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VARIATIONAL PROBLEMS AND THE EXTERIOR
DIFFERENTIAL SYSTEMS

BY
WING-SuM CHEUNG

Introduction

In [8], by utilizing the theories and techniques of exterior differential
systems, Griffiths has developed a new and systematic approach of solving
general variational problems of one independent variable. Here by a general
variational problem of one independent variable we mean a variational prob-
lem whose functional has as its domain of definition the integral curves of an
exterior differential system on a manifold. This treatment of the calculus of
variations is, while in greater generality than customary, particularly useful in
variational problems arising from geometry, and it sheds new lights on even
the classical Lagrange problems.

In this paper, some of the results in [8] are generalized to the case of several
independent variables, that is, to general variational problems for functionals
whose domain of definition consists of the integral manifolds of an exterior
differential system (in particular, this includes the case of constrained varia-
tional problems). Of course, the first obvious difficulty in studying such
general problems is the question of whether there exist even formally “enough”
admissible integral manifolds. For this, one should at least assume the some-
what subtle condition of involutivity. Moreover, even if it is involutive, since
there is no general C™ existence theorem, we must restrict ourselves to the real
analytic case where the Cartan-Kihler theorem applies. However, since these
are not our main concern, we shall just ignore these and proceed heuristically
as in [8] assuming throughout the paper the existence of enough admissible
variations to arrive at our Euler-Lagrange equations. For classical variational
problems these coincide with the usual ones found in classical texts (e.g., [7])
as expected. Following the approach in [8], we then write the Euler-Lagrange
equations as an involutive exterior differential system on an associated mani-
fold, and a Noether’s theorem is obtained.
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VARIATIONAL PROBLEMS 11

For a further useful application of the formalism in the present paper, one is
referred to [S] in which by also adopting the ideas of “formal differential
geometry” of Gelfand-Vinogradov-Manin, the author studies the Euler-
Lagrange equations associated to general variational problems and obtains all
the higher order conservation laws of such equations as the solution space of a
linear differential operator with explicit formula. Meanwhile, in the same
article a “higher order Noether’s theorem” identifying intrinsically the higher
order conservation laws with the “higher order Noether symmetries”, where
the latter is a generalization of the usual notion of “infinitesimal Noether
symmetries”, is also obtained with explicit formula.

Throughout the paper, the summation convention will be adopted. Mani-
folds will be denoted by X, Y, Z, etc. The algebra of smooth functions, the Lie
algebra of smooth vector fields, and the de Rham complex on X are denoted
by C®(X), I'TX and 9*(X) respectively. If ¢ € T*X and YC X is a
submanifold, we shall write ¢, for ¢|Y and ¢ = O0mod Y for ¢, =0.If I is a
closed differential ideal in @*(X), then ¢ = 0 mod I shall mean ¢ € I.

1. Definitions and basic terminologies

Let X be a manifold. On X an exterior differential system ([2], [3], [4], [9])
with independence condition (or simply an exterior differential system in
short) (I, ) is given by a closed differential ideal I ¢ Q*( X) together with an
n-form w called the independence condition. Here n is called the number of
independent variables. An integral element of (I, w) is a pair (x, E) with
x € X and E an n-plane in T, (X) satisfying the conditions 8|E = 0, V0 € I,
and w|E # 0. An integral manifold of (I, w) is given by a smooth map
¢: N - X where N is a connected manifold of dimension n such that
(¢(x), (T, N)) is an integral element of (I, w), Vx € N. The sets of all
integral elements and integral manifolds of (I, w) will be denoted by V (I, w)
and (1, w) respectively.

Now we restrict our attention to the case where I is a Pfaffian system, i.e., I
is locally generated by smooth sections of a subbundle W* C T*( X). Since as
long as integral manifolds are concerned, the independence n-form w is only
well-defined modulo I, what we will be concerned with is thus the filtration of
sub-bundles

W* c L* c T*(X), (1.1)
where W* generates I and L*/W* is a vector bundle of rank n such that
w € C®(X, A"L*) induces a non-zero cross-section of A"(L*/W*).

(1.2) Example. Let M be an m-dimensional manifold with local coordi-

nates

(y*>a=1,...,m)
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and consider X = J'(R", M), the manifold of r-jets of locally defined maps
fromR" to M. If (x', y )1 i< n1gagm, JeN"|J|Lr)is the local
coordinate system (will be referred to as the standard local coordinate system
of X) induced by (y*), then the pair (I, w) given by

I={6f: =dyf -yt ydx’,1sa<m, JEN" |J|<r}
w=dx=dx' A...Adx"

is called the canonical Pfaffian system on X.

2. The setup of a general variational problem

On a manifold X we consider a Pfaffian system (I, w) whose independence
condition w is locally a decomposable rn-form in £*(X)/I. In terms of an
adapted basis {0% o'} (1 £ @« £ m, 1 < i < n) of the corresponding filtration
wW* c L* (cf. (1.1)), (I, w) is then given locally by

0°=0, w=wA...A0"#0.

Now suppose we are given a Lagrangian n-form ¢ on X; for every
N € #(1, w), we set

®(N) = quo. (2.1)

Here we agree to consider only those integral manifolds N for which the
integral exists, i.e., N may be non-compact but the improper integral should
converge. We may view the assignment N — [, as a functional (perhaps not
everywhere defined) ®: S(I, w) = R and we denote by (X; I, w; ¢) the
variational problem associated to the functional (2.1).

Given a variational problem ( X; I, w; ¢), we consider the following:

(2.2) Problem. Determine the variational equations and the “Euler-
Lagrange equations” of (2.1)

Of course the present situation is much more complicated than the case
n = 1 treated in [8], primarily because of the following two reasons:

(i) The Pfaffian system (I, w) must satisfy the somewhat subtle condition
of involutivity in order that there exist even formally enough integral mani-
folds for the variation.

(ii)) Even when (I, w) is involutive, there is no general C*® existence
theorem for local integral manifolds, so we must restrict to the real analytic
case where the Cartan-Kéhler theorem applies.
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However, we shall ignore these, and by assuming that there exist enough
admissible variations we proceed heuristically to arrive at a set of equations
that should express the condition that the functional (2.1) has a critical value
at N, and we define them to be the Euler-Lagrange equations associated to
(X; I, w; 9).

(2.3) Example. We continue with Example (1.2). Take for (I, w) the
canonical Pfaffian system on X. Let L be a function on X and set ¢ = Lw.
Then (X; I, w; @) is called a classical #™ order variational problem. Integral
manifolds N € #(I, w) are locally r-jets of the maps (y*): R* - M and so
the functional L is given by

L=L(x' yf) = L(x', 3%y*(x)), |J|<r.
If Y c X is a submanifold defined locally by equations
g°(xi, y}") =0, 1<0x<k,
such that w|TY # 0 and L is a function on Y (or in practice the restriction to
Y of some function on X). Denote again by (I, ) the restriction to Y of the
canonical Pfaffian system on X and set ¢ = Lw, then (Y; I, w; @) is called a

classical r™® order variational problem with constraints. In this case the
domain of ® = [ consists of r-jets of mappings (y*): R* = M satisfying

o 9Hlye
g"(x’, a&‘x); (x)) =0 fore=1,...,k.

(2.4) Assumption. Since practically all problems we are interested in have
the form ¢ = fw for some function f on X, we will simply assume that this is
always the case.

3. Variational equations for integral manifolds for a Pfaffian system (I, w)

To attack problem (2.2) we begin by deriving the variational equations for
an integral manifold (N, ¢) of (I, w). Roughly speaking, we shall compute
Ting) (£, w)),' the tangent space of (I, w) at the point (N, ¢).

Now a variation of

$: N> X (3.1)
is given by ®@: N X [0, €] = X such that if we let

¢ N->X (3.2)



14 WING-SUM CHEUNG

be the restriction of ® to N X {¢} = N, then ¢, = ¢. The associated in-
finitesimal variation v € C®(¢(N), T(X)) is given by

o(8(5) = ®h( 57,
where
O|y: Ty (N X [0, 8]) = Ty (X)
denotes the differential of @ at the point (s,0) € N X [0, €].

(3.3) Remarks. (i) In all cases of concern to us, ¢ will be an immersion
and v induces a section [v] € C®(¢(N), E), where E = the normal bundle
T(X)/¢«T(N). It will turn out that our variational equations will only depend
on the normal component [v] of v.

(i) Since our consideration is local, we may further assume that ¢ is an
embedding. Let V' € C*(X, T(X)) be any extension of v, then it is easy to see
that for any 6 € T*(X), ¢*(V 1d0 + d(V 18)) is independent of the extension
and we shall write

¢*(v1dl + d(v10)) = ®*(V1db + d(V10))|N.
(3.4) Lemma. If (3.1) is an immersion, then for every § € T*( X),
% ,5:(®*0)|N = ¢*(v1d + d(v10)).

Proof. Assume that ¢ is an embedding and let V' be an extension of v such
that

d
V(®(s, 1)) = CI)*(W) € T@(s,t)(X)-
By the H. Cartan formula, we have
.Sf(,/a,(d)"‘ﬂ) = ®*(d(Vi0) + V1dl), V8 e T*(X),

and the lemma follows by restricting both sides to N = N X {0}. Q.E.D.

Now consider the variation (3.2) of the integral manifold given in (3.1). The
conditions that (3.2) is an integral manifold are ¢*8¢ = 0, Va, ie., ®*6* =
g°%(s, t) dt, Va, where the g*’s are some functions on N X [0, €]. By Lemma

(3.4) these imply that

o*(v1d0* + d(v10%)) = g*(s,0) dt|N =0, Va.
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Now we extend v again to a vector field (still denoted by v) on X and by
dropping the reference to ¢, we have

(3.5) PROPOSITION. The variational equations for an integral manifold (3.1)
of (I, w) are

v1d0* + d(vi0*) =0mod N, Va. (3.6)

(3.7) Remarks. (i) As noted in (ii) of (3.3), equations (3.6) depend only on
the infinitesimal variation v € C*(N, T(X)) and not on its extension to
C*®(X, T(X)).

(ii)) Equations (3.6) depend only on the normal vector field

[v] € C=(N,T(X)/T(N))
induced by v. In fact, if v € I'T(N), let v be an extension to I'T( X). Then the
functions v16* vanish on N and so d(v16*) = 0 mod N. On the other hand,

we have trivially v1d0* = Omod N.
(iii) It is also clear that (3.6) are independent of the choice of basis { 6%} of

W*. So the variational equations should really read

v1df + d(vi6) =0mod N, VO € T(W*),

or, more generally, it is easy to see that they are equivalent to
vidp+d(vip)=0mod N, Vpel. (3.8)
Intrinsically equations (3.6) have the following meaning. Let {w,} €
C®(X,W) be a dual basis to the basis {0} € C*(X,W*) and E =

T(X)/T(N). Define the first order linear differential operator
L: C*(N,E) > C*(N,W ® T*(N)) (3.9)
by L[v] = w, ® L*[v] with L°[v] = v1d8* + d(v16*)|N. Then the varia-
tional equations (3.6) are just L[v] = 0. In view of this, we may refer to the

“tangent space” Ty(F(I, w)) as being the solution space of the linear PDE
L[v] = 0.

4. The Euler-Lagrange equations associated to ( X; I, w; ¢)

In this section we shall derive the Euler-Lagrange equations associated to a
variational problem (X; I, w; ¢) assuming the existence of enough solutions v
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to the variational equations (3.6) satisfying the boundary conditions

v=0 ondN. (4.1)
So we have the functional
®(N) = [ o, (42)
N

and for a 1l-parameter family N, C X of integral manifolds of (I, w) with
N, = N, we want to find the condition for

il

t

=0. (4.3)

t=0

In general, of course, the boundary conditions (4.1) are much too stringent.
However, we shall neglect that and formally proceed to derive heuristically,
assuming the existence of enough admissible variations, a set of equations on
N that must hold if (4.3) is to be true. This turns out to be a neat and beautiful
system of equations in its own right, and we shall define them as the
Euler-Lagrange equations associated to (X; I, w; ¢). Later in this section we
shall loosen up the boundary conditions (4.1) and justify calling these equa-
tions obtained on N the Euler-Lagrange equations.

By Lemma (3.4), we have

<fn

= vaqu + d(vi o)
o N

=vaJd<p

by Stokes’ Theorem and (4.1). Recall the equations L*[v] = 0 that define
Ty (F#(1, w)), the condition that (4.3) holds may be expressed as

t=

L*[v] =0,Va,v=00n N = /UJd(p=0.
N

By Stokes’ Theorem the vanishing of [y v4 de for sufficiently many v’s should
mean that vide =dn mod N where 7,y = 0 (this is one place where the
“heuristic” comes in), or, 7 should depend linearly on v (so 1, = 0 whenever
vyy = 0). Hence (4.3) means

L*[v] =0,Va,v=00n dN = vid¢=dn(v)modN.

Intuitively, this means that for any v € C®(N, TX) satisfying v,y = 0 the
n-form vJ do should be a linear combination of L*[v] plus dn(v) (this is the
other place where the “heuristic” comes in), so (4.3) should mean

vide = A, A L*[v] + dn(v) mod N, Vv € C®°(N,T(X)). (44)
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Here it is understood that v,, = 0. The A ’s are (n — 1) forms and 5(v) an
(n — 1) form depending linearly on v.

Now since the left-hand-side of (4.4) does not depend on any derivatives of
v, in order that no derivatives of v appear on the right hand side, we set
n(v) = (= 1)"(v10*)A,. Then n,, = 0 whenever v;, = 0, and (4.4) reads (by
changing a sign of the A s if necessary)

vid(¢ +0) =0mod N,Vv € C*(N,T(X)), where § =\, A 6% (4.5)

(4.6) Remarks. (i) Since equations (4.5) do not involve any derivatives of
v, they are pointwise conditions along N.

(ii) To have intrinsic meaning one must allow 8 in (4.5) to be any n-form
in I. Thus one must allow 8 = A, A 0% + p, A d0° for any (n — 2) forms p.,,.
But then

0= (Aa s dp‘a) A0+ (—1)nd(l"‘a A oa)

and the last term is closed. Thus we may assume that § = A, A 8¢ as given in
4.5).

(i) Set w,=(—1)""' A...Ad A ... Aw" then {w;} locally spans
A""T*(N) and A.’s may be written as

A, =Nw, + o,
where o, = 0 mod N and N, € C*(X). But since obviously
d(o, A0%) =0 mod N,
we may assume that, with a change of sign for 8 if necessary,
A= N,w,;,
0 =Ng*A w,
A=|Np,@wr|ew eV

where {v;} is the basis for ¥ dual to the w'’s and {wy*} the frame for W*
corresponding to {#}. The last equation above gives the intrinsic meaning of
the functions {X,}.

We record the above discussions as follows.

(47) Let Ne J4(I,w) and {N,} any admissible variation of N (N, €
F(I, w), Vi) satisfying the boundary conditions (4.1). Then in order that
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the following conditions on N should hold:
vid(p+N#*Aw)=0modN, Vve C°(N,T(X)) (48)

where the X' ’s are functions to be determined. (Notice that in any case we
only need to determine the N,’s on N.)

DErFINITION. We shall call the conditions (4.8) imposed on N € #£(1, w)
the FEuler-Lagrange equations associated to the variational problem
(X; I, w; ).

(4.9) Example. We consider a classical r order variational problem using
notations in (1.2) and (2.3). Since the Euler-Lagrange equations (4.8) are in
coordinate-free terms, we may assume M = R™. For the sake of simplicity we

shall only work on the case where r = 1, while the general case can be done in
exactly the same manner. First of all, we find

d(@ + N A @) = L,.0% A dx + Ldy® A dx
+dN, A 0% A dx; — N, dy? A dx.

In general, to compute equations (4.8) it is sufficient to use a set of vectors that
span T,(X) at every x € N. More importantly, we may use “n less” vectors as
shown by the following algebraic lemma whose proof is completely trivial.

(4.10) LEMMA. Let T be a vector space and ¥ € A"*'T*, Let v,,..., v, be
ectors that span an s-dimensional subspace V of T and w,, ..., w, vectors not in
7 such that {v,, w;} form a basis of T. Then if

(V¥ wy,..0,w,) =0, Vligacgs,
we have

(vi¥;wy,...,w,)=0, YveT.
Now return to Example (4.9). Let

9.9, 0
ax," aaa’ ayia
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be the dual basis of {dx’; % dy®}; using Lemma (4.10) the Euler-Lagrange
equations (4.8) are given by

d i pa i =
7yt 4o + X A ax) = (L= N,)dx=0 modN
ad .
agald(e + X Adx;) = L.~ dN,Adx;=0 modN.
Since dx # 0, N, = L,. on N. Thinking of N as an 1-jet
dy*(x
() = (54 o), 2212 ),

the Euler-Lagrange equations become

d
_aTxTLyr = Lya,

which are the classical Euler-Lagrange equations. Similarly, one finds that our
Euler-Lagrange equations for classical r'® order variational problems coincide
with the classical ones.

(4.11) Remark. 1If (y*) = (y*(x)) is a solution for the Euler-Lagrange
equations and () a variation of (y®), the natural boundary conditions are
clearly d7y*|dN = 3y*|dN, VI € N", |I| < r.

Let us now go back to the derivation of the Euler-Lagrange equations (4.8).
We see that the weaker conditions

viw' =v10*=0o0n dN, Va, Vi, (4.12)

are all that was needed. Also, it is clear that they are exactly the corresponding
conditions on the infinitesimal variation v € Ty (#(1, w)) of the natural
boundary conditions of Example (4.9). Of course, in general (4.12) may still be
too stringent. But we shall not get into the details of determining the correct
boundary conditions individually because again that will involve the structure
theory of (7, w) which could be different for different problems. Instead, we
shall just assume that (4.12) are the correct boundary conditions and proceed
to justify calling (4.8) the Euler-Lagrange equations associated to (X; I, w; ¢).

(4.13) THEOREM. If N € #(I, w) satisfies the Euler-Lagrange equations
(4.8), then
i)

t

&.|g_

t=0
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for any admissible variation of N, of N that satisfies the boundary conditions
(4.12).

Proof. Let v be the infinitesimal variation associated to { N,}. By (3.4) we
have

L

= va do + d(vip)
N

&

t=0

]

f vidp by (4.12) and Stokes’ theorem
N

— [v1d(N 8" A @) by (438)
N

f d(vINg* A ;) by (3.8)
N
=0 by (4.12) and Stokes’ theorem. QE.D.

(4.14) Example. We shall derive, in our setting, the familiar condition that
a submanifold M" ¢ E"*" be minimal. For this we shall use moving frames in
E"*" (see [2], [4], [8]) and the following ranges of indices

{l1gi,jgsmn+lga,Bsn+r;lga bsn+r}.

Let X be the manifold consisting of pairs (x,T) where x € E"*” and
T c E"*" is an n-plane through x. Let #(E"*") be the orthonormal frame
bundle over E”*", There is a natural fibration

7 F(E™) > X (4.15)

given by 7(x; ey,...,e,.,) =(x;e; A... Ae,), where e; A ... Ae, means
the translation by x of the n-plane through the origin spanned by the e,’s. Let
Uc X be an open set. Choose a cross-section (x;e;, e,) of (4.15) and
consider the Pfaffian system

I={0"=0"}, o= A...A0"#0

on X. It is clear that (I, w) is independent of the choice of the section and
hence is well-defined.

Now for every submanifold M" — E"*" there is a Gauss map y: M - X
given by y(x) = (x, T.(M)) for each x € M. Notice that y(M) € £(1, w)
and every N € #(I, w) arises from a sub-manifold M” c E"*" in this man-
ner. (Note that a cross-section of (4.15) over y(M) is just a field of Darboux
frames over M.) Hence the problem of minimal submanifolds M” c E"*” is
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equivalent to the variational problem (X; I, w; ¢) with ¢ = w, the volume
form.
Using the structure equations (e.g., [8], [11]) for E"*’, we get

d(g + No%A )
=0°AN AW+ dN, A A w;— N A w—NI* A do,

+NBB A wf A w,.

Note that the 1-forms {8% ’; w}} are horizontal for the fibration (4.15) and
they form a coframe for X. Contracting d(¢ + N 0% A w;) with 3/« and
a/36°, we get

1) Nyw=0modM,

(i) &\ A w,—dN, A w;,—N,dw,=0mod M.
Since w # 0, these combine and give

WA w;=0 mod M. (4.16)

But since df* = w* A o' =0 mod M, by Cartan’s lemma these imply that
there are functions H;; = Hj; such that

wf = Hfjw’, (4.17)

where H = Hfje, ® w'’/ is just the 2*® fundamental form of M in E"*".
Substituting (4.17) into (4.16) we get

Hi=0 mod M,
which are just the familiar equations of a minimal submanifold.
(4.18) Example. We compute the FEuler-Lagrange equations for the
Willmore functional (cf. [1] and the references cited there). For this we let

M c E? be a 2-dimensional submanifold with Gaussian and mean curvatures
K and H respectively. Then the Willmore functional is given by

o(M) = fMHZdA.

Let X be the manifold defined in example (4.14) with n = 2 and r = 1 and
consider the fibration (cf. (4.15))

7 F(E?) - X.
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Let X=X x R3(a, b, e ON X we consider the Pfaffian system

01=w3
I=1{0%=0u-al — bo?

6° = &} — b — cw?
W= A w?#0.

Notice that every 2-dimensional submanifold M C E® determines a (unique up
to orientations) lift (given by the Darboux frames) M € #(I, w) and con-
versely, every M € #(I, w) arises in this way. So the Willmore problem of
minimizing the Willmore functional is equivalent to the variational problem
(X; I, w; @) with ¢ = H%w = 1(a + ¢)%.

Following our prescription and using the structure equations of E* (for
example, see [8], [11]), it is not hard to find the Euler-Lagrange equations of
(X; I, w; @) to be (see [6] for more details)

AH+2H(H*-K)=0

which is quite well-known.

5. The Euler-Lagrange differential system; momentum space

Given a variational problem (X; I, w; ¢) we want to write the associated
Euler-Lagrange equations as an involutive exterior differential system (J, w)
on an associated manifold Y.

Given a variational problem ( X; I, w; ¢), we notice that the Euler-Lagrange
equations (4.8) are actually lying in the enlarged manifold Z = X X R"",
where the R™™ has coordinates {N,}. On Z, define

V=90 +Nf*ANw;, ¥=dy,

and the Cartan system %(¥) as the differential ideal generated by the
differential forms {vi¥: v € TT(Z)}.

(5.1) PROPOSITION. The solutions to the Euler-Lagrange equations (4.8)
associated to the variational problem (X; I, w; @) are in a natural one-to-one

correspondence with £(€(¥), w) in Z.

Proof. Note first that on Z,

¥ = dN,_ A % A @, + (terms not involving dXN,’s),
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and so € (¥) contains

9
N,

W =0%A w,. (5.2)

Now if N € #(I, w) satisfies (4.8) let s = (s') be local coordinates on N.
Then we may determine functions N, (s) such that for all v € C®(N, T(X)),

vid(e + N A% A )N =0. (5.3)

(Note: Strictly speaking we must extend the functions N, from N to X and
compute d(¢ + N 0% A ;). But the point is that since %N = 0, the left
hand side of (5.3) is independent of the extension of the N,’s.)

Associated to N and {N,(s)} is a natural manifold

N=Nx(N,)cz.

It is now clear that N € #(%(¥), w).

Conversely, if N € #(%(¥), ), let N = #(N) C X, where = is the natural
projection Z — X. By (5.2) we see that N € (I, w), and the condition
vJ‘I’|]\7 = QTor all v € TT(X) c I'T(Z) shows that N satisfies (4.8). Q.E.D.

In general, (¥(¥),w) on Z is not involutive, so we have to apply the
Cartan-Kuranishi theorem [10] to construct an involutive system (J, w) on an
associated manifold Y from (¢ (¥), w) on Z. To do this, let G,(Z) be the
prolongation of the pair (Z, n), i.e., #: G,(Z) — Z is the Grassmann bundle
over Z whose fibers 7~ 1(z) = G,(T,(Z)) are Grassmann manifolds of n-planes
in the tangent space T,(Z). Notice that V(% (¥), w) € G,(Z). Denote by
Z, c Z the image of V(% (¥), w) under = and assume that Z; is a manifold.
(This is not strictly necessary: in the real analytic case Z; will be an analytic
subvariety and we may just consider the open dense subset of smooth points
of Z, instead.) Set

¢ (¥) =¢(¥)Z, vw=0|Z, ¥ =Y¥|Z.

Obviously we have €(¥,) € %,(¥) but the equality may not hold. The point
is that an integral element of (¢(¥), w) may not be tangent to Z,. However, it
is not hard to see that we always have £(€(¥), w) = F(F(¥), ).
Replacing (Z; €(¥), w) by (Z;; €,(¥), w) and repeating the above con-
structions inductively, we get a sequence of exterior differential systems
(%,(¥), w) on manifolds Z, with Z, > Z, ., and %, ,(¥) = €. (¥V)|Z;,1-
By the Cartan-Kuranishi theorem [10] this construction terminates with an
involutive differential system (J, w) on a manifold Y after a finite number of
steps. (Here of course, in order to apply the Cartan-Kuranishi theorem real
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analyticity or some suitable constant rank assumptions are necessary, and we
always assume these to hold.) By these constructions we have the next result.

(5.4) PROPOSITION. Y and (J, w) are characterized as follows:
(i) The projection of m: V(J, w) = Y is surjective, and
(i) H(J, w) =I(E(¥), w).

(5.5) COROLLARY. The solutions to the Euler-Lagrange equations (4.8) asso-
ciated to the variational problem (X; I,w; @) are in a natural one-to-one
correspondence with #(J, w) in Y.

DEeFINITION. We shall call Y the momentum space and (J, w) on Y the

Euler-Lagrange differential system associated to the variational problem
(X; 1, w; ).

(5.6) Remark. From equations (5.2) we see that I C ¥(¥) and hence
I c J, and in general, J is not a Pfaffian system.

(5.7) Example. We continue example (4.9) with r = 1. Using the nota-
tions there we set Z = X X R" and on Z we have

¥ =L.0%Adx+ Ledy* Adx+dN, AOAdx,— N, dy* A dx,

and the Cartan system (V) is given by
@) (/9N )1¥ = 8% A dx; =0 mod N,
(i) (3/3y)I¥ = (L,e — X,)dx = 0mod N,
(i) (8/00%)1¥ = L,dx — dN, A dx;= 0 mod N.
Equations (i) together with w # 0 give I C ¥(¥). Equations (ii) imply that
integral elements of (¥(¥), dx) lie over

z,={N,=Ly,}cz
We will show that if for general § = (§;,) € R",
det ”Lyi"‘yfgigju + 0, (5.8)
then the restriction (%,(¥), dx) of (¢ (¥), dx) to Z, C Z is involutive. That
is, Y=2,,J = €,(¥).
To see this, notice that (%;(¥), dx) is the exterior differential system

associated to the familiar Euler-Lagrange equations obtained in example (4.9)
which may be rewritten as

92 d
Lypomiga?’ (%) = g“(X; y(x); ):9(xx) ) (5:9)
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which is a 279 order PDE system whose symbol is a map
o: T*(R") ® R™ > R™

given by
(o(¢® )" = (Lyspnftit,),

where £ = (§,) € R", p = (p*) € R™ It is a well-known result that (5.8) (in
the form det o, # 0) implies the involutivity of the PDE system (5.9).

6. Noether’s theorem

DEFINITION. An (infinitesimal) Noether symmetry of a variational prob-
lem (X; I, w; @) is given by a vector field v on X satisfying

LIcl, Zg=0modl. (6.1)

(6.2) NOETHER’S THEOREM. If v is a Noether symmetry of (X; I, w; @),
then vy is a closed (n — 1) form on each integral manifold N of (I, w) which
satisfies the Euler-Lagrange equations (4.8).

Proof. Let 6 =Nf8* A w;, and v be the vector field on Z = X X R™
induced by v on X by the product structure. By H. Cartan’s formula and
4.8),

d(viy) =d(vi(e +0)) +vid(p+0) modN

=% (p+60) modN
=0 modN

for every N € #(I, w) that satisfies the Euler-Lagrange equations. Q.E.D.

Now since the construction of Y from (X; I, w; ¢) is functorial, if F:
X — X is the 1-parameter group induced by v, then the induced 1-parameter
group F: Y - Y in turn induces a vector field v, on Y. We call v, the vector
field on Y induced by v on X.

By the natural one-to-one correspondence between #(J, w) and the solu-
tions of the Euler-Lagrange equations of (X; I, w; ¢), we have:

(6.3) COROLLARY. If v is a Noether symmetry of (X; I, w; @), then vy
is a closed (n — 1)-form on each integral manifold of (J, w) on Y.
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