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STRICTLY (CO)SINGULAR OPERATORS, THE
MEYER-KONIG ZELLER PROPERTY, AND
SUMS OF BANACH SPACES!

BY
A.K. SNYDER

1. Introduction

Let Y be a subspace of a Banach space Z. The present work examines
theorems of the following two related types: (i) X = Z whenever X + Y = Z
with X an appropriate subspace of Z; (ii)) W N Z is closed in W whenever
W N Z c Y with W an appropriate subspace of a universe containing Z. An
example of a type (i) theorem is a result of Bennett [2, Theorem 16]: If /; is
compactly embedded in the BK space Z and if X is a separable FK space
containing {8"} and satisfying X + /; = Z, then X = Z. The Meyer-Konig
and Zeller theorem ([5] and [6]) is a theorem of type (ii): If W is an FK space
such that W N I C ¢y, then W N [ is closed in W. Further examples of type
(i) results were given by the author in [9] and [10], and additional type (ii)
theorems were established by Bennett in [1]. The two types were shown to be
dual in a very special setting by the author in [10].

The principal goal of the following is to relate type (i) theorems to strictly
cosingular operators, to connect type (i) theorems with w* strictly singular
operators, and to thereby conclude the duality of the types in a general setting.
Some old results, obtained frequently using gliding humps techniques, are
established using Banach space theory. For instance the Meyer-Konig and
Zeller theorem follows from the fact that ¢, contains no infinite dimensional
w*-closed subspace of /.
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2. Preliminaries

Let H be a vector space with a Hausdorff (not necessarily linear) topology.
A BH space is a subspace X of H which is a Banach space such that the
injection of X into H is continuous. Details about BH spaces may be found in
[12]. The closed graph theorem shows that if X and Y are BH spaces with
X C Y, then the topology of X contains the relative topology of Y. Thus, BH
topologies are unique. Also, X is closed in Y if and only if their norms are
equivalent on X.

Let w denote the space of all complex sequences with the topology of
pointwise convergence. A BK space is a BH space with H = w.

If X and Y are BH spaces, then X + Y is a BH space under

lzllxry = inf{lixllx + I¥lly: x€ X,y €Y, z=x+y}.

Details about sums of BH spaces may be found in [12].
The following familiar BK spaces will occur in the sequel:

L={xlxI2=XIxP <o}, 1<p<o.
Iy = {x: ||xIl 0 = sup|x,| < o0}.

¢ = {x:lim x, exists} with norm of /.

¢ = {x:1lim x, = 0} with norm of /_.

<ool.

n
cs = {x: lim Y x, exists} with norm of bs.
" k=1

n

Zxk

k=1

bs = {x: 111, = sup

n

o0
bv = {x: XN = 1%;] + X [Xps1 = %] < °°}-
k=1

bv, = bv N ¢,.

Let ¢ devote the span of {6"} in w where §; = 0 for k # n, §; = 1.

If X is a BK space containing ¢, let X/ = {{g(8")}: g € X*}. Then X’ is
a BK space with appropriate norm. If ¢ is dense in X, then X’ is just the
dual of X.

Forx, yewand WcC w,let xy = {x,y,} and xW = {xw: w € W}.

All maps between Banach spaces will be assumed to be bounded and linear.
If {x,} is a sequence in a Banach space, let [x,] denote the closed linear span.
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Let Y and Z be Banach spaces and let T: Y — Z. Following Kato, T is
called strictly singular if T is an isomorphism into Z on no infinite dimen-
sional closed subspace of Y. Following Pelczynski, T is strictly cosingular if
the existence of surjections 4 and B of Y and Z respectively onto a Banach
space E with 4 = BT implies that dim E < co. The required properties of
strictly (co)singular maps may be found in [7] and [11]. In particular, T is
strictly cosingular if and only if T* is w* strictly singular; ie, T* is a
w*-isomorphism on no infinite dimensional w*-closed subspace of Z*.

3. Sums of Banach spaces and strictly cosingular operators

Let Y and Z be BK spaces with ¢ C Y C Z. Following [10] let the relation
Y < Z indicate that X = Z whenever X is a BK space containing ¢ such that
X + Y = Z. Theorem 1 in [9] shows that ¢, </ and Theorem 3 in [8] shows
that /;, < Z if I, is weakly compactly embedded in Z. The principal result of
the present section establishes the equivalence of Y < Z and the fact that the
natural injection of Y into Z is strictly cosingular. First a red herring in
the definition of Y < Z is removed. The removal allows an easy extension to
the setting of Banach spaces, permits a perturbation theory argument, and
yields Banach space proofs of many of the results of [10] without resorting to a
primitive version of Section 4.

3.1 LeMMA. Let Y and Z be BK spaces with Y C Z and ¢ dense in Y. The
following are equivalent:

(i) X = Z whenever X is a BK space containing ¢ such that X + Y = Z,

(ii) dim Z/X < oo whenever X is a BK space such that X + Y = Z.

Proof. (ii)) = (i). X isclosed in Z since dim Z/X < oo. The closure of ¢
in Y is then contained in the closure of ¢ in X so Y C X.

(1) = (ii). There exists z € w with z, # 0 for all n such that z/;, ¢ Z and
the natural injection is compact. Now ¢ C X + zI; so X + zI; = Z by hypoth-
esis. The proof of Lemma 6(i) in [10] shows that dim Z/X < c0. H

DEerFINITION. Let Z be a Banach space and let Y be a BZ space. Then
Y < Z if dim Z/X < oo whenever X is a BZ space such that X + Y = Z.
Clearly, Z < Z if and only if dim Z < co.

3.2 THEOREM. Let Y and Z be Banach spaces and let T be a map from Y into
Z. The following are equivalent:
(i) T is strictly cosingular.
(ii) The natural injection of TY into Z is strictly cosingular.
(i) 7Y < Z.
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Proof. The equivalence of (i) and (ii) is known and easy.

(i) = (iii)). Assume that X + TY = Z. Let B denote the unit ball of Z. A
constant M may be selected such that for each b € B there exists x(b) € X
and y(b) € Y satisfying x(b) + Ty(b) = b and ||x(b)||x < M, |ly(D)|ly <
M. Define operators 4, B, C from /;(B) into Z by

AN = Y A(b)x(b), BA= Y. A(b)Ty(b), CA= Y. A(Db)b.

Then A + B = C, C is a surjection, and B is strictly cosingular. A result of
Vladimirskii [11, Corollary 1] establishes that the range of 4 has finite
codimension in Z. But 4/;(B) C X.

(iii)) = (i). Assume that P and Q are surjections of Y and Z respectively
onto a Banach space E and that P = QT. If TY < Z, then one observes easily
that QTY < QZ. Thus, E = PY = QTY < QZ = E. According to the remark
following the definition of < , dim E < oo.

3.3 CoroLLARY. (i) [10, Corollary 7(})] [/, </, for 1 <p < g < o0.

(i) [9, Theorem 1] ¢4 < /.

(iii) [8, Theorem 3] If Z is a BK space containing I, and the injection of I,
into Z is weakly compact, then |, < Z.

@iv) [10, Corollary 5] /; < cs.

Proof. (i) The natural injection of /, into /, is strictly cosingular because,
for instance, its adjoint is strictly singular.

(ii)) The injection map is strictly cosingular according to a result of
Pelczynski [7, Proposition 5].

Observe that the injection of ¢, into I/ is “w* strictly singular”. For
instance, suppose that S C ¢, is infinite dimensional and w*-closed in /.
Then S is closed in ¢, so S contains a copy of c,. But then S contains a copy
of /., contradicting the separability of S.

If Z satisfies the hypothesis of (iii) or if Z = cs, then ¢ may be assumed
dense in Z. Now Z/ C ¢, so the injection of Z/ into /_, is w* strictly singular.
Therefore, the injection of /, into Z is strictly cosingular. W

Observe that the BK hypothesis in 3.3(iii) cannot be dropped. It is easy to
find a weakly compact non strictly cosingular injection of /, into a Banach
space.

4. The Meyer-Konig Zeller property and strictly singular operators

A direct dualization of the condition Y < Z yields a property which arose
in summability theory. For instance, assume that X, Y, and Z are BK spaces
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with basis {8"), X+ Y= 2Z, and dimZ/X = 0. Then Z/' = X/'n Y/ It
follows that Z7/ is not closed in X”, for otherwise X = Z. Therefore, the
injection of Z/ into Y/ violates the following condition.

DEFINITION. Let U be a subspace of a Banach space Z. The injection of U
into Z has the Meyer-Kinig Zeller property (abbreviated U — Z has MKZ) if
W N Z is closed in W for each Hausdorff vector space H for which Z is a BH
space and for each BH space W satisfying W N Z c U.

The Meyer-Konig Zeller theorem [5], [6] states that if W is an FK space
such that W NI C ¢, then WnN I is closed in W. This is essentially the
assertion that ¢, —» [/, has MKZ.

The main results of the present section relate the MKZ property to w*
strictly singular operators in the context of adjoints of maps in separable
spaces and thus to strictly cosingular operators. Theorem 4.3 substantially
generalizes a result of the author [10, Theorem 2]. Technical lemmas designed
for enhancing convergence in certain Hausdorff vector spaces H to dual BH
spaces are required.

The first lemma is a simple consequence of compactness of the ball in finite
dimensional spaces.

4.1 LEMMA. Assume that Y is a separable Banach space with [y,] = Y and
that S is a finite dimensional subspace of Y*. There exists a positive integer r
such that for each g € S,

sup{lg(V)I: Iyl <1,y € [y,..., »,1} = 3lIgll -

4.2 LEMMA. Assume that Y is a separable Banach space with [y,] = Y and

that {g,} C Y* satisfies g,(y;) =0 for i <n. Then {g,} has a subsequence
{h,} with the following property:
If {t,} € w and if there exists h € Y* such that

h(y,) = X tehi(3,) ( Z tehi(,) ) for all n,
k=1

then the series Xt, h, has bounded sections in Y* and hence is w*-convergent.

Proof. Let h; = g;, 1, =1, and assume h, and a positive integer r, have
been chosen. Usmg 41, choose a positive 1nteger w41 > T, such that

(1) sup{lh(): yll <1,y € [yy,os 3, 1) = 3l

forall h € [hy,...,h,). Let h, ., =

gr,,H +1°
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Assume that the inductively defined subsequence {4, } does not have the
desired property. This means that there exists {¢,} € w and & € Y* such that

h(y,) = X tyh(y,) foralln
k=1

and Xz, h, fails to have bounded sections in Y*.
Choose s, 1 oo such that

Sn+1 Sn
) Y ok > 2" Y k| > 2"
k=s,+1 k=1
for all n. Using (1), choose
Zy € [yl"”’ yr"n+1+l]
with ||z,|| < 1 such that
Sn+1 Sn+1
(3) Y ouh(z) |23 X k.
k=s,+1 k=s,+1

Now let u, = X% _,z,/k?* so

Note that k >s,,; implies that h, =g, ., =0 on [y,
re>r, ., Thus

(4) h(u,) =0 fork>s,,.
Also, i < n implies

z; € [yl,..., y,:”“].

cees y,k] and that

Furthermore, k > s, + 1 implies that r, + 1 > r, 4, 50 by (2;) = g, ,1(2) =

0. Therefore,

(5) hy(u,) =hk(-r-'132,,) fork > s, + 1.
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Applying (2), (3), (4), and (5),

h(u) =| X o)

Sn+1

= kgltkhk(un)

Sn+1

Y thy(u,)

k=s,+1

Sp+1 1
= X tkhk(;l_zzn) -

k=s,+1

v

:Etk w(u,)

x(u,)

Sn+1

X tehy

k=s,+1

(3) - L),

—> 00 asn — oo.

1

sn
In2 Y thy

k=1

Z tehy

v

= [lul

v

The latter contradicts the fact that {«,} is bounded in Y. ™

4.3 THEOREM. Let Y be a separable Banach space with [y,] = Y and let U
be a subspace of Y*. The following two conditions are equivalent:

(i) U - Y* has MKZ,

(i) U contains no infinite dimensional w*-closed subspace of Y*.

If in addition U is a dual Banach space w*-continuously embedded in Y*, then
(i) and (ii) are equivalent to:

(i) The injection of U into Y* is strictly singular.

Proof. (ii) = (i). Assume that Y* and W are BH spaces with W N Y* C
U and W N Y* is not closed in W.

Observe first that there exists { f,} € W N Y* such that ||f, ||y~ = 1, |If.ll w
= 0(27"), and {f,} is w*-basic in Y*. For instance, the BH space

={fewny* f(y)=0 fori<n}

has finite codimension in W N Y* and hence is a BH space with the norm of
W N Y* and is not closed in W. Thus, there exists g, € U, such that
gally, =1 and ||g,ll, < 27" But {g,} is bounded away from zero in Y*
since g, — 0 in W. Also, g, = 0 w* in Y*, so a subsequence { f, } is w*-basic
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according to a result of Johnson and Rosenthal [4, Theorem III.1]. Appropri-
ate normalization establishes the claim.

Now assume that ¥¢, f, converges w* in Y*. Then since ¥t f, is sectionally
bounded,

|tn| = "tnfn"Y"
n n—1
S| X wh| | X akl o
k=1 r k=1 ™

so t € I . Therefore, ¥t,f, € W N Y* C U, so U contains the w*-closed span
of { f,}. The latter is clearly infinite dimensional.

(1) = (i}). Suppose that S is w*-closed in Y*, S C U, and dim S = oo.
There exists { f,} € S such that ||f,|| =1 and f,(y;) =0 for i < n. Let {h,}
be a subsequence of { f,} guaranteed by 4.2.

Now Y* may be considered a BK space by identifying f € Y* with the

scalar sequence { f(y;)}. Let W be the space of all sequences w = {w;} of the
form

w, = Lkt h(y)
k

where ¢t € [ . Then W is a BK space under an obvious identification as a
quotient of /. For each k let v, = {h,(y)}. In W, ||o, || < 1/k,so W N Y*
is not closed in W.

Finally, suppose that w € W N Y* where w, = X kt, h,(y,) with t €] _.
According to 4.2, X'} _,kt, h, is bounded in Y*, hence w*-convergent. There-
fore, we S c U,so WnN Y* c U. It follows that U — Y* is not MKZ.

The implication (iii) = (ii) is obvious.

(i) = (iii). Assume that S € U C Y*, S is closed in Y*, and dim S = .
There exists { f,} C S such that ||f,|| ;» = 1 and f, > 0 w* in Y*. Again using
[4, Theorem III.1] one may assume that { f,} is w*-basic in Y*.

Suppose that ¥z, f, is w*-convergent in Y*. Then {¥}_,#,f,} is bounded in
Y*, hence in S, hence in U. Assume that f € U is a w*-cluster point in U.
Then f is a w*-cluster point in Y*, so X}_,¢,f;, — f w* in Y*. Therefore, U
contains the w*-closed span of { f,} in Y*. ®

4.4 COROLLARY. (i) (Meyer-Konig and Zeller, [5] and [6]) If Wis a BK
space with W N 1, C ¢y, then W N 1 is closed in W.

(i) (Devos [3]) Forl <p <gq < oo, if WisaBK spacewith WN 1, Cl,
then W N 1 is closed in W.

Proof. As observed in the proof of 3.3, ¢, contains no infinite dimensional
w*-closed subspace of /., so (i) is established. The injection of /, into [, is
actually strictly singular, so (ii) follows. W



STRICTLY (CO)SINGULAR OPERATORS 101

One should note that the Meyer-Konig and Zeller theorem for instance
holds in the context of FK spaces. According to [10, Lemma 4], 4.4 and 4.6
below extend easily to the FK space setting.

Further applications are obtained by the following variation on part of 4.3.

4.5 THEOREM. Let Y be a separable Banach space and let U be a subspace of
Y*. If U contains no infinite dimensional closed subspace of Y*, then the
injection of U into the closure of U in Y* has MKZ.

Proof.  As in the first part of the proof of 4.3, one may arrange W' N UcU
and W N U not closed in W. The same sequence { f,} is basic in Y*. If Xt f,
converges in Y*, then Xt,f, € W N U C U, so U contains [f,]. The latter is
infinite dimensional. ®

Note that “closed” may not be replaced by “w*-closed” in 4.5. For instance,
¢, contains no infinite dimensional w*-closed subspace of I, but ¢, — ¢, is
surely not MKZ.

4.6 COROLLARY (Bennett [1]). (1) If W is a BK space with W N ¢s C [,
then W N cs is closed in W.

(i) If W is a BK space with W N ¢, C bv,, then W N ¢, is closed in W.

(iii) If Wis a BK space with W N coCU,,ql,, then W N ¢, is closed
in W.

Proof. The injection of /; into bs(= bu§ ) is strictly singular because /; and
cs have no isomorphic closed infinite dimensional subspaces. Thus, /; —
I,(= cs) has MKZ. Part (ii) follows similarly.

To prove (iii) it suffices to show that U, ,/, contains no infinite dimen-
sional closed subspace of /. Suppose S € UF_,/, and S is closed in /. Now
S=Ux_l,NnS,s0S8=1,NnS for some n,ie. S Cl, But S is closed in ¢,
hence in /,, and ¢, and /, have no isomorphic infinite dimensional closed
subspaces. Thus, dim S < c0. ®

Note that it is possible but awkward to consider an MKZ property which
depends on the particular universe H. For instance, let Z =1/_.If Wisa BZ
space, then W C Z, so certainly W N Z is closed in W. Thus, Z — Z has an
MKZ property relative to H = Z but certainly not relative to H = w. In the
context of 4.3 one can show without difficulty that the MKZ property with
respect to a universe H implies the MKZ property, if no infinite dimensional
w*-closed subspace of Y* is closed in H.

Finally, the known duality between strictly cosingular and w* strictly
singular operators yields the following. Theorem 2 in [10] is a very special case.
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4.7 THEOREM. Let T be a map from the separable Banach space Y into Z
with dense range. The following conditions are equivalent:
(i) T is strictly cosingular.
i) TY < Z
(iii) T* is w* strictly singular.
(iv) T*Z* — Y* has MKZ.
(v) T* is strictly singular.

Proof. The equivalence of (i) and (i) is 3.2, and (i) is known to be
equivalent to (iii). Since T* is an injection, the equivalence of (iii), (iv), and (V)
follows from 4.3. ®

The assumption that 7 has dense range (and hence that Z is separable) is
required for the implication (iii) — (iv). For instance, let T be the injection of
¢ into /. Then T is strictly cosingular but T* is a surjection. A counterexam-
ple with Z separable may be found in Orlicz sequence spaces.
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