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ON FINITE RATIONAL GROUPS AND RELATED TOPICSt

BY

WALTER FEIT AND GARY M. SEITZ

1. Introduction

If H is a finite group and Xl,..-, Xs are characters of H let Q(X1,..., xs)
be the field generated by all Xi(x), x H, 1 < < s. If X,..., Xk are all the
irreducible characters of H let Q(H) Q(x,--.,
A character X is rational if Q(X)= Q-A group H is a rational group if

Q(H) Q.
Let Xn denote the symmetric group of order n and let An denote the

alternating group. Xn is a rational group. More generally, every Weyl group is
a rational group. See [6].

In this paper we prove several results related to the study of rational groups.
We determine all nonabelian simple groups which can occur as composition
factors of rational groups, in particular the simple rational groups. In addition,
we prove that the rational group algebra of any non-trivial finite group has an
outer automorphism and show that any outer automorphism of a finite simple
group must move a conjugacy class. All these results use the classification of
finite simple groups in an essential manner.

THEOREM A. Let rn be a natural number. There is a finite set ,, of simple
groups such that if G is a finite noncyclic simple group which occurs as a
composition factor of a group H satisfying [Q(H)" Q] < m, then G is isomorphic
to an alternating group or to a group in ’,.

Theorem A partially answers a question of John Thompson, leaving open
the problem of whether or not there are only finitely many cyclic groups of
prime order which occur as composition factors of groups H satisfying
[Q(H): Q] _< m.

Let 6a, be the set of all primes which divide the order of any solvable
group H with [Q(H): Q] _< m. It is known that Sa is finite [7]. It has
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previously been shown by Gow [11] that 6a (2, 3, 5}. Conceivably any
cyclic composition factor of a group H with [Q(H): Q] _< rn has order in

THEOREM B. Let G be a noncyclic finite simple group. Then G is a composi-
tion factor of a rational group if and only if G is isomorphic to an alternating
group or one of the following groups:

(i) PSp4(3), Sp6(2), 08+(2)’,
(ii) PSL(4), PSU4(3).

Alternating groups and the groups listed in Theorem B(i) are composition
factors of Weyl groups. However, the groups in Theorem B(ii) seem almost
accidental. It is curious to note that these two groups are also the finite simple
groups with the most complicated Schur multipliers.
As corollaries to Theorem B we get:

COROLLARY B.1. Let G be a noncyclic simple group. Then G is a rational
group if and only if G Sp6(2) or O8+(2)’.

COROLLARY B.2. Let G be a finite group such that any two elements of the
same order are conjugate. Then G = Y for n 1, 2 or 3.

Corollary B.2 answers a question that appears to have been around a long
time. See [13], 7.48, where it is referred to as a well known problem. Graham
Higman and John Thompson have drawn our attention to a result of P. Hall
which asserts the existence of an infinite torsion group with the property that
any two elements of the same order are conjugate. See the Journal of the
London Math. Society, vol. 34 (1959), p. 305. This may explain the apparent
need of the classification of finite simple groups for the proof of Corollary B.2.

Added in proof. We have been informed by P. Fitzpatrick that he had
previously proved Corollary B2 (Proc. Roy. Irish Acad., vol. 85A (1985), pp.
53-58). His proof also depends on the classification of the finite simple
groups.

The methods used in proving the above mentioned results also enable us to
prove the next two theorems which answer questions of G. Janusz [12].

THEOREM C. Let a be an outer automorphism of the finite simple group G.
Then there exists a conjugacy class C of G with C q C.

THEOREM D. Let G (1) be a finite group. Then the group algebra Q[G]
has an outer automorphism.

The proofs of Theorems A and B are based on some detailed results about
finite simple groups of Lie type which may be of independent interest. Of
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particular importance is the existence of certain self-centralizing cyclic maxi-
mal tori, see Theorem 3.1. The investigation of various groups of relatively
small order, including the sporadic simple groups, is greatly facilitated by the
existence of the ATLAS [6]. This is used throughout the paper.

2. Numerical preliminaries

Let a and n be integers greater than 1. A Zsigmondy prime for (a, n) is a
prime 1 such that ll(an- 1) but (ai- 1) for 1 <i< n- 1. If is a
Zsigmondy prime for (a, n) then 1 (mod n) and so > n + 1.

If m is a natural number and is a prime let mlz denote the/-part of m. In
k where k lk+lother words mlt [m but m.

A large Zsigmondy prime for (a, n) is a Zsigmondy prime for (a, n) so that
a lit > n + 1. Thus either > n + 1 or 121(a 1).
For any natural number n let tI)n(x) denote the nth cyclotomic polynomial.

Let (n) be the degree of ,(x). Thus tp(n) is the Euler function. Observe
that if I is a Zsigmondy prime for (a, n) then tI)(a)
The next result is proved in [10].

THEOREM 2.1. If a and n are integers greater than 1, then there exists a large
Zsigmondy prime for ( a, n) except in the following cases:

(i) n 2 and a 2s3 1 for some natural number s, and 0 or 1.
(ii) a 2 and n 4, 6,10,12 or 18.
(iii) a=3 andn=4or6.
(iv) a=5 andn=6.

This immediately implies the following result of Zsigmondy.

THEOREM 2.2. If a and n are integers greater than 1, then there exists a
Zsigmondy prime for (a, n) unless (a, n) (2, 6) or n 2 and a 2 1 for
some natural number s.

The following results will also be needed.

LEMMA 2.3. Let a and n be integers greater than 1. Let be a large
Zsigmondy prime for (a, n) and let k a llz. Let N be a natural number
such that I(a)lzlN and Nl(a- 1). Then p(N) > 2n. Furthermore,
p(N) 2n if and only if 2n + 1 and N or 21.

Proof. Since lkIN it follows that

p(N) > p(Ik).
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Suppose that 1 > 2n + 1. Then (2.1) implies that

p(N) > p(l) > 2n.

If N > 21 the first inequality becomes strict. If 1 > 2n + 1, the second
inequality becomes strict.

Suppose that < 2n + 1. Thus n + 1 and k > 2. By (2.1),

(N) > nlk- > n(n + 1) > 2n.

LEMMA 2.4.
if m is odd.

Let rn be a natural number. Then p(rn) > 1/2Vr- and p(rn) >

Proof. If p is a pfirne then (,b) (p 1)pb-1 for b >_ 1. Thus qg(pb) >_

p if p : 2 and q(2b) >_ 1/2/2b If s, are relatively prime then q(st)
(s)q (t). The result follows. []

3. Self centralizing cyclic subgroups of simple groups

Let p be a prime and let G be a connected, simple, adjoint, al__gebraic group
over the algebraic closure of Fp. Let o be an endomorphism of G such that the
fixed point group o is finite. Set G OP’(o). Then G G(q) is a finite
group of Lie type, where q p/for some natural number f. Throughout this
section we assume that G is a simple group. Consequently, we regard Sp4(2f
as PSL:(9), G:(2)’ as PSU3(3),:G:(3)’ as PSL_(8), and we omit :F4(2)’.

Identify G with Inn(G), the group of inner automorphisms of G. Thus
G<IA, the group of all automorphisms of G. Set G Go, so G is the group
generated by all inner and diagonal automorphisms of G. Set d ]G" G I. Let

Table

G g d

At(q)
A,,(q), n > 2
2An(q), n > 2
Bn(q), n > 3
C.(q), n >_ 3 or, n > 2 and q odd
C2(2f)
Dn(q), n > 5
D4(q)
ZD,,(q), n > 4

i (2, q- I)
2 (n+ 1, q- 1)
2 (n+ 1, q+ 1)
1 (2, q- 1)
1 (2, q 1)
2 1
2 (4, q" 1)
6 (4, q 1)
2 (4, q" + 1)
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Table II

G g d (a,m)

3D4(q) 3 1 (p,3/) (2,6)
E6(q) 2 (3, q 1) (p,12f)
2E6(q) 2 (3, q + 1) (p,12f)
ET(q) 1 (2, q 1) (p, 12f)
Es(q) 1 1 (p, 30f)
F4(q) q odd 1 1 (p, 8f)
F4(2/ 2 1 (2, 8f)
G2(q), 3 q 1 1 (p,3f) (2,6)
G2(31’ 2 1 (3, 3f)
2C2(22a+1), a > 1 1 1 (2,4(2a + 1))
2F4(22a+l), a > I 1 I (2,12(2a + 1))
2G2(32a+l), a > 1 1 1 (3,6(2a + 1))

g denote the order of the group of graph automorphisms of G. Then G G is
the commutator group of G and

Ia: GI GI: Glfg dfg.

See [5], Section 12.5.
Tables I and II contain the values of d and g as G ranges over all simple

groups of Lie type (except 2F4(2)’). The fourth column in Table II contains a
pair of integers (a, m) such that by Theorem 2.2 there always exists a
Zsigmondy prime for (a, m).

Table III contains a root a and an element ), of the Weyl group.
wo denotes the long word in the Weyl group.
The root r in column 4 of F4(q) denotes the highest root.
The root r in column 4 of E7(q) denotes the highest root in the E6-subsys-

tem.
The main result of this section is the following.

THEOREM 3.1. Assume G 0(o) is a simple group of Lie type. Then
there exists a maximal torus T of G with the following properties.

(i) T N G is cyclic and Ca1(T c3 G) T.
(ii) TI and e [NGx(T G): T are as in Table 111. In the last three rows

either square root may be chosen.
(iii) IN(T c G): TI -< efg.
(iv) If G PSU4(2) or D4(q) for q < 5 then CA(T G) T.
(v) If G D4(q) then Ca2(T N G) T, where G2 is generated by G and

all field automorphisms. Furthermore

IN(T G): C(T G)I -< 24f.
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We will_ first construct T and then verif__y that it has the required properties.
Let G, o, G and G1 be as before. Let H be a o-invariant maximal torus of

G contained in a o-invariant Borel subgroup. The maximal tori of G1 are the
groups T T for T a o-invafiant conjugate of H. Then o may be considered
as an automorphism_of the abstract group G, hence as an_element_ of the
semi-direct produce G(o). Thus if T Hx then Ix, o] N(H) N. Conse-
quently there is an element w N such that hx= (hW) for all h H.
Hence T -- Hwo. Let X X(H) be the character group of H. Then X is a free
Z-module with basis a set of fundamental roots al,..., a_n of the root system
of G. Both w and o induce actions on X and Hwo--X/X(1- wo)
[17, II.1.7].

Suppose that G 4=:C2(q),:F4(q),:G:(q). Then o induces q or q on X,
where z is a graph automorphism. Set , w or wz respectively. By [15, (2.1)]
we have

(3.1) Irl IHol fr(q),

where fv is the characteristic polynomial of -/on R (R) X.
Let a and be chosen as in Table III. Assume G 4= Dn(q). A direct check

shows that (ai=a,/;-l11<i<n} is a Z-basis of X, so T is cyclic by
[15, (2.2) (iii)]. Now suppose G Dn(q) and let * denote the image in
X* X/X(1 wo). Computing a(1 wo)= ai(1 qw) yields the follow-
ing relations in X*"

n-1 q

{(qn_ 1)/(q- 1)}a* 0,
, qn-2((1 q)a q +

So

, nX* (a’,an) and I(a’)l (q -1)/(q-I).

,When n is odd X* (an) as ((q -1)/(q- 1),q+ 1)=1, whence T is
cyclic. But for n even X* has rank 2 and contains a unique cyclic subgroup
with quotient Z: Z: " G1/G. Hence T q G is cyclic.

In the remaining cases let q 22a + 1, 22a + 1, 32a + respectively. Let r be the
graph automorphism of the Dynkin diagram (ignoring lengths of roots). Then
o induces ql?, where ql ql/_ and q is the isometry of R (R) X sending a to
p-1/a" or pl/2a’, according to whether a is a short or long root. Then (3.1)
again holds, where q is replaced by
Choose a and ,/ as in Table III. A direct computation shows that T is

cyclic. Therefore T N G is cyclic.
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LEMMA 3.2. Col(T N G) T.

Proof. Suppose this is not the case. Then CI(T G) T. Thus [15], (2.9)
implies that CGx(T o G) contains a unipotent element u. Hence T N G __.
Cx(u). Therefore T G is contained in a maximal parabolic subgroup P of
G by [3], Proposition 3.12. Let L be a Levi factor of P.
Suppose G occurs in Table I. Let T G (y) and let G be the corre-

sponding coveting group which acts on the classical module V associated with
G. From the description in [14] of maximal toil in G we see that preimages of
y in G have distinct characteristic values. Thus y is centralized by no
unipotent element in
Now suppose that G occurs in Table II. If G : G2(4) or 3D4(4) let r be a

Zsigmondy prime for (a, rn) and let R be a Sr-group of T
is cyclic. Since r IPI it follows that G =3D4(q) or E7(q).

If G G2(4) then IT GI 21 but no parabolic subgroup of G has order
divisible by 7.

If G 3D4(q), then P must be a parabolic subgroup for which L’ SL2(q).
A consideration of the action of L on O(P) shows that T G centralizes no
unipotent element of P, a contradiction.

Suppose G ET(q). Here P must be the parabolic subgroup with L’=
E6(q). Let * denote images in P/Oe(P). Then (T G)* L* and R* is a
Sr-subgroup of L*. Also, since L*" L’*I I(q- 1),(T L’)* has index at
most 2 in (T t G)*. Since r divides the order of no proper parabolic subgroup
of L’, C,(R) is a maximal torus. By Table III, this maximal torus has order
2(q)a(q). Now T N L’

___
CL,(R ), which is inconsistent with the orders of

the groups involved.

LEMMA 3.3. In each case e has the oalue in Table III.

Proof. By Lemma 3.2, C(T)o __C_ C(T G) T where denotes the
connected component of 1. Thus C(T) contains no unipotent elements and
so C(T) T. See the argument in [15, (2.6)]. Furthermore, Lemma 3.2
implies that NGx(T 0 G) NI(T). By [17, 11.1.8] this yields

e IN(T c G)" rl ICv(wo)l.

If , is a Coxeter dement then e I<>1 2N_/n, where N is the number
of positive roots in the root system associated to G. See [4], Proposition 30 and
[5], Theorem 10.5.3. If , is a coxeter element times w0z in A,(q) or E6(q) the
same conclusion holds as w0z inverts T and centralizes W.

If G E7(q) then e 24 21(v>l and Cw(wo) (,) w0). See [4]. If
G F4(q) or G2(q) the value of e can be found in [4]. If G Dn(q), the value
of e can be determined directly by viewing -/ as an n-cycle in __. W(D).
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Let G--2Dn(q). Since W(Dn)c__ W(Bn) and z may be viewed as the
reflection corresponding to the missing node, it follows that 3’ is the Coxeter
element in W(B,). Hence the centralizer of 3’ in W(B,) has order 2n and so
the centralizer in W(D,) has order n.
The verification for the remaining cases 3D4(q) 2C2(22a+1), 2F4(22a+l) and

2G2(32a+ 1) can be done explicitly. []

Proof of Theorem 3.1. Lemmas 3.2 and 3.3 imply (i) and (ii). Since
IA: Gll fg, (iii) is a consequence of (ii). Note that (2.8) of [15] proves (iv) if
G D4(q) and q > 5. Thus to prove (iv) it may be assumed that G :# D4(q).
If G D(q) with n > 6 even, then NA(G) is contained in the group G2
generated by all inner, diagonal, and field automorphisms. Indeed, it follows
from [14] that T N G is contained in precisely two maximal parabolic sub-
groups of G (with Levi factors of type An_i) and the stabilizer of this pair of
parabolics is contained in G2. Since is conjugate to wo, we may work with
we. Let

O NAut(,wo)(/wo), C-- CAut(o)(/wa).

To prove (iv) it suffices by (iii) to show that [D: C[ >_ ef if G Dn(q) with n
even and D" C > efg otherwise.

Let 8 be the field automorphism of G which induces the pth power map on
H. Thus 8 induces the pth power map on Hwo, which will also be denoted by
/9. Hence 8 D.

Suppose that g 1 or G D,(q) with n even. By Tables I, II and III, 8
has order ef on Hwo unless G ET(q) or G2(q), when 8 has order ef/2 12
or 3. Therefore ID: C > ef except possi__bly when G ET(q) or G2(q). If_one
of these cases occurs then w0 inverts Hwo and no power of 8 inverts Hwo.
Thus D: C > ef also in these cases.

If G 2D,(q) then 8 has order efg and if G 3Da(q) then w0 inverts and
8 has order efg/2, so 1(8, wo)C: C[ efg. Thus in both of these cases
D" CI > efg.
Suppose that G is E6(q),2E6(q), A(q), D.(q) for n odd, or 2A(q) with

n > 2. Then w0, inverts Hwo. If no power of 8 inverts Hwo then D" C >- efg
as required. Suppose that some power 8"* of 8 inverts Hwo. Then ef 2m. if
wo (Y) this implies that y:+l= 1 and so IT[ [p" + 1.

If G E6(q) or 2E6(q) then m 6f and ITI [q6 + 1 which is not the case
as there exists a Zsigmondy prime for (q, 12).

If G An(q) or 2A(q), then p2m + el(py + e,)(pm + 1), where e, e’
( 1 ). Also, 2m (n + 1)f > 2f, so m > f. Hence

p" 1 < (p’ + 1)(p’-’ + 1),
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and so p m 2. The divisibility condition forces e -1, e’= 1, and
G PSU4(2).
Suppose G C2(2f), G2(3’), or F4(2’), and recall that in the first two cases

we are assuming f > 1. Then i has order ef on Ho. We have G G and
G2 (G, 6) has index 2 in A. Suppose C T. By Lemma 3.2 and the above
remarks, C n G2 T, so C: T 2. Since IT] is odd there is an involution
t C- T. Since A G2 and A/G is cyclic, 2f must be odd. An argu-
ment with Lang’s theorem yields C(t) - 2C2(2"), F4(2 f) or 2G2(3f ) respec-
tively. As T is cyclic, T is contained in a maximal torus of C(t). But then
(2.4) (iii) of [15] implies TI < (ql/2 + 1)r, for r the Lie rank of G. This is
possible only if q 2 and so G F4(2) and IT] 17. However, 17 ]2F4(2)1
a contradiction.
At this point we have verified (iv). It remains to establish (v). Assume

G D4(q). From (iv) we have CA(T n G) T for q > 5, so to establish the
first assertion in (v) we may assume q___< 5. By Lemma 3.2 we may assume
q 4. But here has order 8 4f on Ho and no power of 8 is inversion, the
assertion follows. Finally, if the second assertion in (v) is false then

Ir%(r n s). c (r n S)l 48f.

But then A GNA(T n G), so NA(T n G) induces a noncommutative group
of automorphisms on the cyclic group T n G. This is a contradiction. []

THEOREM 3.4. Suppose G =/= A6 is an alternating or sporadic group. Let
A Aut(G). Then G contains a nonrational element y such that CA(y) (y)
and A GNA((y)).

Proof Suppose G is a sporadic group. If G J2 or Mc, let y be an
element of prime order p for p the largest prime divisor of GI. For G J2 or
Mc, let I(Y)I 15, 14, respectively. The result follows from [6].

Suppose G A,. If n 5 let y have order 5. Assume n > 7. Suppose x is
an /-cycle for =- 3 (mod4). Then x is inverted by the product of 1/2(l- 1)
disjoint transpositions, an odd permutation. If n or n 1 is such a number l,
then Cx(x) (x), so x is not inverted in A,.

If n=2k+ lwithkeven, set l=k- 1 and 12=k+l.Then l and 2

are odd, (l,/2) 1, and one of these numbers is congruent to 3 (mod 4). Set
Y YY2, where y, Y2 are disjoint cycles of lenghs li, 2, respectively. Then
(y) is self-centralizing in Y., and is normalized by an odd permutation,
inverting one of y and Y2, centralizing the other. Finally assume n 2k with
k odd. Here we set

(ll, 12)=(k-2, k+2) or (k- 4, k + 4),

according to whether k 1 or 3 (mod 4). Then use y YlY2 as above. I
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4. Some properties of characters

If G is a finite group let Aut(G) denote the group of all automorphisms of
G, and let Inn(G) denote the group of all inner automorphisms of G. Thus
Inn(G)<lAut(G).

If the center of G has order 1 then G -- Inn(G). We will frequently identify
G with Inn(G). Thus G<IAut(G).

LEMMA 4.1. Let G be a noncyclic simple group which is a composition factor
of H. Then there exists a group Ao with G c_ Ao c_ Aut(G) such that if X is a

faithful irreducible character ofAo then Q(x) _c Q(H).

Proof. Induction on IHI/IGI. If H G, the result is clear with Ao G.
If (1) 4 K<IH and G is a composition factor of H/K, the result follows by

induction as Q(H/K)

_
Q(H). Suppose that no such K exists. Then H has a

unique minimal normal subgroup K Gt Gs with G -- G for 1 <
__<S.

The group H acts as a transitive permutation group on the set ( Gi[ 1 < < s }
by conjugation. Let H be the stabilizer of Gi. Thus H NH(Gi). Further-
more I-Ij, iG<Hi.

Let A Ht/Cn(Gt). Then A -- Ao with G

_
A0 c_ Aut(G). Let X be a

faithful irreducible character of At. Hence X is a character of H with Cn(Gt)
in its kernel. In particular, G is in the kernel of X for 1. Let " Xn. Then
Q(’) __c_ Q(x). It suffices to show that Q(x)= Q(’), because in that case
Q(x) --- Q(H).The definition of H implies that ’K--Xr + O, where 0 is a sum of
irreducible characters of K which have G in their kernel. Thus X is the
unique irreducible constituent of ’1 which does not have G in its kernel. If
a Gal(Q(x)/Q(’)) then X is an irreducible constituent of ’1 ’. As Gt
is not in the kernel of X", this implies that X"= X. Thus Q(X)= Q(’) as
required. D

L.MMA 4.2. Let G be a noncyclic simple group which is a composition factor
of a group H with [Q(H): Q] < m. Let x G<A Aut(G). Then

IN,((x))" C(x)l > rn

Proof. Let A0 be defined as in Lemma 4.1. Let h be a faithful linear
character of (x). Then h"o is a sum of irreducible faithful characters of Ao
and so Q(h,4o) __. Q(H) by Lemma 4.1. As Q(,’) __. Q(hAo) this implies that
[Q(h’): Q] < m. Therefore

rn > [Q(,X(x))" Q] q(l(x)l)
D
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LEMMA 4.3. Let G < H with H: G 3 and G a noncyclic simple group.
Let X 1 be an irreducible character of G such that Xx X for x H. Then H
has a faithful irreducible character which is not rational valued.

Proof. Since H/G is cyclic, there exists a character " of H with
vanishes on H- G then

=x. If

1 1
Inl E I(Y)I == -3

yH

which is impossible. Hence there exists x H G with ’(x) 4: 0. Let h be a
faithful linear character of H/G. Then ,(x) is a primitive cube root of unity.
Hence, either ’(x) or (x)X(x) is irrational. Thus either ’ or ’, is irrational.

LEMMA 4.4. Let G be a noncyclic simple group. Let G < H c_ Aut(G).
Suppose that G has a cyclic Sp-group P for some prime p such that p H: G
and I < e IN(P): C(P)I < p- 1. Let X be an exceptional character in
the principal p-block B B(p) of G. Assume that one of the following holds.

(i) e is odd and X(1) =- -e (mod p).
(ii) e is even and X(1) -= e (mod p).

Then H has a faithful irreducible character which is not rational valued.

Proof. Suppose that every faithful irreducible character of H is rational
valued.

Let GO GC/(P). Thus GO < H GNn(P). Let Bo, B’ be the principal
p-block of Go, H respectively. Let e’ INn(P): Cn(P)I. Then

e INo(P )" Co(P)I and IH" Gol e’/e.

Let z, z’ be the Brauer tree of B, B’ respectively. Then z is also the Brauer
tree of B0. See [9], Lemma 4.1. If e’ < p I then an exceptional character in
B’ is irrational and faithful (since its values are in the field of IPlth roots of
unity). Thus p 1 e’ > e.
By Lemma 4.1 of [9], z is similar to z’ in the sense of [9]. Since z’, has

e’, e edges respectively and IH: Gol e’/e it follows that every nonexcep-
tional character in B0 extends to a non-exceptional character in B’. Hence
every nonexceptional character in B is rational valued and so z is an open
polygon with e edges. Let V0 be the vertex of z corresponding to the principal
character and let V be the exceptional vertex of z. As either (i) or (ii) holds, V
cannot be an endpoint of z. Thus z zx u z2, where V is an endpoint of zi
and i has e > 0 edges for 1 and 2. Thus, e e / e2. Choose the
notation so that et _< e2.
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By [9], Lemma 4.3 there exists a vertex V’ of ’ such that z’ is the union of
open polygons zij for 1, 2,1 < j e’/e, where V’ is an endpoint of each
zij and has e edges. Thus the real stem of z’ has at most 2e2 edges. Since
B’ contains e’/e nonfaithful irreducible characters, we get

Hence,

Therefore

2e2 + e’/e- 1 > e’ =p- 1.

2e-2+
p-1

1>p-1e

(p- 1)(e- 1) (p- 1)(4.1) 2e >_ + 3 >e 2

Hence 4e > p 1 and so p 1 2e or 3e. In neither of these cases is (4.1)
satisfied. D

5. Theorem A

Proof of Theorem A. Since there are only finitely many sporadic simple
groups, it suffices to show that there are only a finite number of simple groups
of Lie type which are composition factors of groups H with [Q(H): Q] < m.

Let G Gn(pf) be a simple group of Lie type of rank n over Fez. Let T be
the torus defined in Table III and let TO T : G. Let A--Aut(G). By
Theorem 3.1 and Table III there exists a constant C so that

Ir  (r0): c (r0)l < cf .

By Lemmas 2.4 and 4.2,

(5.1) Cfn > q(ITol)/m > 1/2T01/m.
It is clear from Table III and the inequality IT: T0l < min( n + 1, p/+ 1},
that (5.1) can hold for only finitely many values of p, f, and n.

6. A technical lemma

LMMA 6.1. Let q p/ with p a prime. Let G Gn(q) be a simple group of
Lie type over Fq of rank n distinct from 2F4(2)’. Assume that G is not isomorphic
to an alternating group or to one of the groups PSp4(3), Sp6(2), O(2)’, PSL3(4)
or PSU4(3). Let T, d, e, f, g be defined as in Section 3. In the last three lines of
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Table III choose T so that the positive square root is taken in the fifth column.
Assume that

Then G is isomorphic to one of the following groups:
(i) PSL_(7), PSL2(11), PSU3(3), G2(3), G2(4), O7(3)’, PSp6(3), F4(2);
(ii) PSL2(8), Sz(8), PSUs(2), 3D4(2);
(iii) PSL2(27), PSU(4), PSU3(5), Sp4(4), PSUa(8), PSU6(2),

PO+(3)’; 2E6(2);
(iv) PSL4(3).

Proof. Each case in Tables I and II will be considered separately.

G A(pY). By (6.1),

(6.2) 2f> q0( p/+I )d

Thus Lemma 2.3 implies that there are no large Zsigmondy primes for (p, 2f).
Hence one of the cases listed in Theorem 2.1(i)-(iv) must occur.

Suppose that f 1. By (6.2), 2 > q((p + 1)/d). Hence (p + 1)/d 2, 3,
4 or 6. Thus p + 1 _< 6d < 12 and so p < 11. A:(2) and Ax(3) are solvable
and Al(5) A s. Hence q 7 or 11. Now suppose f 1.

If p 2 then f= 2, 3, 5, 6 or 9. Hence (6.2) implies that f 2 or 3.
A:(4) As. Thus G A(8).

If p 3 then f 2 or 3. Since Ax(9) -- A6 this yields G A(27).
If (p,2f) (5, 6) then (6.2) is not satisfied.

G An(p/) with n > 2. By (6.1),

(6.3) p,(n+ :)/_ 1 )2(n+l)f>_qo (p/_ l)d

Suppose there is a large Zsigmondy prime for (p, (n + 1)f). By Lemma 2.3,

(6.4) r{2(n + 1)f + I} p(n+l)/_ 1
(p/- l)d
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wherer= lor2, andp2ifr=2. Thus

(6.5)

r{2(n + 1)f+ 1} >
p(n+l)f_ 1

(p/-- 1)2
>
pn/+ p(n-:)/

>_ P("-:)/> 2(’-t)/
(p/+ 11

Therefore n < 4 and n < 3 if r 2.
Suppose r-- 2. If n 3 then (6.5) implies f 1 and p 3, contrary to

(6.4). If n 2, then the right side of (6.4) is odd, again a contradiction. Now
suppose r 1.

If n 4, (6.5) implies that 10f + 1 > p3/> 23/and so f 1. Thus 11 >/73
and p 2. This contradicts (6.4).

If n 3, (6.5) implies that 8f + 1 > p2/> 22/and so f #: 2. Thus 17 >/74
or 9 > p2 and so p 2 in either case. This contradicts (6.4).

If n=2, (6.5) implies that 6f>p/>2/ Thus f=l, p<7 or f=2,
p < 3 or, f 3 or 4 and p 2. Thus (6.4) implies that p/= 2 and G A2(2)-- PSL2(7).

Thus it may be assumed that there is no large Zsigmondy prime for
(p, (n + 1)f). By Theorem 2.1 one of the following must occur:

p 2, (n + 1)f= 4, 6, 10, 12

p=3, (n+ 1)f=4 or 6;

p 5, (n + 1)f= 6.

or 18;

Now (6.3) implies that the only possibilities are n 3, p/= 2, 3 or n 2,
p/= 4. Since A3(2) -- A 8 it follows that G A3(3) or A2(4).

G 2An(p/) with n > 2. By (6.1),

(6.6) 2(n+l)f> q[p(n+x)/+ (_1)](p/+ 1)d

Suppose first that n is even. By Lemma 2.3 there is no large Zsigmondy
prime for (p, 2(n + 1)f). As 2(n + 1)f > 6, Theorem 2.1 implies that one of
the following must occur"

p 2, (n + 1)f= 3, 5, 6

p=3, (n + 1)f= 3;

p 5, (n + 1)f= 3.

or 9;

The group 2A2(2) is solvable. The remaining groups which satisfy (6.6) are
2A4(2) and A(q) with q 3, 4, 5 or 8.
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Suppose that n is odd. Hence n > 3. If there exists a large Zsigmondy prime
for (p, (n + 1)f) then (6.6) and Lemma 2.3 imply that

(6.7) rl r(2(n + I) + I) (p(,,+l)/_ l)/(p/+ l)d,

where 1 is a prime, r 1 or 2, and if r 2, then p is odd. Set n + 1 2m
and y mf. Then

Hence

l’[ (pmf a)(pmf .. 1)/( pf q- 1)d.

(6.8) p"/- 1 <rd(pf+ 1)=r(2m, p/+ 1)(p/+ 1) <r(p/+ 1) 2

The inequality

is impossible for rn > 4. For rn 3, p3/_ 1 < r6(p / + 1) implies p! < 3. If
pf 2, then G PSU6(2) and if p/= 3, (6.7) fails to hold. Suppose rn 2.
Then p2/_ 1 < 2(4, p/+ 1)(p / + 1), and so p/< 9. The cases pf 2, 3 are
out by hypothesis and none of the remaining cases satisfy (6.7).
Thus it may be assumed that there is no large Zsigmondy prime for

(p, (n + 1)f). Theorem 2.1 implies that one of the following must occur:

p 2, (n + 1)f 4, 6, 10, 12

p=3, (n+l)f=4 or 6.

p 5, (n + 1)f= 6.

or 18.

The only cases where (6.6) is satisfied are G =2A3(2) --PSp4(3), 2A3(3) or
2A(21.

G Bn(p/) or Cn(p/) with n > 3. By (6.1),

(6.9) 2nf>q[p"/+ 1]d

By Lemma 2.3 there is no large Zsigmondy prime for (p, 2nf). Hence
Theorem 2.1 implies that one of the following must hold:

p= 2, nf 3,5,6 or 9;

p=3 or 5, nf=3.
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Thus (6.9) implies that G B3(2) -- C3(2) -- Sp6(2), or G = B3(3) or C3(3).

G C2(p/) with p 2. By (6.1),

4f>p[p2/+ 1]2

By Lemma 2.3 there is no large Zsigmondy prime for (p, 4f). By Theorem 2.1,
p 3 and f 1. Hence G C2(3) -- Sp4(3).

G C2(2/). By (6.1),

(6.10) 8f > (2-/+ 1).

If there is a large Zsigmondy prime for (2, 4f) then Lemma 2.3 implies that
8f+ 1 =22/+1. Hence f=2 and so G=C2(4). If there is no large
Zsigmondy prime for (2, 4f) then f 1 or 3 by Theorem 2.1. By (6.10), f 4: 3.
Hence G C2(2) and so G’ -- h6.

G D,(p/) with n > 5. By (6.1),

(6.11) d

By Lemma 2.4 one of the following holds:

1 i p"/- 1
4nf > - d

4nf > V/2"/- 1,

1
> -p"Y-1,

p=2.

Thus either

256n-f->_p"/-1>_3"/-1, p 2,

or

16n2f 2 > 2"/- 1, p 2.

Therefore one of the following occurs:

p 2,

p=3,
p--5,

nf< 10;
nf<9;
nf=5.
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None of these satisfy (6.11).

G D4(p/). By(6.1),

(6.12) 24f> p[p4/_ 1]d

By Lemma 2.4 one of the following holds

Thus either

1/p4/-- 1
24f> - d

1

24f >_ 1, p 2.

p2;

962f2>paY_l>34/- 1, p2,

or

576f 2 > 24/- 1, p 2.

Therefore one of the following must occur:

p=2, f<3;
p=3, f<2;
p 5 or 7,

Since (6.12) holds it follows that G D4(p) with p 2 or 3.

G 2Dn(p/) with n >_ 4. By (6.1),

(6.13) 2nf>p[p"/+ 1]d

By Lemma 2.3 there is no large Zsigmondy prime for (p, 2nf). Hence by
Theorem 2.1, p 2 and nf 5, 6 or 9. In none of these cases is (6.13)
satisfied.

G 3D4(p/). By (6.1),

(6.14) 12/>_ q((p3/_ l)(p/+ I)).
Thus Lemma 2.4 implies that

12/>_ 1/2/(p3/_ l)(p/+ I) >_ 1/2V/p4/ 1/2pg_/.
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Therefore one of the following occurs:

Thus G 3/)4(2) by (6.14).

p=2, f<3.

G E6(Pf). By (6.1),

24f>_ d

For p 2 and f 1 this is impossible. If p 2 or f 4:1 then by Theorem 2.1
there is a large Zsigmondy prime for (p, 12f). Hence Lemma 2.3 implies that

f12 ( Pf ) f3 ( pf)
=l or 21

with 1 a prime. Thus ti)t2(p/) _< 6 or ti)3(p/) _< 6 which is not the case.

G =9-E6(Pf ). By (6.1),

24f>_ p d

If p 2 and f= 1 then G =2E6(2). If p 4:2 or f4:1 there is a large
Zsigmondy prime for (p, 12f) by Theorem 2.1. Hence Lemrna 2.3 implies that

f12 ( Pf ) f’6 ( pf)
=1 or 21

with 1 a prime. Thus 12(p/) < 6 or 6(p/) < 6. This is not the case as
pf> 2.

G ET(p!). By (6.1),

24f>_
19_( P/)( p3/+ 1)

d

If p 2 and f 1 this implies that 24 > q(l17) which is not the case. If
p 2 or f 1 then there is a large Zsigmondy prime for (p, 12f) by Theorem
2.1. Hence Lemma 2.3 implies that

I2( P/)( P3/ + 1)
=l or 21
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with 1 a prime. Thus 12(p/) _< 4 or p3/+ 1 _< 4 which is not the case.

G Es(p/). By (6.1),

(6.15) 30f >_ q(3o(P/)).

By Theorem 2.1 there exists a large Zsigmondy prime for (p, 30f). Hence
(6.15) contradicts Lemma 2.3.

G Fa(p/) with p odd. By (6.1),

(6.16) 8f > tp(p4y + 1).
By Theorem 2.1 there exists a large Zsigmondy prime for (p, 8f). Hence (6.16)
contradicts Lemma 2.3.

G F4(2/). By (6.1), 16f> tp(24/+ 1). By Theorem 2.1 there exists a
large Zsigmondy prime for (2, 8f). Hence Lemma 2.3 implies that 16f + 1
24/+ 1. Thus f 1. Hence G F4(2).

G G2( p/) with p q: 3.

(6.17)

By (6.1),

6f > q( p2/ + p/ + 1).
If (p, 3f) has a large Zsigmondy prime, Lemma 2.3 implies that

r(6f+ 1) =p2//p/+l for r=lor2.

This is impossible for p! > 4. If (p, 3f) has no large Zsigmondy prime then
Theorem 2.1 implies p 2 and f 2, 4 or 6, or p 3 or 5 and f 2. Thus
(6.17) implies that G G2(4).

G G2(3/). By (6.1),

(6.18) 12f > tp(32/+ 3/ + 1).

Lemma 2.4 implies that 12f > V/32/+ 3/ + 1. Hence 144f2 > 9/ + 3/ + 1.
Thus f < 3 and so f= 1 by (6.18)and G G2(3).

G --2C2(22a+1) with a > 1. By (6.1),

(6.19) 4(2a + 1) > (22a+1 + 2a++ 1).

By Lemma 2.4 this implies that

4(2a + 1)>_ 1/22a++ 2a++ 1 > 2al/’-.
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Thus a < 5. Hence a 1 by (6.19) and G =2C2(23) Sg(8).

G 2F4(22a+ 1) with a > 1. By (6.1),

(6.20) 12(2a + 1) > q(24a+2 q- 23a+2 q- 22a+l q- 2a+l q- 1).

By Lemma 2.4 this implies that

12(2a + 1) > 1/24+2 22a+l.

Hence a < 3. This contradicts (6.20).

G --’2G2(32a+l) with a >_ 1. By (6.1),

(6.21) 6(2a + 1) > tp(32a+l + 3a+1+ 1).

By Lemma 2.4 this implies that 6(2a + 1)> /32a+1
which contradicts (6.21). rq

3al/-. Hence a < 2

7. Theorem B and its corollaries

LEMMA 7.1. Let G PSL3(4) and let x be the automorphism of G which is
the product of the graph automorphism and the fieM automorphism. Let H
G(x). Then H is a rational group.

Proof See [61. r-1

Let y be an element in PU4(3) which is the image of an element in U4(3)
whose determinant is a primitive 4th root of unity in F9. Let z be the field
automorphism of PU4(3). If G= PSU4(3) then Aut(G)= G(y,z) and
Aut(G)/G is dihedral of order 8.

Let x y2, x2 yz., x xlx2. Let H G{x1, x2, x3). Then H/G is
noncyclic of order 4. In the notation of [6], x is of type 21, x2 and x are of
type 2 3-

LEMMA 7.2. Let G PSU4(3). Let H G(x1, X2, X3) where x is defined
above for 1, 2, 3. Then H is a rational group.

Proof If X is an irreducible character of G let T(X) denote the inertia
group of X in H.

It will suffice to show that for each irreducible character X of G, the
constituents of Xt/are rational. Set G G(xi) for 1 1,2, 3.
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Assume X is rational. If T(X)= G, then XH is irreducible and clearly
rational (since Xn vanishes of G). Suppose G c_ T(X) and V is any extension
of X to G. If 3’ is not H-invariant, then /n is irreducible, Xn 0 + too
for to a linear character of H/G. If to 1, the assertion holds. Otherwise,
T(X) G, so by [6], 7 is rational valued, as is . Again the assertion holds.
Note that this case necessarily holds if T(X) G. We may thus suppose that
T(X) H and that each such -/ is H-invariant for each i.

Fix and let /9 be any extension of 3’ to H. Then OG is an extension of X
for j 1, 2, 3. If each 0G, is rational, then is rational, and as X Y%O, and

% runs over the linear characters of H/G, the result holds. Thus, we may
assume some , is not rational for some i. In the notation of [6] this only
occurs for X X16 and here is not real for any j. For tp a character let
o(tp) denote the Frobenlus-Schur indicator of tp. Thus

o(x))=

a contradiction.
Finally, assume X is not rational. From [6] we conclude that X X for

9 < < 12 or 17, 18. In the former case T(X)= G, X is irreducible, it
vanishes off G, and xg x9 + xl0 + xx + x2 is rational.

Suppose x x with 17 or 18. Then X extends to a character
Now ,/is irrational only on 7-singular dements, but in H any two 7-singular
elements of the same order are conjugate.

Proof of Theorem B. Since Weyl groups are rational, Lemmas 7.1 and 7.2
imply that the groups listed in the statement are isomorphic to composition
factors of rational groups.

Let G be a noncyclic simple group which is a composition factor of a
rational group. Assume that G is not an alternating group and is not
isomorphic to PSp4(3), Sp6(2), O8+(2)’, PSL3(4) or PSU4(3). We will derive a
contradiction from the assumed existence of G.

If G is a group of Lie type other than 2F4(2)’, then Theorem 3.1 and Lemma
4.2 imply that (6.1) is satisfied. Thus by lemma 6.1 it may be assumed that G
is sporadic, G --2F4(2)’ or G is one of the groups listed in the conclusion of
Lemma 6.1. In each of these cases it will be shown that if G

___
H
_
Aut(G)

then H has a faithful irreducible irrational character. Thus by Lemma 4.1, G
cannot be a composition factor of a rational group.

All explicit references to characters are in the notation of the ATLAS.
Suppose that G is sporadic, G --2F,(2)’ or G is one of the groups listed in

Lemma 6.10). By [6], [Aut(G)" G[ _< 2 and both G and Aut(G) have a faithful
irrational character.

Suppose that G is one of the groups listed in Lemma 6.1(ii). By inspection G
has an irrational character. The Steinberg character is invariant under every
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automorphism of G. Thus Aut(G) has a faithful irrational irreducible charac-
ter by Lemma 4.3.
Suppose that G is one of the groups listed in Lemma 6.1 (iii). In each case

the hypotheses of Lemma 4.4 are satisfied for the following values. Thus G is
not a composition factor of a rational group.

G P e X(1)

PSL2(27) 13 2 28
PSU3(4) 13 3 75
PSU3(5) 7 3 144

Sp4(4) 17 4 225
PSU3(8) 19 3 567
PSU6(2) 11 5 25,515
PSO(3) 13 6 716, 800

2E6(2) 11 5 33,748, 307,775

Suppose finally that G PSL4(3). Let (y P be a S13-group of G. Then

ING(P)" C(P)I 3.

If y is a rational element of H, then NH(P)/CH(P) is cyclic of order 12.
Since G

_
H

___
Aut(G) and Aut(G)/G is noncyclic of order 4 this is impossi-

ble. Hence y is not rational in H and so H has an irrational character which
is necessarily faithful, rq

Proof of Corollary B.1.
and [6]. rq

This is immediate from Theorem B, Theorem 3.4

LEMMA 7.3. Let G be a finite group in which any two elements of the same
order are conjugate. Then every homomorphic image of G has the same property.

Proof Let G* G/K. Let x*, y* G* have the same order. Choose
coset representatives x, y for x*, y* respectively of minimum order. If x and
y have the same order then x is conjugate to y in G by assumption and so x*
is conjugate to y*. Suppose x and y have distinct orders. Then there exists a
prime p so that Ix)l =pam, I(y)l =pon with p+mn and a 4: b, say
a < b. Let x x"n, yl ymn. Then Xl* and Yx* have the same order in G*.
Since x and yt

p- both have order pa they are conjugate in G. Hence x* and
y{’P- are conjugate in G*, contrary to the fact that x* and y*P- have
different orders.

Proof of Corollary B.2. Let G be a counter example of minimum order.
Then G is a rational group. Let K be a minimal normal subgroup of G. By
Lemma 7.3, G/K 1 or 2 or G/K 3.
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Suppose first that K is solvable. Then K is an elementary abelian p-group
for some prime p. If [G/K 1 then [KI [GI 2. If G/K[ 2 then
[K[ _< 3. If [K[ 3 then G -- E3. If [K[ 2 then [G[ 4 which is impossi-
ble. Thus G/K -- Z,3 and the hypothesis implies that [K[ < 7.

If [K[ 5 or 7 then [G: C(K)[ _< 2 and so there are at least 2 conjugacy
classes of elements of order [K in G. If KI 4. Then a S3-group of G acts
faithfully on K and so G -- Y’4 which is impossible as there are 2 conjugacy
classes of involutions in E4.

If [K[ =3 then a S3-group Q has order 9 and [G: Q[ =2. This is
impossible as there are either 8 elements of order 3 or 6 elements of order 9 in
Q, and these cannot all be conjugate. If [K[ 2 then G has a homomorphic
image of order 4. This has either 3 pairwise nonconjugate involutions or 2
nonconjugate elements of order 4 contrary to Lemma 7.3.

Suppose now that K is not solvable. Then K K x... )<Ks, where
K -- K for 1,..., s is simple. An involution in K cannot be conjugate
in G to an involution in K which is not in some K. Thus K K is simple. If
G K then K is a rational group and so K -- Sp6(2) or O8+(2)’ by Corollary
B.1. However, both of these groups have more than one class of involutions.
Suppose that [G: K[ > 1.
As Co(K ) < G and KCo(K ) K Z it follows that Z < G. If Z 1

then Lemma 7.3 and induction imply that G/Z is solvable. Thus Z 1 and
Co(K ) (1). Hence G Aut(K).

Suppose that K -- A, for some n > 5. Then either G = E or n 6, and
G: A61 2. If G-- then G has more than one class of involutions. If
n 6 then by inspection G has either 2 eonjugacy classes of order 8 or more
than one class of involutions.
K * SP6(2) as Aut(Sp6(2)) SP6(2).
If K -- PSP4(3), O+(2)’, PSLa(4) or PSU4(3) then by [6], G has involutions

in K and involutions not in K. These cannot be conjugate, r

8. Automorphisms of simple groups

Proof of Theorem C. Let G be a noncydic simple group. Let a be an outer
automorphism of G which fixes every conjugacy class of G. We will reach a
contradiction from the assumed existence of a.
By [6], G A6, PSU4(2), 2F4(2)’ or a sporadic group.
If G=A for n>5, n4:6, then aAut(G)=Yn. However, En is a

rational group, while A is not, by Corollary B.1.
Suppose that G is a group of Lie type other than PSU4(2), or 2F4(2)’. Let T

be as in Theorem 3.1 and let (y) T n G. Assume first that G D4(q).
Since a fixes the conjugacy class which contains y it follows that Ca(y)
contains an element of the coset Ga. Thus a G by Theorem 3.1.
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Suppose that G D4(q) PO(q)’. Choose x G so that x is unipotent
and if V is the underlying vector space for O(q), then [V, x] is a totally
isotropic 4 dimensional space (x is the product of elements from two commut-
ing root subgroups.) Then C(x) is contained in a unique maximal parabolic
subgroup P (with Weyl group of type A3). For p 2 see [1], for p 4:2 see
[16], Theorem A. However P’ consists of three G2 orbits, where G2 is the
group generated by G and all field automorphisms, such that A/G2
acts faithfully on these orbits. Hence, if a A G2 then a must move the
class which contains xt for some/3 A. Thus a G2. Since a does not move
the class containing y, C2(y) contains an dement of the coset Ga. Thus
a G1 by Theorem 3.1 in this case also.

Let u be a regular unipotent element of G. Then Cl(u) is a unipotent
group. See [18]. Hence Cx(u) C(u) and so Cx(u) contains no element of
Ga. Thus a does not fix the class containing u.

9. Automorphism of group algebras

If X is an irreducible character of G let m(x) denote the Schur index of X.
If m is a natural number let Qm denote the field generated by a primitive mth
root of 1. By [2], Theorem 1’, Qm(x) --- Q(x).For the following result see [12], Corollary 1.

THEOREM 9.1. Let o Gal(Q(x)/Q). Let M be the simple component of
the group algebra Q[G] corresponding to X. Thus Q(X) is the center of M.
Furthermore, the following are equivalent.

(i) o extends to an automorphism of M.
(ii) Qm(x) is in the fixedfield of o.

In particular, if m(X) <- 2 then a extends to an automorphism of M.

In this paper we will only need the case m(x) < 2.

COROLLARY 9.2. If G has an irrational irreducible character with Schur
index at most 2, then Q[G] has an outer automorphism.

Proof Clear by Theorem 9.1.

COROLLARY 9.3. Suppose that G has an irrational irreducible character X
such that +_ 1 are the only roots of unity in Q(X). Then Q[G] has an outer
automorphism

Proof By Theorem 1’ of [2], the Schur index of X is at most 2. The result
follows from Corollary 9.2. rq
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COROLLARY 9.4. Suppose that G is a noncyclic simple group which has a
cyclic Sv-group P q: (1 for some prime p and that

INo(P): C (V)I < p

Then Q[G] has an outer automorphism.

Proof Since G is simple e > 1. Let X be an exceptional character in the
principle p-block. Thus Q 4, Q(x) - F where F is the field of IPIth roots of
unity. Furthermore, Q(X) does not contain a primitive Pth root of 1 as e > 1.
Thus -1-1 are the only roots of unity in Q(x). The result follows from
Corollary 9.3. t3

Proof of Theorem D. If K , G then Q[G/K] is a direct summand of
Q[G]. Thus it suffices to prove the result for G simple.

Suppose that GI p is a prime. If p 2 then Q[G] -- Q 3 Q and there is
an automorphism which exchanges the factors. If p > 2 then Q[G] -- Q F,
where F is the field of pth roots of 1. This has an automorp.hism, which is
necessarily outer.
Thus it may be assumed that G is a noncyclic simple group. If G has an

outer automorphism then this induces an automorphism on Q[G]. By Theorem
C it does not fix the center and so is not inner. Thus it may be assumed that
G Aut(G). Hence G is isomorphic to one of the following groups:

(9.1) A sporadic group;
(9.2) E7(2);
(9.3) Es(p);
(9.4) F4(P), p : 2;
(9.5) Sp(2);
(9.6) GE(p), p>3.

If G is a sporadic group it is known that all Schur indices are at most 2; see
[8]. By Corollary B.1, G has an irrational character. Thus Q[G] has an outer
automorphism by Corollary 9.2. Alternatively, it may be observed that every
sporadic group except J2 satisfies the hypotheses of Corollary 9.4 for some
prime, while J2 has an outer automorphism.

If G E7(2) then G has a S127-group R of order 127. Since G has a faithful
representation of degree 56 over F2 it follows that

IN(R): C(R)I < 126.

By Corollary 9.4, Q[G] has an outer automorphism.
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If G is one of the groups in (9.3)-(9.6) let T be the torus defined in Section
3. In each of the following cases let r be a large Zsigmondy prime for (p, rn):

G Es(p), rn 30;

G=F4(p), m=8, p:2;

G- Sp,(2), p- 2, m 2n > 4;

G Gg.(p), p > 3, m 6;

Let R be a S;group of T. Then R is cyclic and R is a S;group of G.
Furthermore, IN(R): C(R)I IN(T): C(T)I < r. Thus Q[G] has an
outer automorphism by Corollary 9.4.
By Theorem 2.1 such a large Zsigmondy prime exists except if G Sp2(2)

and m 6, 10, 12 or 18. In these cases define a prime r as follows:
If m=18, r=257.
If m= 10or12, r-17.

Then a S;group R of G has order r and IN(R): C(R)I < r 1 as G has a
faithful m dimensional representation over F2.

If G Sp6(2) then all Schur indices are 1 by a Theorem of Benard. For
example, see [8]. By [6], G has two irreducible rational characters of degree 21,
and so Q[G] has two isomorphic simple components. Thus, there is an outer
automorphism of Q[G] which interchanges these. 1
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