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OPERATORS INTERPOLATING BETWEEN RIESZ
POTENTIALS AND MAXIMAL OPERATORS

BY

DANIEL M. OBERLIN

1. Introduction

Let X be normalized Lebesgue measure on either the unit ball or the unit
sphere in R" and write X for the dilate of X defined by

(f Xr) fj(rx) dX(x), r>O.

Suppose 1

_
p

_
q

_
oo, 1

_
s _< o and suppose f is continuous with com-

pact support. When h is the measure on the ball, define

Sp, q,sf(x) lrn/p-n/qkr * f(x)l "7

Sr, q, oof(x ) suprn/-n/qlXr* f(x) l"
r>0

When is the measure on the sphere, define operators T, q, and Tp, q, oo

analogously. For nonnegative f, both Sp, q, lf and T,, q, lf are multiples of the
Riesz potential 1,,,(f) when a n/p- n/q. Hence S,,q,1 and T,,q, are
bounded from L r(--_ Lr(R")) to Zq whenever 1 < p < q < . On the other
hand, S,, q, oo and T, q, oo are maximal operators, weighted to allow the possi-
bility of L’- Lq boundedness. Indeed, S,,,oo is the Hardy-Littlewood
maximal operator and therefore bounded on L’ for 1 < p _< o, while T,, , oo

is the spherical maximal operator, now known to be bounded on L’ when
n/(n 1) < p

_
oo (see [7], [2]). In general, and especially when s 2, the

functions S,, q, sf and Tp, q, sf are reminiscent of g-functions. The purpose of
this paper is to begin the study of the following question:

For what values of p, q, and s is Tl,q, bounded from Lr to zq?
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The corresponding problem for Sp, q, is not difficult. We give its solution in
the short {}2. In {}3 we tell what we know for the operators T,q, s. There are
necessary conditions which may be sufficient and sufficient conditions which
fall short of the necessary conditions. In 4 we apply one of the results of 3 to
study the mapping properties of the convolution operator defined by a certain
singular measure on R3. From now on the statement "S,q,, is bounded" will
mean that Sp, q, is bounded from L’ to Lq, and similarly for Tr, q, s"

2. The operators S;, q,

THEOREM 1. The operator S,, q, is bounded exactly when one of the following
holds:

(a) 1 <p<q< ooandl <=s<
(b) 1 < p <= q <_ o and s= o,
(c) 1 <p_s< oandq= o,
(d) p=l,q=s=o.

Proof In order to apply complex interpolation we view the operators
S;, q, not as sublinear operators from Lv to Lq but as linear operators from
Lp into the mixed normed spaces L]tx(La,/,). Define

Sf(x, r) rZX,, f(x), z C.

Then the boundedness of S,, q,, is equivalent to the boundedness of S,/;_,/q
from L’ to Lq(L’). Now suppose 1 < p < q < o. The operator S q is
bounded, so S,/_n/q is bounded from LV to Lq(L). By the interpdltion
theorem in [1], (a) will follow when we show that S,/_,/q is bounded from
L to Lq(L). But the operators Sy (y R) are controlled by the Hardy-
Littlewood maximal operator and so are uniformly bounded from L to
L’(L) (even if p oo). Also, the operators S,/,+i (y R) are uniformly
bounded from L’ to L(L) since the measure rn/’+iY)kr (r > 0, y R)
are uniformly bounded in the dual of L V. Thus another application of the
mixed norm interpolation theorem finishes the proof of the sufficiency of (a).
Along the way, we have also established the sufficiency of (b). The case s p
of (c) can be deduced from Hardy’s inequality (p. 196 of [8], for example). The
remainder of (c) follows by interpolating with the case s o. To see that one
of (a)-(c) is necessary for boundedness when p > 1, just note that if 1 < p
q _< oo and 1 _< s < oo, the integral defining Sp, q, sf will not generally con-
verge. The remaining case occurs when 1

_
s < p and q oo. To see that

S,, q, is not bounded here, consider S,, q, sf when

f(x) { olXl-’/ ifotherwisel_< Ixl _-< N

and let N--,
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If p 1, then Sp, q, will be bounded if and only if

<

Condition (d) is necessary and sufficient for this to occur.

3. The operators Tp, q,

Mixed norm interpolation arguments like those in [}2 show that the collec-
tion of points

1 1 1
O< <-- <1,0< <1 and is boundedp’ q’ s q p 7 ,q,s

is a convex set. Convergence of the integral in the definition of Tp, q, requires

1 1(A) <-- unlesss= .q P

To get necessary conditions reflecting the dimension n (n >= 2), we estimate
norms

where f is the characteristic function XF of a suitable subset E of R". For
example, if E is a ball, then

implies

n 1(B) n + 1 <-.
P s

If E is an annulus of inner radius 1 and outer radius 1 + e, then

(1) IlT,q,Xg[[q-- O(llxllp)
leads to

1 n 1
(C) p<q+7"
Finally, if

E [0,1]"-IX [0, e],
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then for x (xl,..., xn) with x [1/2, ] for 1 _< _< n 1 and x,
say, we have

Tp’q’sXE(X)- X/P-n/q-n*l) "n
Thus, if I __< s < oo, (1) leads to

,lf X [n(nfp nfq- n + 1)s-1]q/Sdx
n O(,lfp).

For T,,q,s to be bounded, (B) must hold. It follows that the integral above
converges and that

(D) n + 1 2 n- 1
n+l<-+p =s q

One can check directly that (D) must also hold when s oo (and Tp, q, is
bounded). Figure 1 represents in the case n >_ 3 the intersection of the subset
B of

p’q’s
1 1 1

_-__<--__<1,0< <1O<q p _-_
defined by (A)-(D) with the plane 1/s 0. Figure 2 represents the projection
of the intersection of B with the plane 1/q 1/s onto the 1/p 1/q plane.
The sufficient conditions which we will establish can be explained as follows.
Theorem 2 implies that T,q, oo is bounded whenever (1/p, 1/q) lies strictly
above the line through (0,0) and ((n 1)/n, l/n) in the region of Figure 1.
Theorem 3 shows that in the case n 2, Tp, q, q is bounded whenever (1/p, 1/q)
is in the region of Figure 2 except perhaps on the open segment from (1/2, 6) to
(], 1/2). Of course other sufficient conditions follow by interpolating these
results with the boundedness of T,,q,X whenever 1 < p < q < oo. The corol-
lary after Theorem 2 is an example.

THEOREM 2. Suppose n

_
3 and let p’ denote the exponent dual to p. Then

T,, ,,,oo is bounded whenever n/(n 1) < p

_
2.

Proof This is an easy application of complex interpolation in the mixed
norm setting as in the proof of Theorem 1. Adopt the notations of [7] and fix
p with n/(n 1) < p

_
2. Let

1( p)e= n p-1
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n-1 n-l)

Fro. 1

(1,1)

/

/ (,// n1’n+l

/
/ n-1 n-1

1__
P

FIG. 2
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Then e > 0. Put

a(z)=l + --e -1
and define

Tf(, r) r’(Mr(’)f )(x).
Then Theorem 2 of [7] gives the boundedness of the operators T from L2 to
L-(L) when Re z 0. When Re z n the operators T are bounded from L:
to L(L). After interpolating it follows that T,/,_,/p, is bounded from L’
to L’(L). This is the desired result since

(n n)a
P p, =0

by choice of e.

COROLLARY. For n >= 2, (n/(n + 1), 1/(n + 1))
(l/p, l/q) such that Tp, q,q is bounded.

is a limit of points

Proof. As a consequence of [2] (when n 2) and Theorem 2 (when n >= 3),
there are always points (l/p, l/q) close to ((n 1)/n, l/n) such that Tp, q, oo

is bounded. Interpolating judiciously with the fact that Tp2 , is bounded for
p?_ slightly larger than 1 yields the corollary.

THEOREM 3. Fix n 2 and suppose (l/p, l/q) is a point in the region of
Figure 2 not on the open segment joining (1/2,-) and (-,1/2). Then Tp, q,q is
bounded.

Proof By interpolation and the corollary above it is enough to show that
T2, 6, 6 is bounded. Let

R3+= ((x,r)" x R2, r > O}
and define an operator T taking functions on R: to functions on R3+ by

Tf(x, r) r:/2h,, f(x).

Then the boundedness of T2,6, 6 is equivalent to the boundedness of T from L
to L6(R3+), where the measure on R3+ is given by dxdr (the restriction of
three-dimensional Lebesgue measure) and not by dx dr/r. This latter bound-
edness is equivalent to that of TT* from L6/5’R3+)to L6(R3+). A computation
yields

x,, g(.,
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and so

TT*g(x, r) rl/2X,,(T*g)(x) r1/2 Xr* X * g(’, s)(x)s1/2 ds.

A Jacobian computation shows that for f >__ 0,

fRfd(Xr*Xs)
Ir-sl<lYl<r+s}

Thus

)’/’[(r+s IxTT*g(x, r) 4 g(y, s)(rs
s>O, [r-sl<lx-y[<r+s)

2f g(y, s)
s>O,[r-s[<lx-y[<r+s}

1 1 ]1/2X
(r+s -Ix Yl Ix-Y (r-s),_ +

i )
ay d

<__ 2ff g(y, s)[(r + s)2- Ix- Yl21-1/2
s>O, [x-y[<r+s)

dyds

+2ff{ g(y,s)[Ix- yl2- (r-s)] -’/

s>O, [r-s[<[x-yl)
dyds.

Define kernels K and K2 on R R2 X R by

2- lY12) -/2 if lyl < IslKl(y, s)
0 if lYl >_- Isl,

(lY12 s2)- t/2

/q(Y’*)
o

if lYl > Isl
if lYl _-< Isl.

It is enough to show that, for 1, 2, convolution with K defines a bounded
operator from L6/5(R3) to L6(R3). To do so we adopt the notation of [3]. Thus
we will use x, x2, x for coordinates in R and write P(x) for either

2xf- x7- x o, xf + x7- x.
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In the first case p1/2 corresponds to Kt, in the second to K2. We will use
complex interpolation to show that convolution with pt/2 defines a bounded
operator from L6/5 to L6. To this end, define a family of convolution
operators by

Tf-- P+ * f/F(z + 1)r(z + }).

By the considerations of Chapter 3 (Section 2.2) of [3], T is an entire family of
convolution operators. If Re z 0, the functions P/ are uniformly bounded,
and so the operators T are bounded from L to L. If Re z --, the
functions P_ have uniformly bounded Fourier transforms (p. 365 of [3]), and
so the operators T are bounded on L2. The interpolation theorem in [6] is
applicable. It follows that T_I/2 is bounded from L6/5 to L6. This completes
the proof of Theorem 3.

4. An application

Let X be the uniform probability measure on the circle in R2 with center
the origin and radius r. Define a measure/ on R R2 R by

dlx= x,r) dhr(x) dr.

Then/.t is concentrated on a cone in R3. Let T be the operator on functions on
R3 given by convolution with .
THEOREM 4. The operator T is boundedfrom LP(R3) to Zq(R3) /f and only if

1 1 1 6
q p 3 and <p<2.

Proof
that

If T is bounded from Lp to Lq, homogeneity considerations show

1 1 1
q p 3"

If f is the characteristic function of a ball, then [ITfllq can be finite only when
q > 2 (and so p > 6/5 if 1/q 1/p 1/3). It then follows from duality that
p < 2 if T is bounded from L P to Zq. To prove the converse, fix nonnegative
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functions f and g on R3. Using II lip to denote an Lp norm on either R2 or
R3, we estimate

(f Ix*g) f(x, + r)Xr* g(., t)(x) dxdrdt

f?fo< I[f(’, + r)[[q,[lX, g(., t)Ilqdrdt

s: [So=-< (IV(’, t+ r)Ilq,rll-2l’+2lq)"dr

x r-i’-2/qXr * g(’’ t) - dr.

1/s’

Thus T will be bounded if we can find s (1, o) such that the estimates (2)
and (3) below are valid:

Is: [So:(2) (llf(’, + r)[[q,rl/s-e/P+2/qS’dr dt <= CIIfllq,,

"q r dt -< Cllgll.

(The symbol C denotes a positive constant which may increase from line to
line.)

If s’< q’< p’< o, let C be a bound for the one-dimensional Riesz
potential of order s’/q’-s’/p’ as a mapping from Lq’/s’(R) to Lp’/s’(R).
Then if

1 1 1
q p 3’

we have

) SP S
s’ 1_2+ 2_ =-1 p,s p q q’

SO

III(’, + r)IIq’,r(’/s-/+/q)"dr

c f(’, t) I1; dt
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This gives (2). To obtain (3) we start from the fact that the convolution
operator defined by the measure (= X1) is bounded from L3/2(R2) to L3(R2)
(see, for example [4] or the lemma in [5]). Thus the following estimate holds
for functions h on

sup
r>0

On the other hand, the case (1/p, 1/q)= (1/2,-) of Theorem 3 yields the
estimate

Interpolating these estimates shows that if 1/q lip 1/3 and < p < 2,
then there is some s > q such that

Ilr(X/-/q)x, h,,q r <- CIIhll.

This yields (3), and so T is bounded from Lp to Lq whenever 1/q 1/p
1/3 and < p < 2. Duality and one more interpolation complete the proof of
the theorem.

REFERENCES

1. A. BENEDEK and R. PANZONE, The spaces Lp with mixed norms, Duke Math. J., vol. 28 (1961),
pp. 301-324.

2. J. BOURGAIN, Aoerages in the plane ooer conoex curoes and maximal operators, J. Analyse
Math., vol. 47 (1986), pp. 69-85.

3. I.M. GELFAND and G.E. Smt.ov, Generalized functions, vol. I, Academic Press, New York,
1964.

4. W. LITTMAN, L" Lq-estimates for singular integral operators, Proceedings of Symposia in
Pure Mathematics, vol. 23, American Math. Soc., Providence, R.I., 1973.

5. D. OBERLIN, Conoolution estimates for some measures on curoes, Proc. Amer. Math. Soc., vol.
99 (1987), pp. 56-60.

6. E.M. STEIN, Interpolation of linear operators, Trans. Amer. Math. Soc., vol. 87 (1958),
pp. 159-172.

7. Maximal functions: spherical means, Proc. Nat. Acad. Sci., vol. 73 (1976),
pp. 2174-2175.

8. E.M. STEIN and G. WEISS, Introduction to Fourier analysis on Euclidean spaces, Princeton
University Press, Princeton, N.J., 1971.

THE FLORIDA STATE UNIVERSITY
TALLAHASSEE, FLORIDA


