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BOUNDEDNESS OF THE LITTLEWOOD-PALEY
g-FUNCTION ON Lip(R") (0 < a < 1)

BY
SHILIN WANG

1. Introduction

Let R" be n-dimensional Euclidean space. We say that a scalar valued
function ¢ on R" is a Littlewood-Paley function if the following three
conditions are satisfied:

veL(R"), [ y(x)dx=0, 1.1)
.
W (x) < e+ |x])"*Y, (12)
W(x +y) —¢(x) < )/ — Iyl < |—’;—I—,some e>0. (1.3)

(1 + |x|)n+1+e ’
For instance, these conditions are satisfied by the well-known functions

cut
(2 + 1x7) "

V) =5

t=1

and

FR

¥;(x) = (j=1,2,....n)

with € = 1, and higher order derivatives of these functions of order k give
examples with ¢ = k.
For a fixed Littlewood-Paley function y, let

o 1/2
8N =8(NG) = { [+ 021 1.4

denote the Littlewood-Paley g-function of f. The Littlewood-Paley g-function
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of f is well defined under some assumptions on f, although it may be infinite

on a set of positive measure.
As in [1], page 312, we have

Ig(fl, < CilAl, (1<p<oo), (1.5)

where C is independent of f.

Recently, Wang Silei [2] discussed the end-point cases of this result when
f € L*(R") or f € BMO(R™).

The aim of this paper is to study the behaviour of g(f) when f € Lip (R")
O<a<l).

THEOREM 1. Iff € Lip,(R"), 0 < a < min{g, 1}, and g(f)(x,) < o for a
single point x,, then g(f) € Lip (R") and

Ig(lla, < Cllflla,

where ||f|| o, denotes the Lip, norm of f, and C is a constant depending only on n
and a.

The assumption concerning the finiteness of g(f)(x,) is essential. In fact,
consider the classical Littlewood-Paley g-function

8N = {[Cvueoiar)

where

n+1
cul r("5)

€= —rn
(t2 + Iylz)(n+l)/2’ n 7).(n-f-l)/2 4

u(x, 1) = [ pO)(x=p)d (+>0),

n(y) =

2
|vu(x,t)? =

Ju
3t

2 & ou
+ Y |7
et} ax,

THEOREM 2. There exists a function f € Lip,(R") for all « (0 < a <1),
such that g(f)(x) = oo everywhere where g is the classical Littlewood-Paley
g-function.
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We say that a locally integrable function f on R” is Lipschitz a« (0 < a < 1),
and denote this by f € Lip,; if there is a constant ¢ so that |f(x) — f(y)| <
c|x — y|* for every x, y in R", the smallest such constant c is called the Lip,
norm of f and is denoted by ||f]| 5.

LemMmA 1 [1, page 213]).  Suppose that f is a locally integrable function on R",
0 < a < 1. Then the following four statements are equivalent and the constants
appearing on the right-hand side of each are also equivalent.
((j; lf(x) = f(P)| < ei]lx —y|% all x, y in R
ii

1
Supwalf(X) = foldx = ¢, < oo,

where the supremum ranges over all finite cubes Q in R" whose sides are parallel

to the axes, |Q| is the Lebesgue measure of Q, and f,, denotes the mean value of
f over Q, namely,

fo=rgr L0 #.

(We will consider only these cubes in what follows.)
(i) |f(x) = fol < ¢|Q|*", all x € R", Q € R™.
@iv)

1/p
1
sup{WfQIf(x) —fQI”dX} =¢ <o, l<p<om,

where the supremum is taken over the same range as in (ii). The equivalence is to
be understood to mean that each f which satisfies (ii), (iii) or (iv), can be modified
in a set of measure zero so as to coincide with a continuous function which
satisfies (i) as well.

We will use freely c,, c,, ¢;, ¢, as the Lip, norm ||f]| 5 of f.

Remark. In Lemma 1, if (ii) holds for some constant in place of f, then it
also holds for f,,.
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LEMMA 2. Suppose that f € Lip,(R"), $>0,0 < a <min{B,1}, Q is a
cube with center x,, edge-length h. Then

1f(x) = fa
fR id

nayioh™ B+ |x — xo|"P

dx < Ch*~Pfll ., (1.6)

C a constant depending only on n, a and B.

Using Lemma 1, the proof of Lemma 2 is similar to a result of Fefferman-
Stein’s [3], and we omit it.

LemMMA 3.  Suppose that f € Lip (R") (0 < a < 1), Q is a cube and x,, is in
its interior, then g(fxo)(xo) < 0.

Proof. To see this we use different estimates on ¢*(fxo)(x,) depending
on the size of ¢. If > 1 we observe that

N’:"‘(fXQ)(xo)| < le’ﬂscmzydy < Ct™".

This uses only the fact that fx, is bounded and has compact support. As
for t < 1, we write

v (Ixe)(xo) = [ (F(xro=3) = f(x))¥l) &y

¥ jl.y| zd(f(xo = )xo(%0 = ») = f(xO))‘P'(y) b

where we choose d > 0 but d < distance from x, to the complement of Q.
Then

lyl<d

[ fxo=2) = 1) 00) ] s cforw o < cr

since f € Lip,(R") and

/

ly

o= Dxel0=3) 1) () 8]

t
C) Y
fmza(f + ly))"*!
< Ct,

since fx, is bounded.
These estimates easily imply g(fxo)(x,) < 0.
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I1. Proof of Theorem 2

First we consider the case n = 1, and define the function

1, x=1,
f(x)=(x, 0<x<1,
0, x<0O.

To estimate |f(x,) — f(x,)|, without loss of generality, we assume that
x; < x,. If x; <0 or x, > 1, observing that f is constant on (— o0,0] and
[1, + ), by the triangle inequality, we may reduce these cases to x; = 0 or
x, = 1. That is, we need only to deal with the special case 0 < x;, x, < 1. In
this case, |x; — x,| <1, so

1f(x1) = f(x2)] = |%; = X5] < |x; — x,]* forO<a<1.

We will prove that g(f)(x) = oo everywhere.
A simple calculation gives

Fe (i) = =20 [ f(x =) 2y

(¢? y)2

x-1__ty * (x=y)y
= 20 [Ty 2 [ XYy
Vow (a2 lf"-l(t2+y2)2

jl) (¢ > 0).

Now, by the mean value theorem, we have

x x
= cl(arcth — arctg

arcth—arctgx_1=l-—l— (t>0 >§>x:1),

and consequently, if we let ¥2 = max{x2, (x — 1)}, it follows that
3 u Cl 1 1 1

= e— .

Ix -1 1reza T’ —
¢ 1+max{ (xtl)}

= t_{_-—!-_z (t > O).

Thus,

810 = { [Cavut, t)|2dt}m . { j()w—f——dt} .

(*+%*)°
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Next, for the case n > 2, for x = (x;, x5,..., x,,) € R", define the function

1, x, =1,
f(x)=(x,, 0<x,<1,
0, x,<0.

A similar proof can be used to show that f € Lip,(R") and g(f)(x) = o0
everywhere, and the Theorem 2 follows.

III. Proof of Theorem 1

We first prove that g(f)(x) < oo a.e. on R". It suffices to prove that
8(f)(x) < oo a.e. on each cube Q, containing x,. Now, suppose that a cube
Q, with edge-length h, is chosen such that x, is in its interior, and write

(%) = fapo, + (f(-") ”f4ﬁQO)X4¢;TQo(X)
+(f(x) _fAJh'Qo)XR”\4JrTQ0(x)

= fi(x) + fo(x) + f3(x).
Note that the fact that [z» ¥(y) dy = 0 implies that
g(const.) = 0,s0 g(f,) =0. (3.2)

As for f,(x), using (1.5) and Lemma 2 (iv) with p = 2, we have

L, 820 dx < [ 18(£)(x)1* v
<cf 107 dx

=C |f xX) — f n 2 dx
‘/‘;v/'TQo () = fageol
< CIQol™ ™I, (3.3)

C a constant, not necessarily the same at each occurrence, depending only on
n and a. Thus by the Cauchy-Schwarz inequality,

1,2
JAECAICEEE lQoP”(fglg(fz)(x)z d")

< C1Qol"***IIflla, (3.4)
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It also follows from (3.4) that

g(£,)(x) < o a.e.onQ,. (3.5)

Now we consider g(f;)(x), x € Q,. We have g(f;)(x) bounded by the
sum of

Ii(x) = {foh°|¢,*f3(x) - llft"‘fa(xo)lzitt“}lﬂ

and

12
L(x) = {j}; ¥, * fi(x) — ‘P;*fs(%)ﬁ%} ,

and

sR)0x0) = { [ oL )

Applying Lemma 3 to the function f—f, zo and the cube 4/n Q,,
8(f2)(xo) < o0, and so

g(£3)(x0) < 8(£,)(x0) + g(f)(x0) < o0. (3.6)
By (1.2),

L(x) = { Mg ¥5 =)~ =)

0
1/2

X[£(2) = farel] dy] ?}
< { Mg =+ o=

0

2 172
X1f(¥) = fapol dJ’] }

ho 1 1
<C t +
{ 0 [-/;("\4,/5%[ (t + |x --yl)”+1 (t + |x "J’|)n+1]
1/2

X|f()’)_f4,/'7QJd)’] dt} . (37



538 SHILIN WANG

The conditions x,, x € Q, and y & 4Vn Q,, 0 < ¢ < h,, imply that

|x = y| = Clxg—y| = C(|xo — y| + hy)

and
1 < C
(lxo _y| + t)n+1 = |x0 _y|n+1 + h8+1 4
1 < C
(lx _yl + t)n+1 lxo _y|n+1 + h8+1 °

Therefore, we obtain

1/2

I(x) < C{fh"t[fR V() ~ fasrod dy] dt}

o |/raymolxo =yt + AT

By Lemma 2 with ¢ = 1,

12
h
L(x) < C{ [ wun, dr} < CHIfllA. < CIQol "l (32)

Now we estimate I,(x). The fact that xy, x, € O, and y & 4yn Q, implies
that

(x =) = (xo = ¥)I < 3lxo—yl,

and by (1.3),

x—xor 1
I ' o — n+lte
(1+ I Ot )’|)

N’t(x - y) - ‘Pr(xo - y)l <a™”

1
(t+ |xo—y)"" "

<ct-hy

(3.9)
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Applying Minkowski’s inequality we have

I(x) = {]:o

[¥.(x = ») = ¥(x0 = »)]

2 dt
t
<[ [ [ = 5) = ¥ulxo = )P

R"\4/n Qo] “ho

1/2
X1f(y) - f4,/;7Q0|2%] dy

'&"\4/'7Qo

1/2
X [f(}’) _fAﬁiQo] dy

S a0 = fuiel

1/2
0 t? dt

X . —_ day, 3.10

[j;m (t+ |xo—yp)*+ito ¢ ] Y (310)

and for x, € Q,, y € R* \ 4/n Q,,

1/2
[ 2 Lat]”
1
ho (8 + |x — y)*H1+o o

- ; 1/2
<C dt
ISl
- 1,2
1
< C n+e
_(h(2)+ Ixo_)’|2) ]

C
le __yln+e + h8+e'

< (3.11)

Then we use Lemma 2 to obtain

. If(») — Japiol
Iz(x) < Cfn\mgoholxo _y|”+e + h8+tdy

< Chi - b5~ |Ifll s, < CI1Qol* " Al a,- (3.12)




540 SHILIN WANG

Combining (3.6), (3.8) and (3.12), we have g( f;)(x) < oo, and so
g(f)(x) <g(£)(x) +g(fs)(x) < oo ae.onQ,.

Next let Q be any cube with edge-length 4. Write

f(x) =f4ﬁQ + (f(x) _f4,/r7Q)x4,/rTQ(x) + (f(x) _fA‘/;n'Q)XR"\4/rTQ(x)
= fi(x) + fo(x) + f5(x). (3.13)

Then g(f,)(x) = 0, and repeating the process to prove (3.4) with 9, replaced
by Q, we have

fQ 12(£,)(x)] dx < CIQI**/|fll 5. (3.14)

It has been shown that g(f)(x) < oo a.e, so that

g(f)(x) < g(£)(x) +8(f)(x) <0  ae.

Therefore, there must be a point X € Q for which g(f;)(x) < oo0. Repeating
the proof of (3.8) and (3.12) with Q, replaced by Q, we have

%0 dr )"
([C £ = v £EPE) T < Cloml, <.

Thus for x € Q,

1,2

18R - 8N < | [0 ) = 12
< CIQI*"Iflla,

and consequently

fQ 18(£,)(x) = g(f;)(X) dx < CIQI**/"|fll o, (3.15)
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Therefore, we have

[)s(NG) - s(H)(ax
< [Je(N) - gL+ [1e(£)x) - g(5)() v

< [Je(R)dx + [1s(5)(x) = g(£)(F) dx

< CIIM™*"||fll o, (3.16)

Finally, by the remark after Lemma 1, for each cube Q,

lQI““/" a7 [18(F)(x) = (2(f))d dx < Cliflla,,

namely,

Ig(f i, < Cliflla,»

C a constant depending only on n and a.
This completes the proof of Theorem 1.
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