THE COMPARABILITY OF THE KOBAYASHI APPROACH REGION AND THE ADMISSIBLE APPROACH REGION

BY

GERARDO ALADRO¹

1. Introduction

Given a domain $\Omega \subseteq \mathbb{C}^n$, we denote by $F_K^{\Omega}(z, \xi)$ the infinitesimal form of the Kobayashi metric for Ω at z in the direction of the vector ξ . In [1] we have estimated the boundary behavior of the metric when ξ is fixed and z is allowed to approach a strongly pseudoconvex point P in the boundary of Ω . As a consequence of the work done in [1] we obtained the following estimate:

$$(*) F_K^{\Omega}(z,\xi) \approx c \frac{|\xi_{N_p}|}{\delta_{\Omega}(z)} + c \frac{|\xi_{T_p}|}{\sqrt{\delta_{\Omega}(z)}} for all z \in U \cap \Omega$$

where U is a neighborhood of P where the eigenvalues of the Levi form at P are bounded from zero, and for any $\xi \in \mathbb{C}^n$, ξ_{N_P} is the complex normal component of ξ at P and ξ_{T_P} is the complex tangential component of ξ at P, and $\delta_{\Omega}(z)$ is the distance from z to the boundary.

N. Siboney in [10] has proven the inequality

$$F_K^{\Omega}(z,\xi) \ge c \frac{|\xi_{N_P}|}{\delta_{\Omega}(z)} + c \frac{|\xi_{T_P}|}{\sqrt{\delta_{\Omega}(z)}}$$

for the Kobayashi metric on strongly pseudoconvex (and other) domains, but it is not the precise asymptotic formula which is found in [1].

By means of the estimate (*), it is possible to solve the following problem:

Received January 9, 1987.

¹The work in this paper is contained in the author's Ph.D. thesis at the Pennsylvania State University, directed by Professor Steven G. Krantz.

^{© 1989} by the Board of Trustees of the University of Illinois

Manufactured in the United States of America

Let $\Omega \subseteq \mathbb{C}^n$ be a pseudoconvex domain and $P \in \partial \Omega$ be strongly pseudoconvex point. For $\alpha > 1$, define the admissible approach region of Stein to be

$$\mathfrak{A}_{\alpha}(P) = \left\{ z \in \Omega \colon |z - P|^2 < \alpha \delta_P(z); |\langle z - P, \nu_P \rangle| < \alpha \delta_P(z) \right\}$$

where $\delta_P(z) = \min\{\delta_{\Omega}(z); \operatorname{dist}(z, T_P(\partial \Omega))\}$ and $T_P(\partial \Omega)$ is the tangent space to $\partial \Omega$ at P.

Also, define the Kobayashi approach region to be

$$\mathscr{K}_{\beta}(P) = \{ z \in \Omega \colon K_{\Omega}(z, -\nu_P) < \beta \} \text{ with } \beta > 0$$

where K_{Ω} represents the Kobayashi distance from z to $-\nu_{p}$. Then our main result is:

THEOREM 1. Under the above conditions, given $\alpha > 1$ there are two constants $B = B(\alpha)$ and $C = C(\alpha)$ which depend on Ω and the eigenvalues of the Levi form at P, and are functions of α , and there exists an open neighborhood U of P such that

$$U \cap \mathscr{K}_{B(\alpha)}P \subseteq U \cap \mathfrak{A}_{\alpha}(P) \subseteq U \cap \mathscr{K}_{C(\alpha)}(P).$$

While our result is local, in the case that Ω is strongly pseudoconvex domain then $B(\alpha)$ and $C(\alpha)$ are uniform constants for all $P \in \partial \Omega$.

The theorem allows us give an invariant form of Fatou's Theorem [11].

By Fefferman's Theorem [6], biholomorphic maps of smooth strongly pseudoconvex domain extend smoothly, hence in particular C^1 , to the boundary. Theorem 1 then yields immediately that Kobayashi approach regions are a biholomorphically invariant concept, hence so are admissible approach regions. An invariant metric approach to boundary behavior of holomorphic functions is explored in great detail in [7].

In the second part of this paper we want to discuss the following problem: Given a pseudoconvex domain Ω of finite type in \mathbb{C}^n , Nagel, Stein and Wainger [8] introduced a family of balls on the boundary of Ω which is intimately linked to the complex geometry of Ω with respect to \mathbb{C}^n . They define approach regions in terms of these balls. The approach regions are denoted by \mathscr{A}_{σ} . By means of some estimates obtained by Catlin [3] for the Kobayashi metric on domains of finite type in \mathbb{C}^2 , it is possible to show that the approach regions \mathscr{A}_{σ} are comparable to Kobayashi approach regions \mathscr{X}_{β} .

Again we get an invariant form of Fatou's Theorem for pseudoconvex domains of finite type in \mathbb{C}^2 .

I would like to thank Steven G. Krantz for all his help and good advice.

1. Notations and definitions

DEFINITION 1.1. If $e_1 = (1 + 0i, 0, ..., 0)$ then the infinitesimal form of the *Kobayashi metric* for Ω at z in the direction of ξ is

$$F_K^{\Omega}(z,\xi) = \inf \left\{ \frac{|\xi|}{|(f_*(0))(e_1)|} \colon f \colon B \to \Omega \text{ is holomorphic, } f(0) = z, \right.$$
 and $(f_*(0))(e_1)$ is a constant multiple of $\xi \right\}$.

DEFINITION 1.2. The Kobayashi distance between the points $z, w \in \Omega$ can be defined as

$$K_{\Omega}(z, w) = \inf_{\gamma} \int_{0}^{1} F_{K}^{\Omega}(\gamma(t), \gamma'(t)) dt$$

where the infimum is taken over C^1 curves $\gamma: [0,1] \to \Omega$ such that $\gamma(0) = z$ and $\gamma(1) = w$.

Remark 1.3. Royden [9] has shown that the infimum can be taken over all piece-wise differentiable curves.

For details about the metric and pseudoconvex domains see [6].

The following theorem has been proven in [1] and is a basic tool for our future calculation.

Theorem 1.4. Let $\Omega \subset \mathbb{C}^n$ be a pseudoconvex domain with C^{n+1} boundary. Suppose $P \in \partial \Omega$ is a strongly pseudoconvex point and W is a neighborhood of P on which the eigenvalues of Levi form are bounded from zero by some number $\varepsilon > 0$. Let us assume without lost of generality that z_1 is the normal complex direction at P. Let ρ be a defining function for Ω such that $|\nabla_Z \rho(w)| = 1$ for all $w \in \partial \Omega$. Let Q be a unitary operator which diagonalized the Levi form at P, and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the Levi form at P where the corresponding eigenvectors have respectively the directions z_1, \ldots, z_n . Let $z \in \Omega$ and S be the projection of z into $\partial \Omega$. Given $\xi \in \mathbb{C}^n$, let ξ_{N_S} be the complex normal component of ξ at S and ξ_{T_S} the complex tangential component of ξ at S. Define

$$\eta(z) = \sqrt{2} \, \delta_{\Omega}(z) \xi_{N_{\rm S}} + \sqrt{\delta_{\Omega}(z)} \, H(Q \xi_{T_{\rm S}})$$

where H is diagonal matrix with entries $\lambda_i^{-1/2}$. Then

$$\lim_{\Omega\ni z\to P}F_K^{\Omega}(z,\eta(z))=\frac{1}{\sqrt{2}}|\xi|.$$

As a consequence of the theorem we obtain the estimate

$$F_K^{\Omega}(z,\xi) \approx c \frac{|\xi_{N_p}|}{\delta_{\Omega}(z)} + c \frac{|\xi_{T_p}|}{\sqrt{\delta_{\Omega}(z)}} \quad \text{for all } z \in U \cap \Omega$$

where P is a strongly pseudoconvex point in the boundary of a pseudoconvex domain Ω , U is a neighborhood of P where the eigenvalues of the Levi form at P are bounded from zero and for any $\xi \in \mathbb{C}^n$, ξ_{N_p} is the complex normal component of ξ at P and ξ_{T_p} is the complex tangential component of ξ at P.

DEFINITION 1.5. If $\Omega \subset \subset \mathbb{C}^n$ with C^2 boundary, $P \in \partial \Omega$, $z \in \Omega$, define

$$\delta_P(z) = \min\{\delta_{\Omega}(z), \operatorname{dist}(z, T_P(\partial \Omega))\}.$$

Then, for $\alpha > 1$, let the admissible approach region at P with aperture α be

$$\mathfrak{A}_{\alpha}(P) = \left\{ z \in \Omega \colon |z - P|^2 < \alpha \delta_P(z); \, |\langle z - P, \nu_P \rangle| < \alpha \delta_P(z) \right\}.$$

 $\mathfrak{A}_{\alpha}(P)$ is like a cone in the complex normal direction and like a paraboloid in the tangential direction. Notice that if Ω is convex, then $\delta_{\Omega}(z) = \delta_{P}(z)$. But $\delta_{P}(z)$ is used because near non-convex boundary points we still want $\mathfrak{A}_{\alpha}(P)$ to have the same shape.

DEFINITION 1.6. Let $\Omega \subset \subset \mathbb{C}^n$ with C^2 boundary, $P \in \partial \Omega$ and $\beta > 1$. The \mathscr{K} -admissible (for Kobayashi admissible) approach region of aperture β at P is

$$\mathscr{K}_{\beta}(P) = \{ z \in \Omega \colon K_{\Omega}(z, -\nu_{P}) < \beta \}$$

where ν_P denotes the unit outward normal and

$$K_{\Omega}(z,-\nu_P)=\inf\{K_{\Omega}(z,w)\colon w\in-\nu_P\}.$$

2. Proof of Theorem 1

Through our work we will use the symbol c to denote constants whose values change from line to line, but independent of the relevant parameter.

THEOREM 1. Let $\Omega \subset \mathbb{C}^n$ be a pseudoconvex domain with C^{n+1} boundary. Let $P \in \partial \Omega$ be a strongly pseudoconvex point. Then, given $\alpha > 1$ there are two constants $B = B(\alpha)$ and $C = C(\alpha)$ which depend on Ω and the eigenvalues of the Levi form at P and are functions of α , and there exists an open neighborhood U of P such that

$$U \cap \mathscr{K}_{B(\alpha)}(P) \subseteq U \cap \mathfrak{A}_{\alpha}(P) \subseteq U \cap \mathscr{K}_{C(\alpha)}(P).$$

Proof. Let U be a neighborhood of P such that

$$F_K^{\Omega}(z,\xi) \approx c \frac{|\xi_{N_p}|}{\delta_{\Omega}(z)} + c \frac{|\xi_{T_p}|}{\sqrt{\delta_{\Omega}(z)}} \quad \text{for all } z \in U \cap \Omega.$$

Part 1. Assume $z \in U \cap \mathfrak{A}_{\alpha}(P)$, we want to prove that $z \in U \cap \mathscr{X}_{C(\alpha)}(P)$. If $z \in U \cap \mathfrak{A}_{\alpha}(P)$ then

$$|(z-P)_{N_P}| < \alpha \delta_{\Omega}(z),$$

where $(z - P)_{N_P}$ is the projection of (z - P) into \mathcal{N}_P (the complex normal space to $\partial \Omega$ at P) and

$$|(z-P)_{T_p}| < \sqrt{\alpha \delta_{\Omega}(z)},$$

where $(z-P)_{T_P}$ is the projection of (z-P) into \mathcal{F}_P (the complex tangent space to $\partial\Omega$ at P). Let z^* be the projection of z into \mathcal{N}_P and z' the projection of z into $-\nu_P$.

We have three possibilities:

- (i) zz' is in \mathcal{T}_P ;
- (ii) zz' is in \mathcal{N}_{P} ;
- (iii) neither of the above.

Case (i). Here we have $|(z-P)_{T_p}| = |z-z'|$. Consider the curve $\delta_1(t) = (1-t)z + tz'$, $0 \le t \le 1$. Then

$$L_K^{\Omega}(\gamma_1) = \int_0^1 F_K^{\Omega}(\gamma_1(t); \gamma_1'(t)) dt$$

where $\gamma_1'(t) = (\gamma_1'(t))_{T_P} = z - z' \in \mathcal{F}_P$. Since $\gamma_1(t) \in U$ it turns out that

$$F_K^{\Omega}(\gamma_1(t);\gamma_1'(t)) dt \approx \frac{c|(\gamma_1')_{T_P}(t)|}{\sqrt{\delta_{\Omega}(\gamma_1(t))}} = \frac{c|z-z'|}{\sqrt{\gamma_{\Omega}(\gamma_1(t))}},$$

but $\sqrt{\alpha\delta_\Omega(z)}>|(z-P)_{T_P}|\geq |z-z'|$ and $\delta_\Omega(z)\leq \delta_\Omega(\gamma_1(t))$ so

$$F_K^{\Omega}(\gamma_1(t);\gamma_1'(t)) \leq \frac{c|z-z'|}{\sqrt{\delta_{\Omega}(z)}} \leq \frac{c\sqrt{\alpha\delta_{\Omega}(z)}}{\sqrt{\delta_{\Omega}(z)}} = c\sqrt{\alpha}.$$

Hence

$$K_{\Omega}(z, -\nu_P) \leq K_{\Omega}(z, z') \leq L_K^{\Omega}(\gamma_1(t)) \leq \int_0^1 c\sqrt{\alpha} dt = c\sqrt{\alpha}.$$

Case (ii) We have $zz' \in \mathcal{N}_P$. Hence

$$|z-z'|=|(z-z')_{N_p}|<\alpha\delta_{\Omega}(z).$$

Consider the curve $\gamma_2(t) = (1 - t)z + tz'$, $0 \le t \le 1$. Then

$$L_K^{\Omega}(\gamma_2) = \int_0^1 F_K^{\Omega}(\gamma_2(t); \gamma_2'(t)) dt$$

and

$$\gamma_2'(t) = (\gamma_2')_{N_P}(t) = z - z' \in \mathcal{N}_P.$$

Since $\gamma_2(t) \in U$ we have

$$F_K^{\Omega}(\gamma_2(t); \gamma_2'(t)) dt \approx \frac{c|(\gamma_2')_{N_P}(t)|}{\delta_{\Omega}(\gamma_2(t))} \approx \frac{c|z-z'|}{\delta_{\Omega}(\gamma_2(t))}.$$

Then

$$F_K^{\Omega}(\gamma_2(t); \gamma_2'(t)) \leq \frac{c\alpha\delta_{\Omega}(z)}{\delta_{\Omega}(z)} = c\alpha,$$

so

$$K_{\Omega}(z, -\nu_P) \leq K_{\Omega}(z, z') \leq L^{\Omega}(\gamma_2(t)) \leq \int_0^1 c\alpha dt = c\alpha.$$

Case (iii) $zz' = (zz')_{T_P} + (zz')_{N_P} = zz^* + zz'$. Consider the curve

$$\gamma_3(t) = \begin{cases} \gamma_1(t), & 0 \le t \le t_0, \\ \gamma_2(t), & t_0 \le t \le 1, \end{cases}$$

where $\gamma_1(t)$ is the segment connecting z with z^* and $\gamma_2(t)$ is the segment connecting z^* with z'.

Since γ_3 is a piece-wise differentiable curve joining z to z', according to Remark 1.3, we have

$$K_{\Omega}(z, -\nu_P) \leq K_{\Omega}(z, z') \leq L_K^{\Omega}(\gamma_3)$$

But

$$L_K^{\Omega}(\gamma_3) = \int_0^1 F_K^{\Omega}(\gamma_1(t); \gamma_1'(t)) dt + \int_{t_0}^1 F_K^{\Omega}(\gamma_2(t); \gamma_2'(t)) dt,$$

so by the previous two cases we have

$$L_K^{\Omega}(\gamma_3) \le c\sqrt{\alpha} + c\alpha = C(\alpha).$$

Therefore

$$K_{\Omega}(z,-\nu_P)\leq C(\alpha).$$

Part 2. Assume $z \in U \cap \mathcal{X}_{B(\alpha)}(P)$, let us prove $z \in U \cap \mathfrak{A}_{\alpha}(P)$. Let us prove the contrapositive. Take α very large. Suppose $z \notin \mathfrak{A}_{\alpha}(P)$; we want to show that $z \notin \mathcal{X}_{B(\alpha)}(P)$. We need to prove $K^{\Omega}(z, -\nu_P) \geq B(\alpha)$.

Let γ be a curve parametrized with respect to Euclidean arc length which connects z to $-\nu_p$, and let t_0 be the Euclidean length of γ . Fix two constants $D(\alpha) > 0$ and $M(\alpha) > 0$ such that $D(\alpha)$ is a small number and $M(\alpha)$ is a large number, to be selected. We have three possibilities:

- $\delta_{\Omega}(\gamma(t)) < D(\alpha)\delta_{\Omega}(z')$ for some t;
- $\delta_{\Omega}(\gamma(t)) > M(\alpha)\delta_{\Omega}(z')$ for some t; (ii)
- $D(\alpha)\delta_{\Omega}(z') \leq \delta_{\Omega}(\gamma(t)) \leq M(\alpha)\delta_{\Omega}(z')$ for all t.

Case (i) We have

$$L_K^{\Omega}(\gamma) \approx c \int_0^{t_0} \frac{|\gamma_{N_P}'(t)|}{\delta_{\Omega}(\gamma(t))} dt + c \int_0^{t_0} \frac{|\gamma_{T_P}'(t)|}{\sqrt{\delta_{\Omega}(\gamma(t))}} dt.$$

Define the curve

$$\mu(t) = z' + \int_0^t \gamma_{\tilde{N}_P}'(s) \, ds$$

where $\gamma_{N_p}^{\prime}$ is the projection of $\gamma_{N_p}^{\prime}(s)$ onto the real normal at P. We have

$$\mu'(t) = \gamma_{\tilde{N}_{P}}^{L}(t)$$
 for all t .

Let $\gamma(t_1)$, $t_1 \in [0, t_0]$, be such that $\delta_{\Omega}(\gamma(t_1)) < D(\alpha)\delta_{\Omega}(z')$ and let w be the projection of $\gamma(t_1)$ into the real normal. Now

$$L_K^{\Omega}(\gamma) \approx c \int_0^{t_0} \frac{|\mu'(t)|}{\delta_{\Omega}(\mu(t))} dt \geq c \int_0^{t_0} \frac{|\hat{\mu}'(t)|}{\delta_{\Omega}(\hat{\mu}(t))} dt.$$

where the curve $\hat{\mu}$ is gotten from μ by discarding overlaps. Then

$$\begin{split} L_K^{\Omega}(\gamma) &\geq c \int_0^{t_1} \frac{|\hat{\mu}'(t)|}{\delta_{\Omega}(\hat{\mu}(t))} \\ &\geq c L_K^{\Omega} (\text{segment connecting } z' \text{ to } w) \\ &\geq c \int_0^{\delta_{\Omega}(z') - \delta_{\Omega}(w)} \frac{dt}{\delta_{\Omega}(w) + 1} \geq c \ln \left\{ \delta_{\Omega}(w) + t \right\} \Big|_0^{\delta_{\Omega}(z') - \delta_{\Omega}(w)} \\ &\geq c \ln \frac{\delta_{\Omega}(z')}{\delta_{\Omega}(w)}. \end{split}$$

But $\delta_{\Omega}(w) \leq D(\alpha)\delta_{\Omega}(z')$, hence

$$L_K^{\Omega}(\delta) \ge c \ln \frac{\delta_{\Omega}(z')}{D(\alpha)\delta_{\Omega}(z')} \ge c \ln \frac{1}{D(\alpha)}.$$

Case (ii) Again

$$L_K^{\Omega}(\gamma) \geq c \int_0^{t_0} \frac{|\gamma'_{N_p}(t)|}{\delta_{\Omega}(\gamma(t))} dt.$$

As in case (i) we define the curve

$$\mu(t) = z' + \int_0^t \gamma_{\tilde{N}_p}'(s) ds.$$

Following the same argument as above, we get

$$L_K^{\Omega}(\gamma) \ge cL_K^{\Omega}$$
 (segment connecting z' to w)

where w is the projection of $\gamma(t_2)$, $t_2 \in [0; t_0]$ onto the real normal and

$$\delta_{\Omega}(\gamma(t_2)) > M(\alpha)\delta_{\Omega}(z').$$

Then

$$L^{\Omega}(\gamma) \ge c \int_{0}^{\delta_{\Omega}(w) - \delta_{\Omega}(z')} \frac{dt}{\delta_{\Omega}(z') + t} \ge c \ln\{\delta_{\Omega}(w) + t\} \Big|_{0}^{\delta_{\Omega}(w) - \delta_{\Omega}(z')}$$

$$= c \ln \frac{\delta_{\Omega}(w)}{\delta_{\Omega}(z')} \ge c \ln \frac{M(\alpha)\delta_{\Omega}(z')}{\delta_{\Omega}(z')} = c \ln M(\alpha)$$

Case (iii) We have to divide this case into two subcases:

(a)
$$|z - P| \ge \sqrt{\alpha \delta_{\Omega}(z)}$$
;
(b) $|(z - P)_{N_P}| \ge \alpha \delta_{\Omega}(z)$.

(b)
$$|(z-P)_{N_P}| \geq \alpha \delta_{\Omega}(z)$$
.

Case (iii.a) We claim that if $|z - P| \ge \sqrt{\alpha \delta_{\Omega}(z)}$ then

$$|z-z^*| \geq T(\alpha)\sqrt{\delta_{\Omega}(z')}$$
.

Since

$$|z - P|^2 = |z - z^*|^2 + |z^* - P|^2$$

we have

$$|z-z^*| \geq \sqrt{\alpha \delta_{\Omega}(z)} - |z^* - P|$$

but

$$|z^* - P| \le k\sqrt{\delta_{\Omega}(z')}$$
, $0 < k < 1$ and $\delta_{\Omega}(z') \approx \delta_{\Omega}(z)$

so

$$|z - z^*| \ge \sqrt{\alpha c \delta_{\Omega}(z')} - k \sqrt{\delta_{\Omega}(z')} = T(\alpha) \sqrt{\delta_{\Omega}(z')}$$

and $T(\alpha) > 0$ since we assume α very large.

Now

$$L_K^{\Omega}(\gamma) \geq c \int_0^{t_0} \frac{|\gamma'_{T_p}(t)|}{\sqrt{\delta_{\Omega}(\gamma(t))}} dt.$$

We define the curve

$$\mu_2(t) = z + \int_0^t \gamma_{T_p}'(s) \, ds.$$

We have $\mu'_2(t) = \gamma'_{T_p}(t)$ for all t. Then

$$\begin{split} L_K^{\Omega}(\gamma) &\geq c \int_0^{t_0} \frac{|\mu_2'(t)|}{\sqrt{\delta_{\Omega}(\mu_2(t))}} \ dt \geq c L^{\Omega}(\mu_2) \\ &\geq \frac{c|z-z^*|}{\sqrt{D(\alpha)\delta_{\Omega}(z')}} \geq \frac{c T(\alpha)\sqrt{\delta_{\Omega}(z')}}{\sqrt{D(\alpha)\delta_{\Omega}(z')}} = \frac{c T(\alpha)}{\sqrt{D(\alpha)}} \,. \end{split}$$

Case (iii.b) We claim that if $|(z - P)_{N_p}| > \alpha \delta_{\Omega}(z)$ then

$$|z^* - z'| > S(\alpha)\delta_{\Omega}(z).$$

We have
$$|(z-P)_{N_P}|=|z^*-P|$$
 and $|z^*-P|^2=|z^*-z'|^2+|z'-P|^2$ so $|z^*-z'|>\alpha\delta_\Omega(z)-|z'-P|$.

But

$$|z' - P| = \delta_{\Omega}(z')$$
 and $\delta_{\Omega}(z') \approx \delta_{\Omega}(z)$

SO

$$|z^* - z'| > \alpha c \delta_{\Omega}(z') - \delta_{\Omega}(z') = S(\alpha) \delta_{\Omega}(z).$$

But since we assume α very large then $S(\alpha) > 0$. Now

$$\begin{split} L_K^{\Omega}(\gamma) &\geq c \int_0^{t_0} \frac{|\gamma_{N_p}'(t)|}{\delta_{\Omega}(\gamma(t))} \, dt \\ &\approx c \int_0^{t_0} \frac{|\gamma_{N_p}'(t)|}{D(\alpha)\delta_{\Omega}(z')} \, dt \geq \frac{c|z^* - z'|}{D(\alpha)\delta_{\Omega}(z')} \geq \frac{cS(\alpha)\delta_{\Omega}(z')}{D(\alpha)\delta_{\Omega}(z')} = \frac{cS(\alpha)}{D(\alpha)} \, . \end{split}$$

Then

$$B(\alpha) = \sup \left\{ c \ln M(\alpha); c \ln \frac{1}{D(\alpha)}; \frac{cT(\alpha)}{\sqrt{D(\alpha)}}; \frac{cS(\alpha)}{D(\alpha)} \right\}$$

Then we have proved that if $z \notin \mathfrak{A}_{\alpha}(P)$ then $K(z, \nu_P) > B(\alpha)$, as desired. \square

Remark 2.1. The constants $B(\alpha)$ and $C(\alpha)$ hold for all $P' \in \partial \Omega$ which are sufficiently near to P.

Remark 2.2. An alternative way to prove Theorem 1 would be the following:

If Ω is the unit ball in \mathbb{C}^n , then we can exploit the transitivity of the automorphism group to get a quick proof of the result. Now if Ω is strongly pseudoconvex domain then we can use the approximation ideas of Graham [3a] to get the full result.

3. Fatou's theorem on strongly pseudoconvex domains

As an application of Theorem 1 we can give a new statement of Fatou's theorem on strongly pseudoconvex domains in \mathbb{C}^n .

Let us recall the classical Fatou's theorem.

DEFINITION 3.1. Let $\Omega \subset \subset \mathbb{C}^n$ be a domain with defining function ρ . Let $\Omega_{\epsilon} = \{ z \in \mathbb{C}^n : \rho(z) < -\epsilon \}$. For 0 we set

$$H^{p}(\Omega) = \left\{ f \text{ holomorphic in } \Omega \colon \sup_{\varepsilon > 0} \int_{\partial \Omega_{\varepsilon}} |f(z)|^{p} d\mu_{\varepsilon} = ||f||_{H^{p}}^{p} < \infty \right\}$$

$$H^{\infty}(\Omega) = \left\{ f \text{ holomorphic in } \Omega \colon \sup_{z \in \Omega} |f| < \infty \right\}$$

where $d\mu_e$ is the area measure on $\partial \Omega_e$. We also define the *Nevalinna class* $N(\Omega)$ by

$$N(\Omega) = \left\{ f \text{ holomorphic in } \Omega \colon \sup_{\varepsilon > 0} \int_{\partial \Omega_{\varepsilon}} \log^{+} |f(z)| \ d\mu_{\varepsilon} < \infty \right\}$$

where $\log^+ u = \max\{0, \log u\}.$

FATOU'S THEOREM. Let $0 . Let <math>\alpha > 1$. If $\Omega \subset \subset \mathbb{C}^n$ has C^2 boundary and $f \in H^p(\Omega)$, then for almost every $P \in \partial \Omega$,

$$\lim_{\mathfrak{A}_{a}(P)\ni z\to P}f(z)$$

exists.

For details see [11].

The results in the unit ball $B \subseteq \mathbb{C}^n$ and on certain other classical domains were obtained by Koranyi [5] and all the principal ideas for arbitrary bounded domains in \mathbb{C}^n with \mathbb{C}^2 boundary are due to Stein [11].

Now, given $\Omega \subset \subset \mathbb{C}^n$ a strongly pseudoconvex domain and using the fact that for all $P \in \partial \Omega$, $\mathfrak{A}_{\alpha}(P) \approx \mathscr{K}_{\beta}(P)$, we obtain the following invariant form of Fatou's theorem:

THEOREM 3.1. Let $\Omega \subset \mathbb{C}^n$ be a strongly pseudoconvex domain with C^2 boundary. Let $0 and <math>\beta > 1$. Let $f \in H^p(\Omega)$. Then for almost every $P \in \partial \Omega$,

$$\lim_{\mathscr{K}_{\mathcal{B}}(P)\ni z\to P} f(z)$$

exists.

Also, Stein [11] got the analogue of Fatou's theorem for the Nevanlinna class. Therefore we have the following result:

THEOREM 3.2. Let $\Omega \subset \subset \mathbb{C}^n$ be a strongly pseudoconvex domain with C^2 boundary. Let $0 and <math>\beta > 1$. Let $f \in N(\Omega)$. Then for almost every $P \in \partial \Omega$,

$$\lim_{\mathscr{K}_{\mathcal{B}}(P)\ni z\to P} f(z)$$

exists.

4. Pseudoconvex domains of finite type in C^2

DEFINITION 4.1. Let Ω be a smoothly bounded domain in \mathbb{C}^2 with defining function ρ . We define two holomorphic vector fields T_1 and T_2 by

$$T_1 = \frac{\partial \rho}{\partial z_2} \frac{\partial}{\partial z_1} - \frac{\partial \rho}{\partial z_1} \frac{\partial}{\partial z_2}$$

and

$$T_2 = \frac{\partial \rho}{\partial \bar{z}_1} \frac{\partial}{\partial z_1} + \frac{\partial \rho}{\partial \bar{z}_2} \frac{\partial}{\partial z_2}$$

Thus the vector fields T_1 and T_2 are respectively tangent and transverse to the boundary of Ω . For all $z \in \Omega$, we define the Levi function $\lambda(z)$ by

$$\lambda(z) = \langle \partial \rho; \left[T_1, \overline{T}_1 \right] \rangle(z)$$

where $[T_1, \overline{T}_1] = T_1\overline{T}_1 - \overline{T}_1T_1$ (Lie bracket). Let \mathscr{L}_0 be the module spanned by T_1 and \overline{T}_1 over the C^{∞} functions and let \mathscr{L}_{k+1} be the module spanned by elements of \mathscr{L}_k and elements of the form $[F, T_1]$ or $[F, \overline{T}_1]$ with $F \in \mathcal{L}_{\nu}$.

DEFINITION 4.2. A point $P \in \partial \Omega$ is said to be of type $m \ (m \ge 1)$ if

$$\langle \partial \rho(P), F(P) \rangle = 0$$
 for all $F \in \mathcal{L}_{m-1}$

while

$$\langle \partial \rho(P), F(P) \rangle \neq 0$$
 for some $F \in \mathscr{L}_m$

DEFINITION 4.2. If $\Omega \subset \subset \mathbb{C}^2$ is a pseudoconvex domain and $P \in \partial \Omega$ is of type m, then we say that $\partial \Omega$ is pseudoconvex of type m at P.

Remark 4.3. If $P \in \partial \Omega$ is strongly pseudoconvex point, then P is of type 1.

DEFINITION 4.4. Let (i_0, i_1, \ldots, i_m) be an (m + 1)-tuple of zeros and ones; we define the vector field $T_1^{(i_0, \ldots, i_m)}$ inductively by

$$T_1^{(0)} = T_1, \quad T_1^{(1)} = \overline{T}_1$$

and

$$T_1^{(i_0,\ldots,i_m)} = [T_1, T_1^{(i_0,\ldots,i_{m-1})}].$$

Then

$$\lambda^{(i_0,\ldots,i_m)}(P) = \langle \partial \rho; T_1^{(i_0,\ldots,i_m)} \rangle (P)$$

Remark 4.5. It can be proved, see [4], that the type of a given point P must be an odd integer if the boundary of Ω is pseudoconvex near P.

Remark 4.6. Let us define the function $C(z) = (T_1 \overline{T}_1)^{k-1} \lambda(z)$. It is possible to show that when Ω is pseudoconvex near a point P in the boundary, then P is of type 2m-1 if and only if $C_m(z) \neq 0$ and $C_k(z) = 0$ for all k, $1 \leq k < m$; for details see [4].

DEFINITION 4.7. Let $X = a_1T_1 + a_2T_2$ be a tangent vector of type (1,0) at a point z in Ω . Define M(z; X) by

$$M_m(z; X) = |a_2| |\rho(z)|^{-1} + |a_1| \sum_{k=1}^m |C_k(z)|^{1/2k} |\rho(z)|^{-1/2k}$$

Now we can state a theorem due to Catlin which allows us to estimate the Kobayashi metric; for details see [3].

THEOREM 4.8. Let Ω be smoothly bounded domain in \mathbb{C}^2 . Let P be a given point in the boundary of Ω ; assume that P is of type 2m-1. Then there exist a neighborhood U about P and positive constants c and C such that for every tangent vector $X = a_1T_1 + a_2T_2$ at a point $z \in U \cap \Omega$,

$$cM_m(z; X) \leq F_K^{\Omega}(z; K) \leq CM_m(z; X).$$

Following the ideas introduced by Nagel, Stein and Wainger [10], we can define balls on the boundary of a smoothly bounded domain in \mathbb{C}^2 .

First, we consider a domain $\Omega \subseteq \mathbb{R}^4$ with smooth boundary and finite type m. Let U be a neighborhood in $\partial \Omega$. Let X_1 and X_2 be smooth real vector fields defined in U and T be a non-vanishing transverse vector field in U, so that X_1 , X_2 and T span the tangent space of each point of U.

Following Kohn [4], we define

$$\Lambda_k(x) = \left(\sum \left\{\lambda^{i_0\cdots i_n}(x)\right\}^2\right)^{1/2}$$

where the sum is over the set of generators of \mathscr{Y}_k , the ideal over $C^{\infty}(\Omega)$ generated by the functions $\lambda^{i_0 \cdots i_n}$ with $n \leq k$. And let

$$\Lambda_{\delta}(x) = \sum_{k=1}^{m} \delta^{k} \Lambda_{K}(x),$$

assuming that Ω is of finite type m.

DEFINITION 4.9. Let

$$C_{\delta}^{4} = \left\{ \varphi \colon [0,1] \to \partial \Omega/\varphi \text{ is Lipschitz,} \right.$$

$$\varphi'(t) = \sum_{j=1}^{2} a_{j}(t) X_{j}(\varphi(t)) + b(t) T(\varphi(t)),$$

$$|a_{j}(t)| \leq \delta, |b(t)| \leq \Lambda_{\delta}(\varphi(t)) \right\}$$

$$C_{\delta}^{5} = \left\{ \varphi \colon [0,1] \to \partial \Omega/\varphi \text{ is Lipschitz,} \right.$$

$$\varphi'(t) = \sum_{j=1}^{2} a_{j} X_{j}(\varphi(t)) + b T(\varphi(t)),$$

$$a_{j}, b \in \mathbb{R}, |a_{j}| \leq \delta, |b(t)| \leq \Lambda_{\delta}(\varphi(0)) \right\}.$$

In order to keep the notation in [8], we use C_{δ}^4 , C_{δ}^5 . The curves C_{δ}^1 , C_{δ}^2 and C_{δ}^3 will not be used in this work.

We can define corresponding distance and balls as follows.

DEFINITION 4.10. Given $x_0, y_0 \in \partial \Omega$ we say $\rho_j(x_0, y_0) < \delta$, j = 4, 5, if there exists $\varphi_j \in C_\delta^j$ with $\varphi_j(0) = x_0$, $\varphi_j^{(1)} = y_0$. Also we define $B_j(x_0, \delta) = \{ y_0 \in \partial \Omega \colon \rho(x_0, y_0) < \delta \}$.

It was proven in [8] that the balls B_4 and B_5 are equivalent. From R. O. Wells [12], we have the following:

If V is a real vector space equipped with a complex structure J then V can be made into a complex vector space V_J by introducing the complex scalar multiplication

$$(\alpha + i\beta)v = \alpha v + \beta J v, \quad \alpha, \beta \in \mathbb{R}, v \in V, i = \sqrt{-1}$$

Alternatively, $V \otimes_{\mathbf{R}} \mathbf{C}$ is a complex vector space and J can be defined on $V \otimes_{\mathbf{R}} \mathbf{C}$ by

$$J(v \otimes \alpha) = J(v) \otimes \alpha$$
 for $v \in V$, $\alpha \in \mathbb{C}$

This extended J has eigenvalues +i and -i, since $J^2 = -I$.

The +i eigenspace is called $V^{1,0}$.

The -i eigenspace is called $V^{0,1}$.

Observe that, in the setup where $V = \mathbb{R}^{2n}$, then $V^{1,0}$ corresponds to span

$$\left\{\frac{\partial}{\partial z_1}, \ldots, \frac{\partial}{\partial z_n}\right\}$$

and $V^{0,1}$ corresponds to span

$$\left\{\frac{\partial}{\partial \bar{z}_1}, \ldots, \frac{\partial}{\partial \bar{z}_n}\right\}.$$

It can be checked that the complex vector space obtained from V by means of the complex structure J, denoted by V_J is C-linearly isomorphic to $V^{1,0}$. This means we can canonically associate to any element of the "real" vector space a holomorphic vector space. This way we do it in the Euclidean space is by

$$(a_1, b_1, \ldots, a_n, b_n) \rightarrow (a_1 + ib_1) \frac{\partial}{\partial z_1} + \cdots + (a_n + ib_n) \frac{\partial}{\partial z_n}$$

Let $\Omega \subset \mathbb{C}^2$ be a domain and U be a neighborhood in $\partial\Omega$. Let X_1 be any complex tangent vector field on U. Let $X_2 = JX_1$. Let N be the vector field of unit outward normal vectors to $\partial\Omega$ on U and T = -JN.

Then, to the vector field $a_1X_1 + a_2X_2 + bT$ on U, where $a_1, a_2, b \in \mathbb{R}$, corresponds the holomorphic vector field

$$a_1T_1 + ia_2T_2 + bT_2 = (a_1 + ia_2)T_1 + bT_2$$
 on U .

Then we can define the curves C_{δ}^4 and C_{δ}^5 in terms of holomorphic vector fields by

$$C_{\delta}^{4} = \left\{ \varphi \colon [0,1] \to \partial \Omega/\varphi \text{ is Lipschitz;} \right.$$

$$\left. \varphi'(t) = a_{1}(t)T_{1}(\varphi(t)) + a_{2}(t)T_{2}(\varphi(t)); \right.$$

$$\left. |a_{1}(t)| < \delta, |a_{2}(t)| < \Lambda_{\delta}(\varphi(t)\}.$$

$$C_{\delta}^{5} = \left\{ \varphi \colon [0,1] \to \partial \Omega/\varphi \text{ is Lipschitz;} \right.$$

$$\left. \varphi'(t) = a_{1}T_{1}(\varphi(t)) + a_{2}T_{2}(\varphi(t)); \right.$$

$$\left. a_{1}, a_{2} \in \mathbb{C}, |a_{1}| < \delta, |a_{2}| < \Lambda_{\delta}(\varphi(0)\}. \right.$$

So we have equivalent notations of distances and balls.

We can define approach regions in $\Omega \subset \subset \mathbb{C}^2$ in terms of the families of ball on $\partial \Omega$. By B we mean any of the equivalent balls.

DEFINITION 4.11. Let $\tilde{\Omega} = \overline{\Omega} \cap \text{(small neighborhood of } P \in \partial \Omega\text{)}$. Let π be any smooth projection from Ω to $\partial \Omega$. For $z \in \Omega$ set

$$D(z) = \inf_{1 \le k \le m-1} \left\{ \frac{\delta_{\Omega}(z)}{\Lambda_k(\pi(z))} \right\}^{1/k}$$

DEFINITION 4.12. Given $\sigma > 0$, $P \in \partial \Omega$, then

$$\begin{aligned} \mathscr{A}_{\sigma}(P) &= \left\{ z \in \tilde{\Omega} \colon \pi(z) \in B(P, \sigma D(z)) \right\} \\ &= \left\{ z \in \tilde{\Omega} \colon \rho(\pi(z), P) < \sigma \inf_{1 \le k \le m-1} \left\{ \frac{\delta_{\Omega}(z)}{\Lambda_{k}(\pi(z))} \right\}^{1/k} \right\}, \end{aligned}$$

where ρ denotes any of the equivalent metrics ρ_4 or ρ_5 and B any of the equivalent balls B_4 or B_5 .

5. Comparability of the Kobayashi approach region and the approach region $\mathscr{A}_{\sigma}(P)$

THEOREM 5.1. Let $\Omega \subset \mathbb{C}^2$ be a pseudoconvex domain of finite type. Let P be a given point in the boundaray of Ω , and assume that P is of type 2m-1. Then given $\sigma > 1$ there are two positive constants, $B = B(\sigma)$ and $C = C(\sigma)$, which depend on Ω and are functions of σ , and an open neighborhood U of P such that

$$U \cap \mathscr{K}_{C(\sigma)}(P) \subseteq U \cap \mathscr{A}_{\sigma}(P) \subseteq U \cap \mathscr{K}_{B(\sigma)}(P).$$

Proof. Let U be a neighborhood of P where Catlin's estimates hold.

Part 1. Assume $z_0 \in U \cap \mathscr{A}_{\sigma}(P)$; we want to prove $z_0 \in U \cap \mathscr{K}_{B(\sigma)}(P)$. If $z_0 \in U \cap \mathscr{A}_{\sigma}(P)$, then $\pi(z_0) \in B(P, \sigma D(z_0))$ and this implies there exists a curve $\beta \colon [0,1] \to \partial \Omega$, Lipschitz with $\beta(0) = P$, $\beta(1) = \pi(z_0)$ and

$$\beta'(t) = a_1 T_1(\beta(t)) + a_2 T_2(\beta(t))$$

where $|a_1| < \sigma D(z_0)$ and $|a_2| < \Lambda_{\sigma D(z_0)}(\beta(0))$. Consider the curve in $\Omega \cap U$, defined by

$$\hat{\beta}(t) = \beta(t) - \delta_{\Omega}(z) \nu_{\beta(t)}.$$

Then, applying Catlin's estimates we have

$$\begin{split} K(z_{0}, -\nu_{P}) &\leq L_{K}^{\Omega}(\hat{\beta}(t)) \\ &= \int_{0}^{1} F_{K}^{\Omega}(\hat{\beta}(t), \hat{\beta}'(t)) dt \\ &\leq \int_{0}^{1} CM_{m}(\hat{\beta}(t); a_{1}T_{1}(\hat{\beta}(t)) + a_{2}T_{2}(\hat{\beta}(t))) dt \\ &\leq C \int_{0}^{1} \left\{ |a_{2}| |\rho(\hat{\beta}(t))|^{-1} \right. \\ &+ |a_{1}| \sum_{k=1}^{m-1} |C_{k}(\hat{\beta}(t))|^{1/2k} |\rho(\hat{\beta}(t))|^{-1/2k} \right\} dt. \end{split}$$

where ρ is a defining function for Ω .

Since Ω is a domain of finite type, let us assume $\pi(z_0)$ is of type 2s-1 with $s \le m$. Then $\alpha = \Lambda_m(\pi(z_0)) \ne 0$. Therefore

$$\begin{aligned} |a_2| &\leq \sum_{k=1}^{m-1} \left(\sigma D(z_0) \right)^k \Lambda_k(P) \leq \sum_{k=s}^{m-1} \left\{ \sigma \left[\frac{\delta_{\Omega}(z_0)}{\alpha} \right]^{1/s} \right\}^k \Lambda_k(P) \\ &\leq \sigma^m \Lambda_{m-1}(P) \sum_{k=s}^{m-1} \left[\frac{\delta_{\Omega}(z_0)}{\alpha} \right]^{k/s}, \\ |a_1| &\leq \sigma \left[\frac{\delta_{\Omega}(z_0)}{\Lambda_s(\pi(z_0))} \right]^{1/s} \leq \sigma \left[\frac{\delta_{\Omega}(z_0)}{\alpha} \right]^{1/s}. \end{aligned}$$

We also have $|\rho(\hat{\beta}(t))| \approx \delta_{\Omega}(z_0)$ for all t. Hence,

$$\begin{split} K(z_{0},-\nu_{P}) &\leq C \int_{0}^{1} \bigg\{ \sigma^{m-1} \Lambda_{m-1}(P) \bigg[\sum_{k=s}^{m-1} \bigg[\frac{\delta_{\Omega}(z_{0})}{\alpha} \bigg]^{k/s} \bigg] \delta_{\Omega}^{-1}(z_{0}) \\ &+ \sigma \bigg[\frac{\delta_{\Omega}(z_{0})}{\alpha} \bigg]^{1/s} \bigg[\sum_{k=s}^{m-1} |C_{k}(\hat{\beta}(t))|^{1/2k} \delta_{\Omega}^{-1/2k}(z_{0}) \bigg] \bigg\} \ dt \\ &\leq C \frac{\sigma^{m}}{\alpha} \Lambda_{m-1}(P) \sum_{k=s}^{m-1} \delta_{\Omega}^{k/s-1}(z_{0}) \\ &+ C \sigma \alpha^{-1/s} \delta_{\Omega}^{1/2s}(z_{0}) \int_{0}^{1} \sum_{k=s}^{m-1} |C_{k}(\hat{\beta}(t))|^{1/2k} \ dt \\ &\leq C \frac{\sigma^{m}}{\alpha} \Lambda_{m-1}(P) + C \sigma \alpha^{-1/s} = B(\sigma). \end{split}$$

Part 2. Assume $z_0 \in U \cap \mathscr{X}_{C(\sigma)}(P)$; we want to prove $z_0 \in U \cap \mathscr{A}_{\sigma}(P)$. Let us prove the contrapositive.

Assume $z_0 \notin U \cap \mathscr{A}_{\sigma}(P)$; we will prove that $K(z_0, -\nu_P) > C(\sigma)$.

If $z_0 \notin U \cap \mathscr{A}_{\sigma}(P)$ then $\pi(z_0) \notin B(P, \sigma D(z_0))$. Therefore for any curve φ : $[0,1] \to \partial \Omega$, Lipschitz with $\varphi(0) = P$ and $\varphi(1) = \pi(z_0)$ such that $\varphi'(t) = a_1 T_1(\varphi(t)) + a_2 T_2(\varphi(t))$ we have

$$|a_1| > \sigma D(z_0)$$
 or $|a_2| > \sum_{k=1}^{m-1} \sigma D(z_0)^k \Lambda_k(P)$.

Take a curve $\gamma: [0,1] \to \Omega$ such that the Euclidean length of γ is t_0 and it connects z_0 with $-\nu_P$. Then the curve

$$\Psi(t) = \gamma(t) + \delta_{\Omega}(\gamma(t)) \nu_{\pi(\gamma(t))}$$

is a curve in $\partial \Omega$ such that $\Psi(0) = P$ and $\Psi(t_0) = \pi(z_0)$.

Fix two constants $N(\sigma) > 0$ and $M(\sigma) > 0$ such that $N(\sigma)$ is a small number and $M(\sigma)$ is a large number.

There are three possibilities:

- (i) $\delta_{\Omega}(\gamma(t)) \approx \delta_{\Omega}(z_0)$ for all $t \in [0; 1]$;
- (ii) $\delta_{\Omega}(\gamma(t)) < N(\sigma)\delta_{\Omega}(z_0)$ for some t;
- (iii) $\delta_{\Omega}(\gamma(t)) > M(\sigma)\delta_{\Omega}(z_0)$ for some t.

Case (i) Since γ is parametrized with respect to Euclidean arc length then $|\gamma'(t)| = 1$ for all t and

$$\Psi'(t) = \gamma'(t) + \delta'_{\Omega}(\gamma(t))\nu_{\pi(\gamma(t))} + \delta_{\Omega}(\gamma(t))\nu'_{\pi(\gamma(t))}.$$

Since $\delta_{\Omega}(\gamma(t)) \approx \delta_{\Omega}(z_0)$, the second and third terms of $\Psi'(t)$ are negligible, so

$$L_{K}^{\Omega}(\gamma(t)) = \int_{0}^{t_{0}} F_{K}^{\Omega}(\gamma(t); \gamma'(t)) dt$$

$$\geq C \int_{0}^{t_{0}} M_{m-1}(\gamma(t); \gamma'(t)) dt$$

$$= C \int_{0}^{t_{0}} \left\{ |a_{2}| |\rho(\gamma(t)|^{-1} + |a_{1}| \sum_{k=1}^{m-1} |C_{k}(\delta(t))|^{1/2k} |\rho(\gamma(t))|^{-1/2k} \right\} dt.$$

Assume that $\pi(z_0)$ is a point of type 2s - 1 with $s \le m$. We have

$$|a_2| > \sigma^s \frac{\delta_{\Omega}(z_0)}{\Lambda_s(\pi(z_0))} \Lambda_s(P)$$

or

$$|a_1| > \sigma \left[\frac{\delta_{\Omega}(z_0)}{\Lambda_s(\pi(z_0))} \right]^{1/s}$$

so

$$L_K^{\Omega}(\gamma(t)) \ge C \int_0^{t_0} \sigma^s \frac{\delta_{\Omega}(z_0)}{\Lambda_s(\pi(z_0))} \delta_{\Omega}^{-1}(z_0) \Lambda_s(P) dt$$

$$= C \sigma^s \Lambda_s(\Pi(z_0)) t_0 \Lambda_s^{-1}(P)$$

$$= h(\sigma)$$

or

$$\begin{split} L_K^{\Omega}(\gamma(t)) &\geq C \int_0^{t_0} \sigma \delta_{\Omega}^{1/s}(z_0) \Lambda_s^{-1/s}(\pi(z_0)) |C_s(\gamma(t))|^{1/2s} \delta_{\Omega}^{-1/2s}(z_0) dt \\ &= C \sigma \delta_{\Omega}^{1/2s}(z_0) \int_0^{t_0} |C_s(\gamma(t))|^{1/2s} dt \\ &= f(\sigma). \end{split}$$

Case (ii) We have

$$\gamma'(t) = c_1 T_1(\gamma(t)) + c_2 T_2(\gamma(t))$$

where

$$\begin{split} c_2 &= \langle \gamma'(t); T_2(\gamma(t)) \rangle \approx \gamma'_{N_P}(t), \\ L_K^{\Omega}(\gamma(t)) &= \int_0^{t_0} F_K^{\Omega}(\gamma(t); \gamma'(t)) \ dt \geq C \int_0^{t_0} M_{m-1}(\gamma(t); \gamma'(t)) \ dt \\ &= C \int_0^{t_0} |c_2| |\rho(\gamma(t))|^{-1} \ dt \geq C \int_0^{t_0} \frac{|\gamma_{N_P}(t)|}{\delta_{\Omega}(\gamma(t))} \ dt. \end{split}$$

Define the curve

$$\mu(t) = z'_0 + \int_0^t \gamma'_{N_p}(s) ds, \quad 0 \le t \le t_0,$$

where $\gamma_{N_P}^{\zeta}(s)$ is the projection of $\gamma_{N_P}^{\prime}(s)$ onto the real normal at P and z_0 is the projection of z_0 onto $-\nu_P$. We have $\mu^{\prime}(t)=\gamma_{N_P}^{\zeta}(t)$ for all t. Then

$$L^{\Omega}(\gamma(t)) \geq C \int_0^{t_0} \frac{|\mu'(t)|}{\delta_{\Omega}(\mu(t))} dt \geq \int_0^{t_0} \frac{|\hat{\mu}'(t)|}{\delta_{\Omega}(\hat{\mu}(t))} dt$$

where $\hat{\mu}$ is gotten from μ by discarding overlaps.

Let $\gamma(t_1)$ be such that $\delta_{\Omega}(\gamma(t_1)) < N(\sigma)\delta_{\Omega}(z_0)$ and m is the projection of $\gamma(t_1)$ onto the real normal.

Then

$$\begin{split} L_K^\Omega(\gamma(t)) &\geq C L_K^\Omega \text{ (segment connecting } m \text{ with } z_0') \\ &\approx C \int_0^{\delta_\Omega(z_0') - \delta_\Omega(m)} \frac{dt}{\delta_\Omega(m) + t} \approx C \ln \left\{ \delta_\Omega(m) + t \right\} \bigg|_0^{\delta_\Omega(z_0') - \delta_\Omega(m)} \\ &\approx C \ln \frac{\delta_\Omega(z_0')}{\delta_\Omega(m)}. \end{split}$$

But $\delta_{\Omega}(m) \leq N(\sigma)\delta_{\Omega}(z_0) \leq N(\sigma)\delta_{\Omega}(z_0')$ since $\delta_{\Omega}(z_0) \leq \delta_{\Omega}(z_0')$. So

$$L_K^{\Omega}(\gamma) \geq C \ln \frac{\delta_{\Omega}(z_0')}{N(\sigma)\delta_{\Omega}(m)} \geq C \ln \frac{1}{N(\sigma)}.$$

Case (iii) Fixing the large constant $M(\sigma)$ such that $\delta_{\Omega}(\gamma(t)) \ge M(\sigma)\delta_{\Omega}(z_0)$ for some t, we follow the same argument applied in case (ii). Therefore

$$L_K^{\Omega}(\gamma(t)) = C \int_0^{t_0} \frac{|\gamma_{N_P}(t)|}{\delta_{\Omega}(\gamma(t))} dt.$$

and we can define the curve

$$\mu_1(t) = z'_0 + \int_0^t \gamma_{N_P}'(s) ds, \quad 0 \le t \le t_0,$$

where $\gamma_{N_p}^{\prime}(s)$ is the projection of $\gamma_{N_p}^{\prime}(s)$ onto the real normal at P and z_0^{\prime} is the projection of z_0 onto $-\nu_P$. We have $\mu^{\prime}(t) = \gamma_{N_p}^{\prime}(t)$ for all t. Then

$$L^{\Omega}(\gamma(t)) \geq C \int_0^{t_0} \frac{|\mu'(t)|}{\delta_{\Omega}(\mu(t))} dt \geq C \int_0^{t_0} \frac{|\hat{\mu}'(t)|}{\delta_{\Omega}(\hat{\mu}(t))} dt$$

where μ is gotten from μ by discarding overlaps.

Let $\gamma(t_2)$ be such that $\delta_{\Omega}(\gamma(t_2)) > M(\sigma)\delta_{\Omega}(z_0)$ and let m be the projection of $\gamma(t_2)$ onto the real normal. Then

$$\begin{split} L_K^\Omega(\gamma(t)) &\geq C L_K^\Omega \text{ (segment connecting } z_0' \text{ with } m) \\ &\approx C \int_0^{\delta_\Omega(m) - \delta_\Omega(z_0')} \frac{dt}{\delta_\Omega(z_0') + t} \\ &\approx C \ln \big\{ \delta_\Omega(z_0') + t \big\} \big|_0^{\delta_\Omega(m) - \delta_\Omega(z_0')} \\ &\approx C \ln \frac{\delta_\Omega(m)}{\delta_\Omega(z_0')} \geq C \ln \frac{M(\sigma) \delta_\Omega(z_0)}{\delta_\Omega(z_0)} \geq C \ln M(\sigma) \end{split}$$

If we let

$$C(\sigma) = \sup\{C \ln M(\sigma); C \ln 1/N(\sigma); f(\sigma)\}\$$

then we have proven that if $z_0 \notin \mathscr{A}_{\sigma}(P)$ then $K(z_0, -\nu_P) > C(\sigma)$, as desired.

6. Fatou's theorem on domains of finite type

As an application of theorem 5.1 we can give a new invariate form of Fatou's theorem for domains of finite type in \mathbb{C}^2 .

Following the ideas in Section 6 of [8] we have the following:

DEFINITION 6.1. Let f be holomorphic on $\Omega \subseteq \mathbb{C}^2$, $P \in \partial \Omega$ and $\beta > 1$. We set

$$\mathcal{M}_{\beta}f(P) = \sup_{z \in \mathcal{X}_{\beta}(P)} |f(z)|$$

Then we have the following theorems.

THEOREM 6.2. Let $\Omega \subseteq \mathbb{C}^2$ be a domain of finite type.

- (i) For $0 \le p < \infty$ if $f \in H^p(\Omega)$ then $\mathcal{M}_{\beta} f \in L^p(\partial \Omega)$ and $\|\mathcal{M}_{\beta} f\|_L p \le 1$ $||f||_H p$.
 - (ii) If $f \in N(\Omega)$, then $\mathcal{M}_{\mathcal{B}}f$ is finite almost everywhere, and

$$m\{\log^+\mathcal{M}_{\beta}f > \lambda\} \le c/\lambda.$$

The proof this theorem is similar to the proof of Theorem 9 in [8]. We have to use the fact that $\mathscr{A}_{\mathfrak{g}}(P) \approx \mathscr{K}_{\mathfrak{g}}(P)$.

THEOREM 6.3. Given f holomorphic in Ω , a domain of finite type in \mathbb{C}^2 , the following two conditions are equivalent for almost every $P \in \partial \Omega$.

- (i)
- $\mathcal{M}_{\beta}f(P) < \infty.$ $\lim_{z \to P, \ z \in \mathcal{X}_{\beta}(P)} f(z) \text{ exists.}$ (ii)

In the proof we use the ideas of Theorem 11 in [8].

REFERENCES

- 1. G. ALADRO, The boundary behavior of the Carathéodory and Kobayashi metrics, preprint.
- 2. _____, Some consequences of the boundary behavior of the Carathéodory and Kobayashi metrics and applications to normal holomorphic functions, Pennsylvania State University Ph.D. Thesis, 1985.
- 3. D.W. CATLIN, Invariant metrics on pseudoconvex domains, preprint.
- 3A. I. GRAHAM, Boundary behavior of the Carathéodory and Kobayashi metrics on strongly pseudoconvex domains in Cⁿ with smooth boundary, Trans. Amer. Math. Soc., vol. 267 (1975), pp. 219-240.
- 4. J.J. KOHN, Boundary behavior of θ on weakly pseudoconvex manifold of dimension two, J. Differential Geometry, vol. 6 (1972), 523-542.
- 5. A. KORANYI, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. vol. 135 (1969), pp. 507-516.
- 6. S.G. Krantz, Function theory of several complex variables, Wiley-Interscience, New York,
- 7. _____, Fatou theorems on domains in Cⁿ, Bull. Amer. Math. Soc., vol. 16 (1987), pp. 93-96.
- 8. A. NAGEL, E. STEIN and S. WAINGER, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. USA, vol. 78 (1981), pp. 6596-6599.
- 9. H.L. ROYDEN, "Remarks on the Kobayashi metric" in Several complex variables, II, Proc. International Conf., Univ. of Maryland, 1970, Lectures Notes in Mathematics, Vol. 185, Springer-Verlag, Berlin, 1975, pp. 125-137.
- 10. N. SIBONY, "A class of hyperbolic manifolds" in Recent developments in several complex variables, J.E. Fornaess ed., Princeton Univ. Press, Princeton, 181, pp. 357-372.
- 11. E.M. STEIN, Boundary behavior of holomorphic functions of several complex variables, Princeton University Press, Princeton, N.J., 1972.
- 12. R.O. WELLS, Differential analysis on complex manifolds, Springer-Verlag, New York, 1980.

FLORIDA INTERNATIONAL UNIVERSITY MIAMI, FLORIDA