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1. Introduction

In this paper real algebraic varieties and real algebraic morphisms are
understood in the sense of Serre [10] (Serre considers algebraic varieties over
an algebraically closed field but his basic definitions make sense over any
field). In particular, we do not assume that algebraic varieties are irreducible.
An algebraic variety (X, d)x) will be simply denoted by X if no confusion is
possible. The set of singular points of X will be denoted by Sing(X). We say
that a family (Y)i-1 k of subvarieties (not necessarily closed) of X is in
general position if for each point x in the union Y1 t2 u Yk, the family
(Tx(Yi)}iA<x), where A(x)= (ilx Y/J, of vector subspaces of Tx(X)
(Tx(.) is the Zariski tangent space at x) is in general position, i.e.,

codim T(Y) E codimT:(Y).
iA(x) iA(x)

A subvariety Y of X will be called an algebraic hypersurface if Y is of pure
codimension I in X. By a real algebraic curve in X we shall mean a subvariety
of X of pure dimension 1.
Any real algebraic variety can be endowed with the strong topology induced

from the Euclidean topology on the reals. Unless otherwise explicitly specified
we shall always consider the strong topology. However, the terms "closed
subvariety" or "open subvariety" refer to the Zariski topology.

DEFINITION 1.1. A real algebraic variety X of dimension n is said to be
admissible if there exists a sequence of real algebraic morphisms r X - Xi_ 1,

1,..., k, such that
(i) Xo is an affine nonsingular real algebraic variety diffeomorphic, as a COO

manifold, to the unit n-dimensional sphere Sn,
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(ii) r is the blowing up of Xi_ along a finite subset for all 1,..., k,
(iii) X is isomorphic to Xk \ Y, where Y is a closed suboariety of Xk, dim Y

<n-1.
If Y is a finite set, then X is called a strongly admissible variety.

This paper is devoted to proving the following result.

THEOREM 1.2. Let X be an admissible n-dimensional variety, n >_ 3, and let
C be an algebraic closed (not necessarily irreducible) curve in X. Then there
exist algebraic closed irreducible hypersurfaces H1,..., Hn_ in X such that
C H ( NHn_l, Sing(Hi) c Sing(C) for all 1,..., n 1 and the
family of nonsingular hypersurfaces ( H \ Sing(C))i_ is in general
position. Moreover, if X is strongly admissible and C is compact, then H can be
chosen connected and compact.

The most obvious and important examples of strongly admissible varieties
are Sn, the real affine space Rn and the real projective space RP n. Observe that
Rn is isomorphic, via the stereographic projection, to Sn with one point
removed and RP is isomorphic to the variety obtained by blowing up S at a
single point.

It should be mentioned that Theorem 1.2 is false, even for nonsingular
algebraic curves in affine or projective spaces, over every algebraically closed
field (cf. for instance [8]).

2. Proof of Theorem 1.2

Let X be an affine real algebraic variety and let Y and Z be closed
subvarieties of X with Z contained in Y. We shall regard the blowing up
B(Y, Z) of Y along Z as a closed subvariety of the blowing up B(X, Z) of X
along Z.

It will be convenient to identify S with S {0} in Sn/ 1.

LEMMA 2.1. Let F be a finite subset of S c S, n > 3. Then the homomor-
phisms

(2.1.1) ,n-I(B(S 3, F)) --> rl(B(S", F)),
(2.1.2) HI(B(S, F),Z/2Z) - HI(B(S 3, F),Z/2Z),

of the fundamental groups and cohomology groups, respectively, induced by the
inclusion B(S3, F) c B(S, F), are isomorphisms. Moreover:

(2.1.3) every element in HE(B(S3, F), Z/2Z) is a square, with respect to the
cup product, of an element in HI(B(S, F), Z/2Z);

(2.1.4) the restriction (modulo 2) homomorphism HE(B(S3, F),Z)-
HE(B(S, F), Z/2Z) is bijective.
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Proof. Elementary exercise.

Given a topological space X, a continuous real vector bundle over X and
a section s of , we shall denote by s-l(0) the set of zeros of s. The k-th
Stiefel-Whitney characteristic class of will be denoted by w(). If is
oriented, then e() will denote the Euler characteristic class of .
Now we are ready to prove the main technical result.

LEMMA 2.2. Let r B(S", F) S" be the blowing up of Sn, n > 3, along
a finite subset F. Let M be a compact Coo one-dimensional submanifoM
of B(S", F) and let K1,..., K,_ 1, K be finite, mutually disjoint subsets
of B(S",F)\M. Then there exist compact connected Coo hypersurfaces
NI,...., N,_ in B(S", F) \ K such that the family ( N ) i= is in general
position, M N q Nn_I and N contains K for all 1,..., n 1.

Proof. Without any loss of generality, we may assume that F is a subset of
$3 S. We claim that there exists a C diffeomorphism of B(Sn, F)
transforming M onto a submanifold of B(S 3, F). By (2.1.1), given a Coo
embedding a: $1-0 B(S,F), one can find a Coo embedding b: SI-o
B(S, F) homotopic to a whose image is contained in B(S3, F). Since every
connected component of M is Coo diffeomorphic to S1, there exists a Coo
embedding e M -o B(S, F) homotopic to the inclusion map M B(S, F)
with the image contained in B(S 3, F). Now the claim follows from [6], p. 183,
Exercise 10. Therefore, we shall assume in the proof that M is contained in
B(S3, F).

Since B(S 3, F) is an orientable manifold (recall that B(S 3, F) is diffeo-
morphic to the connected sum of S and k copies of RP 3, where k is the
cardinality of F), the normal vector bundle of M in B(S 3, F) is trivial. It
follows that there exist a Coo real vector bundle over B(S 3, F) and a Coo
section s of such that rank 2, is orientable, s is transverse to the zero
section of and M s-1(0). Indeed, one can find a Coo map

f (fl, f)" B(S3, F) R2

and a neighborhood U of M in B(S3, F) such that fl U is transverse to 0 in
R2 and

M f-l(0) U.

The set f-1(0) can be written as f-l(0) M u M2, where M M and M2
is a closed subset of B(S3, F) disjoint from M. Let U B(S3,F)\ M2 and
U2 B(S3,/7) \ My Since the functions fl and f2 have no common zero on
U n U2, there exist COO functions gl, g2:U1 q U2 -o R such that det g12 1
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on U c3 U2, where

g12

Now let be the C vector bundle over B(S 3, F) corresponding to the open
covering { U1, U_ } of B(S3, F) and the transition function g12. Then the maps

Vl --, Ie, x--,

U2R2, x- (1,0)

determine the C section s of . It is easy to see that and s satisfy all
requirements. By (2.1.2) and (2.1.3), there exists an element z in HI(B(Sn,
F), Z/2Z) such that

w2() i*(z) u i*(z ),

where i*: HI(B(Sn, F), Z/2Z) HI(B(S 3, F), Z/2Z) is the homomorphism
induced by the inclusion B(S3, F)c B(S, F). Let 3’ be a continuous real
line bundle over B(S, F) with w1(3’ ) z [7]. Note that w:((3’
3,)IB(S 3, F)) w2(). Fix any orientations on and 3’ 3’. By (2.1.4) and [9],
p. 99, e ((3’ 3’)1B(S 3, F)) e(). It follows that the vector bundles (3’
3’)IB(S 3, F) and are CO isomorphic [7]. Clearly, we may assume that 3’ is a
C real line bundle and the vector bundles (3’ 3’)IB(S 3, F) and are C
isomorphic. It follows that there exists a C section (t1, t2) of 3’ 3’ such
that lB(S3, F) is transverse to the zero section of (3, 3’)1B(S3, F) and
M t-l(0) n B(S3, F). Moreover, can be chosen with tjlB(S 3, F) trans-
verse to the zero section of 3’IB(S 3, F) for j 1, 2. By a standard transversal-
ity argument, there exists a C section u (u1, u2) of 3’ 3’ such that u is
transverse to the zero section of 3’ 3’, u is equal to in a neighborhood of
B(S3, F) and uj is transverse to the zero section of 3’ for j 1, 2. By cutting
small disks in the connected components of u 1(0) and joining the remaining
sets by tubes, one can construct a compact connected C hypersurface P. of
B(S, F). Moreover, this construction can be performed in such a way that P.
is transverse to B(S3, F), P1 is transverse to P2,

M= P1 C P2 C3 B ( S 3, F)

and P represents the same homology class in H_I(B(S,F),Z/2Z) as
u-1(0) for j 1, 2 (this is obvious if n > 4 since one can cut out disks in the
connected components of u-l(0) and attach tubes outside B(S 3, F); if n 3,
then one uses the fact that ui-l(0) is transverse to u-l(0) and that the
complement of any compact connected C surface in B(S3, F) has at most
two connected components). The last condition implies that the C real line
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bundle over B(S", F) corresponding, in the standard way, to the COO hyper-
surface Pj. is COO isomorphic to y. Thus there exists a COO section vj. of 3’
such that oj. is transverse to the zero section of y and Pj. ojr(0). Note
that the restriction (01, v2)IB(S3, F) is transverse to the zero section of
(y Y)lB(S 3, F).

Let L ((xx,..., x,+) S"lxi+2 0) and let Pi B(Li, F),
3,..., n- 1. Note that P is a compact connected COO hypersurface in
B(S", F), the family {Pi}i-3 ,_x is in general position and B(S 3, F) P3

OP,_. Let "t be a COO real line bundle over B(S", F) and let v be a
CO section of ,/ such that v is transverse to the zero section of y and

P v-X(0) for i--3,..., n- 1. Clearly, the section v (v,..., v,_)of
Yx Y,-x, where Vx Y2--V, is transverse to the zero section of ),x

3’,-x and M--s-x(0). By a transversality argument, there exists a
section w (wx,..., w,_)of 3q 3’,-, arbitrarily dose to v in the COO

topology, such that w vanishes on M, the section w is transverse to the zero
section of Yi, Q wi- (0) is disjoint from K and the family{Q }

_
,- of

CO hypersurfaces in B(S", F) is in general position. We can assume that
each Q is connected and M--- Qx Q,-x provided that w is suffi-
ciently close to v. Let F,..., F,_ be mutually disjoint subsets of B(S", F) \
(M K) such that F is contained in Q and F has the same cardinality as
K, 1,..., n 1. Now one can find a COO diffeomorphism

q B(S", F) B(S", F)
such that is the identity in a neighborhood of M K and (F,.) K. It
suffices to set N (Q) for 1,..., n 1.

Let X be an affine real algebraic variety. An algebraic real vector bundle
over X is said to be strongly algebraic if there exists an algebraic vector bundle

over X such that the direct sum is algebraically isomorphic to the
product vector bundle X Rk for some k [2], [4].

Proof of Theorem 1.2. We may assume that X is an open subvariety of a
compact admissible variety Y. Let D be the Zariski closure of C in Y.

It follows from [5] that there exist a sequence of real algebraic morphisms

r Y Y_ and a sequence of real algebraic curves D, j 1,..., k, such
that Y0 Y, q is the blowing up of Y0 along Sing(D), Dt is the Zariski
closure of r1- t(D \ Sing(D)) in Yt and for each j 1,..., k 1, the curve D
is contained in Y, rj.+ is the blowing up of Yj. along Sing(Dj.), Dj+t is the
Zariski closure of r-+t(Dj\Sing(Dj))in Y+,Dk is nonsingular and
r-t(Sing(D)) Dk is a finite set, where r q r,. Let Z Yk and
E Dk. Clearly, Z is a compact admissible variety. It follows that Z is
diffeomorphic to B(S", F) for some finite subset F of S". Let Kx,... Kn_
be finite, mutually disjoint subsets of
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such that K has a common point with r-l(x) for all 1,..., n 1 and x
in Sing(C). By Lemma 2.2, there exist compact connected COO hypersurfaces
N1,. Nn- in Z such that the family (N)i.. is in general position,
E N N NN_ and N/contains K for 1,..., n 1. Moreover, we
may assume that N is disjoint from r-l(y\ X) if Y\ X is a finite set and C
is compact. Indeed, since r-l(Y\ X) t E is a finite set disjoint from
and E is nonsingular, the set r-l(Y\ X) E is actually empty. Now we can
blow down r-l(y\ X). More precisely, we can find a Coo manifold Z’ and a
Coo surjective map p" Z Z’ such that the set K p(r-l(y\ X)) has
exactly l points, where is the cardinality of Y\ X, and p induces a
diffeomorphism for Z \ r-l(Y\ X) onto Z’\ K. Note that p(E) is a com-
pact COO submanifold of Z’\ K. It suffices to apply Lemma 2.2 to Z’, p(E),
p(K1),..., p(K,,_l) and K.
Now for each 1,..., n 1, we can choose a Coo real line bundle ’i over

Z and a CO section s of ’i such that s is transverse to the zero section of
and N s;l(0). Notice that Z is an affine real algebraic variety (cf. for
instance [1] or [4]). Moreover, every dement in the homology group
H_I(Z, Z/2Z) can be represented by an algebraic closed hypersurface of Z.
It follows that every Coo real line bundle over Z is Coo isomorphic to a
strongly algebraic vector bundle [3],[4],[11]. Thus we can assume that all
are strongly algebraic line bundles. We claim that for each 1,..., n 1,
there exists an algebraic section u of ’i vanishing on E L Ki and arbitrarily
close to s in the Coo topology. Indeed, by definition of a strongly algebraic
vector bundle, there exist global algebraic sections Vl,..., v of /i such that for
each point x in Z the vectors ol(x),..., Or(X ) generate the fiber of "Yi over x.
Clearly, s can be written as s hlv + +hrv,, where hq: Z R are Coo
functions vanishing on E U Ki. Now the Weierstrass approximation theorem
(cf. [12], p. 54, for the relative version) implies the existence of ui. Set
G u;-l(0). If u is sufficiently close to si, then G1,..., G,_I are nonsingular
algebraic hypersurfaces in Z which are in general position and satisfy E
C3 C3 Gn_ 1. Each G is connected, hence irreducible being nonsingular, and
has a nonempty intersection with r-l(x) for all x in Sing(C). Moreover, if
Y\ X is a finite set and C is compact, then G is disjoint from rr-l(Y\ X).
Let H X (3 r(Gi) for 1,..., n 1. Since

H X n (r(Gi) U Sing(D)),

H is a closed algebraic hypersurface in X. All other claims about H1,..., H_
are obvious.

Remark 2.3. It follows from the proof given above that any compact Coo
one-dimensional submanifold of a strongly admissible variety is isotopic to a
nonsingular algebraic curve which is a complete intersection.
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