irreducible, 4 /aS is a torsion group, so there exist a positive integer m and a
non-zero element s of S such that bm = as. Moreover, once b is given, such a
pair (m, s) can be found by simply enumerating the elements of the form
bm — as and looking for one that is 0. Let s induce the endomorphism r of A4.

Since A is torsion-free, b = aq with ¢ in Q if and only if ar = agm. This is
equivalent to r = gm (in End A) since A is rationally irreducible. There is,
therefore, only one possible candidate for ¢, namely the element rm ™! in the
field of fractions of R. Thus b is Q-conjugate to a if and only if rm~! € Q. It
remains to decide this point.

The first step is to decide whether rm~! belongs to R, i.e. if r € Rm. This
amounts to deciding whether s belongs to L + Sm. But membership in the
ideal L + Sm can be decided by a uniform algorithm because S is submodule
computable. If » & Rm, then certainly rm~! & Q, so assume that rm~! € R.
Next one decides whether r~!m € R, or equivalently whether m belongs to
L + Ss; again this is possible by submodule computability. Assume that
r~!m € R, so that rm~! € R*. But R* is a finitely generated abelian group
with Q a subgroup, so there is an algorithm to decide whether rm ™! belongs to
0, and hence whether b is Q-conjugate to a.
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(3d) The case A/A* infinite and A = {a) & A*.
Write C = Cy(4); two further case distinctions must be made.

(3e) The case Q/C abelian-by-finite.

There is an m > 0 such that (Q™)’ acts trivially on 4. Of course N = Q" is
re. and Q/N is finite. As usual it is enough to decide N-conjugacy to a. If
[A*, N} = 0, then [a, N] consists of elements of the form a(x — 1), x €N
and one proceeds as in (2b) (third paragraph). Assume therefore that

[4*, N] =+ 0.

By rational irreducibility (4*)" = 0. Clearly 4/[4, N] is not torsion, so
AV # 0 (cf. [15, Lemma 5.12]). Since A¥ N A* = 0, it follows that A /AN + A*
is finite, of order d say. Since A4 is torsion-free, b is N-conjugate to a if and
only if ad and bd are N-conjugate in AY + A*. The latter is true precisely
when (b — a)d = (ad)(x — 1) for some x in N. Now ad = a, + a* with
a, € AV and a* € A*, so ad(x — 1) = a*(x — 1). Put b’ = (b — a)d € A*.
It has to be decided if b’ + a* is N-conjugate to a* in 4*. By (3c) this can be
done.

(3f) The case Q/C not abelian-by-finite.

Let D = Cy(4*); then C < D and Q/D is abelian-by-finite. Thus C # D
and [a, D] is a non-zero Q-submodule of A*. Since Cy(4) is obviously r.e.,
one can suppose without loss of generality that Q acts faithfully on A.
Rational irreducibility shows that A*/[a, D] is a torsion group. Since A* is
finitely generated Q-module, 4*/[a, D] is in fact finite.

The decomposition 4 = (a) ® A* shows that each element g of Q may be
identified with a matrix of the form

1 ¢

0 g°
where ¢’ € A* and ¢: Q — Aut A* is a homomorphism with kernel D. Let
H = Im ¢. Define E to be the group of all matrices of the form

o %)

0 h

where a* € A* and h € H. Then Q is a subgroup of E. The groups A* and
H can be identified with subgroups of E by associating a* with

b 7
(o )

Of course A*<E and E = QA*.

and h with
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Let u € [a, D] < A*; then u = a(q — 1) with ¢ in D, and so ag = a + u.

Hence u = ¢’ and
1 u)_ 1 ¢
(0 1)-(0 q")EQ'

Therefore [a, D] < Q. Since 4* /[a, D] is finite, it follows that |E: Q| is finite.
Let {#,,..., .} be a transversal to H N Q in H. Consider an element b of
A such that b = amod 4*. Let
_ (1 a*
°T (0 h )

be an element of E. Then b = ae holds if and only if b — a = a*. It must
therefore be decided whether there is an element & of H such that

3 7
0 &
belongs to Q where a* = b — a.
For any h € H, write
(o 9)=s

withs€e HN Q@ and 1 <i < k. Then

=((l) ah*)=((l) 2)((1) al*)=”"((1) al*)'

Thus e belongs to Q if and only if the element

1 a*
”'(0 1)

belongs to Q. Hence to decide whether b is Q-conjugate to a one must decide
whether one of the k elements
1 a*
"‘(0 1 )

of E belongs to Q. But this is certainly possible. For E is a recursively
presented soluble minimax group (actually a semidirect product H X 4*) and
Q is a r.e. subgroup, so 3.1 may be applied. (Alternatively a simple direct
argument may be applied since |E: Q] is finite.) This completes the proof of
42.
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An example. Finally it will be shown that 4.1 fails for soluble groups of
finite total rank.

4.3. There is a recursively presented torsion-free nilpotent group of class 2
and rank 3 which has an element g such that no algorithm can decide conjugacy
to g.

Proof. Let # be a r.e. non-recursive set of primes. Define S to be the
additive group of square-free rationals and let S, be the subgroup of S
generated by the reciprocals of the primes in «. Let

A=17#oS.

To each s in S there corresponds an automorphism £ of 4 which is described
by the matrix
(o 1)
0 1)

Then Q = {£,|s € Sy} is a subgroup of Aut 4 isomorphic with S;. Now form
the semidirect product

G=0QKA.

Evidently G is nilpotent of class 2 and rank 3; it is also evident that G has a
recursive presentation. Let g=(1,0)€ 4. If s€ S, then (1,5) in 4 is
conjugate to g if and only if s € S,. However it has been shown in (3.2) that
no algorithm can decide membership in S,. Hence no algorithm can decide
conjugacy to g in G.
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