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PRODUCT TUBE FORMULAS
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SUNGYUN LEE

1. Introduction

Let P c M be an embedding of a compact p-dimensional manifold P to
an m-dimensional Riemannian manifold M. We denote by V(r) the m-
dimensional volume of a solid tube of radius r about P and by A(r) the
(m- 1)-dimensional volume of its boundary. Throughout this paper we
assume that r > 0 is less than or equal to the distance from P to its nearest
focal point. Then it is easy to see that

d
Al( r ) -V( r )

The well-known Weyl’s tube formula [8] for P c R can be written as (see for
example [3])

[p/2] ,rr(m-p)/2k2c( Re)
(1) (vnm(r)

2cr m p + c + 12

where k2c(Re) are integrals over P of scalar invariants I2c(RP) constructed
from the Riemannian curvature tensor Re of the submanifold P. Specifically
for an even integer e satisfying 0 < e < p, ke(Re) is defined by

(2) ke(RP) f/e(RP) dP,
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where dP is the volume element of P and Ie(Re) is given by

(3) ie(Re)
1 (aft)e Y’ Re e

where 8IBJ is equal to 1 or -1 according as R1,... R are distinct and an

even or ’dt permutation of fl,..., fie, and otherwise is equal to zero. The
summation is taken over all a and/3 running from 1 to p.

In this article we derive the following product formula for the volume of a
tube about a compact product submanifold of a product Riemannian mani-
fold.

THEOREM 1. Let P c M and Q c N be two embeddings, and P x Q c
M N be the corresponding embedding of the product. Then

(4) fo/2Ag(r cos O)A(r sin O) dO.PXQ \r) r

When we .combine Weyl’s tube formula (1) with (4) we obtain several
interesting formulas. Let p dim P, q dim Q, m dim M, and n
dim N.

THEOREM 2. Let P c M Rm. If either p O, m 2 or p 1, m 3,
then for any Q c N we have

AMxN[exe ,r) Af(r)V(r).

On the other hand two or three dimensional locally Euclidean space can be
characterized by the product formula (5).

TI-IV.OREM 3. Let P c M be an embedding with p 0 or p 1. Assume
P c M satisfies (5) for any Q c N. Then when p O, M is locally Euclidean
space of dimension 2, and when p 1, M is locally Euclidean space of
dimension 3.

We also derive product formulas for r/-lxR"t aR=xR"tex r) and -ex O r). Specifically
we have Theorem 4 below. But before stating the theorem we make the
observation that (1) can be regarded as a definition. For any integer n, V,(r)
and A"e(r ) are defined by the right-hand side of (1) and its derivative with
respect to r respectively. Here P may be any compact manifold. For our
purposes it will turn out to be irrelevant if P actually lies in Rn, although we
shall have that interpretation in mind.
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THEOREM 4. Let P and Q be compact Riemannian manifolds and let r < r2.
Writer= r3 + r2

(i) Ifp and n q are both even, then

(6) V;Q(r)

and

(7) AQ(r)

(ii) Ifp and n q are both odd, then

(8)
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and

(9) A"eQ(r)

(iii) Ifp is even and n q is odd, then (6) and (7) hold either for r < r2 or

for rx r2 with n p q 1 > O.
(iv) Ifp is odd and n q is even, then (8) and (9) hold either for r < r2 or

for q r2 with n -p q- I > O.

Remarks. (1) The invariants ke(RP) are among the most important inte-
gral invariants. In fact

k0 ( Re) volume of P, (

where -(Re) denotes the scalar curvature of Re. If p is even, then the
Gauss-Bonnet theorem says

ke(RP) (2r)/2X(p),

where x(P) is the Euler characteristic of P.
(2) The product formula (4) was obtained by Howard [5] when P and Q

are compact oriented symmetrically embedded submanifolds of oriented sym-
metric spaces M and N respectively. Nijenhuis [7] also stated (4) when M and
N are Euclidean spaces. But Theorem 1 is much more general.

(3) There is also a product formula for the coefficients:

(10) k2c(Rext2) k2a(RP)k2c-2a(Rt2)
a-0

This is equivalent to the formula of Nijenhuis [7]. We give a proof of (10) as
an application of (1) and (4) (see 3). A direct proof of (10) from the definition
(2) is given in [3].
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(4) The sums are actually finite sums in the cases (i) and (ii) of Theorem 4.
But in the cases (iii) and (iv) they are not finite sums.

2. Preliminaries and proof of Theorem I

Before proving Theorem 1 we summarize some basic facts and formulas.
Let M be a complete Riemannian manifold of dimension m and P be an

embedded submanifold of dimension p which is relatively compact. Recall
that

Veto(r) m-dimensional volume of (m Mid(m, P) < r }

and

AM(r) (m 1)-dimensional volume of ( m M[d(m, P) r }.

We assume that r > 0 is not larger than the distance from P to its nearest
focal point. Let 0 be a Riemannian volume form near P with [[ol[ 1, and
let (xl,..., Xm) be a system of Fermi coordinates of P (cf. [2]) such that

(0 0)
For u P we put

(0(11) 8(u) = - A A (exppu).

PROPOSITION 1. We have

(12) O(u) dudeAMe(r)
m_pl l(r)

and

(13) veM(r) Af(r) dr

where sm-p-(r) denotes the sphere of radius r in P- with its volume element
du, and dP denotes the volume element of P.

For a proof see [2].
Let P c M and Q c N be embeddings and P x Q c M x N the corre-

sponding embedding of the product. Let dim P p, dim Q q, dim M m,



and dim N n. Let w (resp. 0$2) be the Riemannian volume form of M
(resp. N) near P (resp. Q) with II,oxll 1 (resp. 11211--1), and let
(Xl,..., Xm) (resp. (yl,..., Yn)) be a system of Fermi coordinates such that

)A A- >0

Then w A to2 is the volume form of M x N near P x Q with Ilw/x w2l 1
and (x,..., xm, YI,..., Yn) is a system of Fermi coordinates such that

A A-n >0.

LMM 1.

(14)
where

and

For u (u, u2) e (P X )v,q)

O(u)
P Q we have

8(ul) =w A A (exppu)

00(u) A A (eXpqU2).

Next we need the following lemma essentially due to Howard [5].

LEMMA 2. Let g be a continuous real valued function on R X R defined by
g(u) g(ul)g2(u2) for u (u, u2) Rm X Rn, where g and g2 are continu-
ous real valued functions on Rm and R respectively. Then

r g(u) du g2(u2) du2 dO,
l(r cos 6t) 1(r sin 0)

where du, dUl, du2 are the volume elements of the corresponding spheres.

Proof Let S Sin-l(1) and $2 S"-1(1) be unit spheres in Rm and R"
respectively. Consider the product [0, r/2] S S2 and define a map

: [0, r/2] X S X S2 sm+"-X(r)
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by

t(O, Ul, U2) rCOSO U + rsinOu..

Since is bijective except on a set of measure zero we have

g(u au ftm+n-l(r) /21X SI XS2

A straightforward computation shows that

e*(du) rdO A (rcosO)m-ldUl A (rsinO)"-du2.

By the change of variable

-(1) -(r)
gl

we obtNn (15).
Now we can prove Theorem 1.

Proof of Theorem 1. From Leas 1 and 2 we have

.) (.) d.d( )

X
f./2( Ol(Ul) dUl}
-q-l(r sin0

r O(Ul) du dP
--(rcos O)

-q-l(r sin0)

0

3. Product formulas

In this section we prove Theorems 2, 3 and 4 which give various product
formulas.
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Proof of Theorem 2. From (1) and (4) we find

" x.,vt fo/22rkoApx Q r) r (ge)rcosOA(rsinO) dO

A(r)fo/2A (r sin 0 ) r cos 0 dO

A(r) A(s) ds

=A(r)V(r).
Proof of Theorem 3. Let Q c N be a point q c R2 or sl(p) c R, where

Sl(p) is a one-dimensional sphere of radius p. It follows from the hypothesis
and from Theorem 2 that

exQ,r) A(r)V(r) A(r)Vm(r)
which implies

(16)

From (16) we obtain

rAg(r) Vfl( r ).

d 2

(17) dr---sA(r) O.

Then we have the conclusion of the theorem according to results of [4] and [6].
In fact, Gray and Vanhecke [4, p. 195] showed that two-dimensional
Riemannian manifolds of constant curvature equal to c are characterized by
the equation

(8) d 2
AM[1,,r+s) +cAf(r+s) =0,

for sufficiently small r > 0, s > 0, and for each 0-dimensional submanifold P.
Similarly the author [6] characterized Riemannian manifolds of constant
curvature c of dimension 2 or 3 by (18) for sufficiently small r > 0, s > 0, and
for each one-dimensional submanifold P.

Proof of Theorem 4. We prove (7) and (9). The proofs of (6) and (8) are
similar. Applying (1) and (13) to (4) we obtain for P c Rm and Q c Rn,

Rm Xle[(19) A,xQ
[p/21 [q/El r(,,,+.-,-q)/2k2a(Rt’)k2b(RQ ) rm+n-p-q+2a+2b-1
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Comparing (19) with Weyl’s formula for m+n_AexQ(r ) we have the product
formula (10).

Let P and Q be any compact manifolds and let n be any integer. Then by
(10), we can write AxQ(r) as

(20)

AxQ(r ) , Y’.
’n’(n-’ q)/2k2a(RP)k2b(RQ ) rn_p_q+2a+2b_
2a+6_, n p q + a + ba,=-oo b=-oo 2

because the k2a(Re) are different from zero only in the range 0 < a < [p/2].
Applying the binomial expansion

)(21) r y, s/2 r2Cr-c
c=0

C

with s n p q + 28 + 2b 2 we have from (20),

(22) Ao(r)
o qr(n-p-q)/2k2a( Re)kEb(Re)

/
q / :a / :c I

2

r?r--q/:a/:-:c- -.
When p is even, the substitution c 1/2(2d-p + 2a) shows the first two
formulas of (7). The remaining two formulas of (7) can be obtained by the
substitution c 1/2(2d p / 2a 2). If p is odd, (9) follows from (22) by the
substitution c 1/2(2d p + 2a + 1) or c 1/2(2d p + 2a 1). In the cases
(iii) and (iv), inequalities are induced from the convergence of (21).
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