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ON PERMUTATION REPRESENTATIONS
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ALEX HELLER

In Memory of Irving Reiner

By a permutation representation (G, X) we mean a group G together with a
left G-set X. The orbit set G \ X has as its elements the orbits [x] Gx for
x X. The question which we shall address is to what extent the permutation
representation can be recovered from information about orbit sets alone. Its
motivation comes from homotopy theory and we shall indicate below how our
remarks apply there.

Evidently from G \ X alone we cannot reconstruct G and X. But for any set
U the U-th power of X, i.e., the set Xv of functions x: U X, is again a
G-set, with (gx)i g(xi) for g G, U. Furthermore if F: U V then
xf: XV Xv, the composition with f, is a G-equivariant map. Thus

U G\Xu, f G\X/

defines a functor Orb(G, X)" Setsp Sets, the orbit-functor of (G, X). We
shall see that from this functor we can indeed reconstruct, up to a suitable
equivalence, the permutation representation.

I. Orbital functors

We shall adopt the following conventions. A natural number n is the set
(0,1,...,n-I} of its predecessors, so that 0=. If f: mm’ and g"
n n’ are maps of natural numbers then f+g: m+nm’+n’ is the
ordinal sum in the obvious sense. For any set W, _W: 0 W and W: W 1
are the unique maps; we shall also on occasion write W for the identity map.
For sets U, V, A: U UV denotes the generalized diagonal map. If F:
Setsp Sets then the natural transformation dg: F(U V) (FU)V is
defined by prjdg F(U j) where j" 1 V is an element of V.
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If Y: 1 FU is an element of FU we define the functor

Fy" Setsp Setsp Sets,

which we shall (a bit fancifully) call the functor tangent to F at Y, by taking
for Fy(V, IV) the subset of F(U V t_l W) such that

F (V,W)

Y
1 FU

’F(UX VII W)
F(injo

F(U V)

(FU) v

is a pullback.
Note that Fy(O,W) FW, while FrO, O) (Y } 1.
An element Y FU is generic if Fy satisfies the following conditions:

(G1) For n 1,2, 3 the maps

a,,(W) (Fy(2 + n 1, W_), Fy(1 + n, W))"
Fy(n + 1, W) --) Fy(2,0) Fy(n, W)

are bijective.
(G2) The diagrams

Fy(2, W) Fy(1-+ l’ W>tFy(1, W) FrO, W>

Fv(1 + 1_., W)

w)

are coequalizers.
(G3) The maps dg: FrO, W) Fy(1,1)w are bijective.

A functor F is orbital if it has a genetic element. If Y FU is generic then

Fy(1 + 1_. + 1,0)a(0) -" Fy(2,0) Fy(2,0) ---> Fy(2,0)
Fr(tr, 0)" Fr(2, O) ---) Fy(2, 0), where tr is the transposition,

e Fr(2, 0)" Fr(1, O) = Fy(1,1) = 1 --) Fy(2, O)

are, respectively, binary, unary and 0-ary operations in the set Fy(2, 0) and

liw Fr(1 + 1, W)al(W) -" Fy(2,0) Fr(1, W)-)Fy(1, W)

is a natural transformation.
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PROPOSITION 1.1. (i) The operations I, , e give to Fy(2, O) the structure of
a group.

(ii) w makes Fr(1, W) a left Fy(2, O)-set and, iff: W W’, Fr(1, f) an
Fv(2, O)-equivariant map.

(iii) Thus, as left Fv(2, 0) sets,

Fr(1, W) Fr(1, 1)w and

FW Fr(2, 0) \ Fr(1 W) -- Orb(Fr(2, 0), Fr(1,1))W.

This is proved by straightforward if tedious computation which need not be
carried out in detail here. Indeed that part of (i) which asserts that/, e give a
monoid structure on Fr(2, 0) will be recognized as a standard exercise in
category theory once it is observed that [n] Fr(n + 1, 0) is a simplicial set.
The rest of the argument is in the same spirit.
We shall write PrrF for the permutation representation (Fy(2, 0), Fv(1, 1)).

2. Orbit functors

If (G, X) is a permutation representation and x X we write Jx for the
inertial subgroup { g lgx x ) of G at x. Thus the orbit [x] is free if and only
if Jx is the trivial subgroup and (G, X) is a faithful representation if and only
if N f’lx xJ is trivial. Since N is a normal subgroup ope.rating trivially on
X the quotient ( G/N still operates on X, so that (G, X) is a faithful
permutation representation. Evidently Orb((, X) Orb(G, X).

It will be no surprise that Orb(G, X) is an orbital functor. The following
proposition also provides a simple criterion for genericity.

PROPOSITION 2.1. Let (G, X) be a faithful permutation representation and
set F Orb(G, X). If Y FU the following are equivalent:

(i) Y is a free orbit;
(ii) Y is generic;
(iii) dg: Fr(1, 2) Fr(1,1)2 is bijective.

A moment’s thought shows that the functor tangent to F at Y is given by

F (V, W) a \ (r

Suppose that Y is free and choose some y Y. We may then evaluate
Fr(V U 1, W) in the following way. For any (w, x) yv,,1 Xw there is a
unique g G such that gw0 y. Thus (w, x) (g(w[ V), gx) defines a map
which factors uniquely through a natural bijection tPy, V,W: Fy(V tA 1, W)
yV Xw. The conditions G1-G3 follow easily, so that (i) implies (ii).
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That (ii) implies (iii) is immediate, since the latter is a special case of G3.
Now suppose that Y [y] is not free. Then there are, since (G, X) is faithful,
an x X and a g G such that gy y, gx 4: x. Thus y, x, gx] 4: y, x, x]
while y, x y, gx]. In other words,

dg[y, x, gx] dg[y, x, x] ([y, x], [y, x]),

violating (iii).

COROLLARY 2.2. If (G, X) is a permutation representation then Orb(G, X)
is orbital.
Without loss of generality, we may suppose (G, X) faithful. Then it is only

necessary to see that some Xv contains a free orbit. But, for any x Xv, Jx
i -UJxi Thus [idx] FX is free.

Let us suppose that Y [y] FU is a free orbit where, once again,
F Orb(G, X). Then y,0,1: Fr(1,1)-- X and y,l,0: Fr(2,0)-- Y. Let us
abbreviate (y,0,t)- by y and write Oy for the composition of (y,,0)-with the bijection g gy of G to Y. Then Oy is an isomorphism of groups and
ky is a Oy-equivariant bijection. For the multiplication in Fy(2, 0) is just

([y, gy], [y, hy]) ([y, gy], [gy, ghy]) -- [y, gy, ghy] -- [y, ghy],

while the operation of Fy(2, 0) on Fy(1,1) is

([y, gy], [y, x]) ([y, gy], [gy, gx]) ,--> [y, gy, gx] ,-> [y,gx].

We have, accordingly, proved the following statement.

PROPOSITION 2.3. If (G, X) is a faithful permutation representation and
Y [y] is a free orbit in some Xv then (y, y): (G, X) PrgOrb(G, X) is
an isomorphism ofpermutation representations.

COROLLARY 2.4. If (G, X) is a (not necessarily faithful) permutation
representation then PrgOrb(G, X) -- (G, X). If, F is an orbital functor then

PrrF is a faithful permutation representation.

3. Functoriality

We have seen how a faithful permutation representation (G, X) can be
recovered, up to isomorphism, from its orbit functor Orb(G, X). What re-
mains is to explicate the meaning of "up to isomorphism."

Let us denote by PR the category (actually, the groupoid) whose objects are
faithful permutation representations and whose morphisms are isomorphisms
(, k): (G, X) (G’, X’). If g G’ and Cg denotes conjugation by g then
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(Cg9, gtk) is again an isomorphism. The relation (ag, tk)- (Cgag, gr) is a
congruence in PR; we denote the quotient category by PR.
The orbital functors Setsl’ --+ Sets and the natural isomorphisms between

them also constitute a category: since (G2), (G3) assert that any orbital
functor is a quotient of a representable functor the natural isomorphisms
F ---, F’ form a set. Let us denote this category by ORB.

If (ag, tk): (G, X) - (G’, X’) then [x] [x] gives an isomorphism

(9, ).’ Orb(G, X) --+ Orb(G’, X’).

If (9, k)’" (9’, 6’) then (ag, tk), (9’, tk’),. Thus Orb defines a functor
P---+ ORB. The results of {}1, 2 are then summed up and amplified by the
following theorem.

THEOREM 3.1. Orb" PR-+ ORB is an equivalence of categories.

Suppose that F: Setsp Sets, f: U’--+ U, Y FU and Y’= (Ff)Y.
Then, for any V,W,F(f V t2 W): F(U Vt2 W)F(U’ Vt2 W)
takes Fy(V, W) into Fr,(V, W) and its restriction f* is a natural transforma-
tion Fy ---, Fr,. If F is an orbital functor then by (1.1) it is isomorphic to an
orbit functor and from (2.1) we reach easily the following conclusion.

LEMMA 3.2. IfF is an orbital functor, f: U’ --+ U, Y FU and Y’ ( Ff )Y
is generic then Y is also generic and f*" Fv Fy, is an isomorphism. In
particular f* gives an isomorphism (f2,*0, f1,’1): Prr’F ’+ Prv,F.

Now suppose, in the situation just described, that there is another map f"
U’ U such that (Ff’) Y’. Then (f, f’): U’ t3 U’ --+ U determines a map

1 -- Fr(1, O) + Fy,(2, 0),

i.e., an element g Fr,(2, 0). An easy calculation shows that fl,* gfl’,’ and
,o ,o, so that

(f2,*0, fl,*l) (f2t,, flt, )"

Furthermore F(U LA U’) FU x FU’ is patently surjective. Thus given
generic Y FU, Y’ FU’ there is a Y" FU" mapping to both and, in view
of our previous observation, a unique morphism PryF Pry,F, determined
by suitable (f2,*0, fx,*) but independent of the choices of the maps f. We have
accordingly proved the following assertion.
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LEMMA 3.3. If F is an orbital functor then the permutation representations
Prr.F and the isomorphisms generated by ((f2,*0, f1,’1)) form an indiscrete
subgroupoid Pr F c PR.

Finally, if (G, X) is a faithful permutation representation then for any free
orbit Y [y] the isomorphism (y, y): (G, X) PrrOrb(G, X) of (2.3) is,
in PR, independent of y, since (gy, gv) (Cgy, gqy) (y, qy). If we
denote by (, q)r the class of (y, ky) in PR then it is clear that, for any free
orbits Y, Y’, a(, )g (, )r, where a: PryF - Pry,F is the unique mor-
phism in Pr F.
Theorem 3.1 now follows immediately.

4. Algebraic permutation representations

It is appropriate to consider permutation representations (G, X) in which
the set X has additional structure, preserved by the action of G. In particular
we shall turn our attention to the case that X has an algebraic structure, such
as that of a group or ring or module over some ring--this last case bringing us
within the ambit of classical representation theory.

Such an algebraic structure in X is provided by a family of finitary
operations, an n-ary operation, n 0,1, 2,..., being a map Xn X. The
action of G preserves this algebraic structure when each of the operations is an
equivariant map. We say that such an algebraic structure is invariant.
The problem with which we began, viz. how to recover (G, X) from its orbit

structure, now exhibits an ambiguity, namely, in the interpretation to be
accorded to the "orbit-set" G \ X. This may, for example, be interpreted as the
coequalizer in the appropriate category of algebras of all the translations in G.
In this case, however, the methods we have used above are inappropriate. We
shall accordingly not discuss it here.

Alternatively we may continue to mean by G \ X the orbit-set in the sense
we have adopted above. However the algebraic structure in X does not in
general pass to the orbit-sets G \ Xv, and we must thus look elsewhere for the
relevant information.
By an n-ary operation in a functor F: Setsp Sets we mean a natural

transformation

ov" F(U t.J n) F(U t_J 1).

If F is orbital with genetic Y FU then 0vx v restricts to a natural transfor-
mation Fy(V, n) - Fv(V, 1) and thus yields an Fy(2, 0)-equivariant map

a" Fy(1,1)" -- Fy(1, n) Fy(1,1),

which is to say an equivariant n-ary operation on Fy(1,1).
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Conversely if (G, X) is a faithful permutation representation and is an
equivariant n-ary operation on X then commutativity in

xUx
xU x X" xU x X

Orb(G, X)(U t_] n) v---V-o Orb(G, X)(U U 1)

defines an n-ary operation in Orb(G, X). Straightforward calculation shows
that for any free orbit Y [y] in, say, XU, the isomorphism

(O, X) -o Pr,Orb(G, X)

of Proposition 2.3 takes a to et v ^.
Similarly, for an operation w in an orbital functor F, the canonical isomor-

phism F--, Orb(Fr(2,0), FrO, 1)) of (1.1) takes w to w ^ v. We have thus
proved the following assertion.

PROPOSITION 4.1. Let (G, X) be a permutation representation. Then finitary
equioariant operations in X correspond bijectioely (under ^, v) to operations in
Orb(G, X).

In effect we have learned how to recover an invariant algebraic structure on
X from a corresponding structure in Orb(G, X). It is only the lack of an
adequate vocabulary for universal algebra which prevents us, at this point,
from asserting the appropriate generalization of Theorem 3.1. The vocabulary
is already in existence--in several versions--and there seems to be no point in
reintroducing it here.

5. Relative homotopy

If E and ) are topological spaces we denote by II(, ) the set of
homotopy classes of maps E . If j: 9 -o E is the inclusion of a cofibered
subspace then II(j, ): II(, ) - H(gg, ) and, if a II(gg, ), we set
I-[,(E, l) YI(j, })-la.
Thus free homotopy is to be contrasted with relative homotopy. Suppose a:

9 }. Then maps f0, fx: ) with fiJ a are homotopic (tel 9) if there
is a homotopy between them which is stationary on . This is an equivalence
relation and we denote the set of equivalence classes by 1-I(, ; rel a).
Evidently relative homotopy implies homotopy, giving a map

(5.1) n(, ;rel a) -o II(E, })

where a is the homotopy class of a.
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Relative homotopy and free homotopy are related in the following way. We
regard the 1-sphere S as a pointed space, giving a standard imbedding

PROPOSITION 5.2. If a: then 1-I( Sx, ; rel a) has the structure

of a group. If also is imbedded as a cofibered subspace of X then this group
operates on H(3, : rel a) and the orbit set is given by the map (5.1).

In other words, II(, 9) -- II( Sx, ): rel a) \ l-I(, 9; rel a).
The proof is an easy exercise and need not be detailed here, except to note

that the group multiplication comes from the usual map S ---, S v S.
In the light of what we have done above, we may now, rather surprisingly,

adduce a computation in the reverse direction, thus deriving relative homo-
topy, up to isomorphism, from free homotopy.
For any set U, regarded as a discrete space, define U a by the pushout

U U

UX.
It is easy to see that II(U Xa,, ; rel a) = II(, ; rel a) v. Thus by (5.2),

II(U Xa3, 9) -- Orb(II(gA x S’, 9; rel a), II(, ); rel a)) u.
In other words the orbit functor is computable in terms of free homotopy.

THEOREM 5.3. The functor F defined by FU II(U X , ) is orbital and
for any generic Y FU there is an isomorphism ofpermutation representations

(II( x S’, 9; rel a)’, II(Y, ); rel a)) -- PrrF.

In particular, II (, 9; rel a) --- Fr(1,1).
The case in which =, consists of just one point, that of pointed

homotopy, is of particular interest. A map y: ---, is just a point of and
II(, S, ;rel y) is just *q(9, y). If further is path-connected then
II ( ,, 9) has just one element and we may drop the subscript a which appears
above.

If X S", n 1,2,... then II(, 9; rel y) r,(), y) which is of course
a group, abean if n > 1. The operation of ,q(), y) is the familiar one. The
defining operations of r(, y) come from maps

S" S"v S", S" Sn, S"
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and the corresponding operations in the orbital functor FU II(U ,Sn, )
are thus themselves computable in free homotopy.

THEOREM 5.4. For any generic Y FU,

(rl(, y)~, rn(, y)) -- PrvF
as algebraic permutation representations.
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