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BOUNDEDNESS OF THE LI]TLEWOOD-PALEY
g-FUNCTION ON Lip(R) (0 < a < 1)

BY

SHILIN WANG

I. Introduction

Let Rn be n-dimensional Euclidean space. We say that a scalar valued
function k on R is a Littlewood-Paley function if the following three
conditions are satisfied"

k L(R"), fR,,f(x ) dx 0, (1.1)

Ik(x)l-< c(1 + Ixl) -(+1), (1.2)

+ y)  (x)l
(1 + Ixl)"+x+" lYt -< I_, some e > 0. (1.3)

For instance, these conditions are satisfied by the weB-known functions

0 Cntk(x) 0-" (t2+ ixlZ)("+x)/2 t-t

and

0 1
kj(x) -j (1 + Ix12)

(j 1,2,..., n)

with e 1, and higher order derivatives of these functions of order k give
examples with e k.

For a fixed Littlewood-Paley function ,, let

gt(f)(x) g(f)(x) If* kt(x)l2- (1.4)

denote the Littlewood-Paley g-function of f. The Littlewood-Paley g-function
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of f is well defined under some assumptions on f, although it may be infinite
on a set of positive measure.
As in [1], page 312, we have

IIg(f)ll < CIIfll (1 < p < o), (1.5)

where C is independent of f.
Recently, Wang Silei [2] discussed the end-point cases of this result when

f L(R") or f BMO(R").
The aim of this paper is to study the behaviour of g(f) when f Lip(R")

(0 < a < 1).

TH.OIM 1. lff Lip,(Rn), 0 < a < min(e, 1}, and g(f)(xo) < o for a
single point xo, then g(f) Lip(Rn) and

IIg(f)llA. < CIIfllA.,

where Ilfll A denotes the Lip
and a.

norm off, and C is a constant depending only on n

The assumption concerning the finiteness of g(f)(xo) is essential. In fact,
consider the classical Littlewood-Paley g-function

fOO
o )

1/2

g(f )(x) tlX7u(x, t)l 2 at

where

Pt(Y)
r( n + 1

c.t
(n+ 1)/2(t2 + lY12)<.+

u(x, t) pt(y)f(x y) dy

Ivu(x Tau l: + i
j---1

(t > 0),

Tn.OmM 2. There exists a function f Lipa(Rn) for all a (0 < a < 1),
such that g(f)(x)= oo everywhere where g is the classical Littlewood-Paley
g-function.
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The author extends most hearty thanks to professor A. Torchinsky for his
encouragement and frequent assistance during the writing this paper. The
author also thanks the referee for some valuable suggestions that improved the
presentation of the results.
We say that a locally integrable function f on Rn is Lipschitz a (0 < a < 1),

and denote this by f Lip; if there is a constant c so that If(x) f(Y)l <
clx yl for every x, y in R, the smallest such constant c is called the Lip
norm of f and is denoted by Ilfll A.-

LEMMA 1 [1, page 213]. Suppose that f is a locally integrable function on R,
0 < a < 1. Then the following four statements are equivalent and the constants
appearing on the right-hand side of each are also equivalent.

(i) If(x) f(Y)l < cllx Yl , all x, y in R.
(ii)

sup
iQiX+,/ If(x) fQI dx c2 < oo,

where the supremum ranges over allfinite cubes Q in R whose sides are parallel
to the axes, QI is the Lebesgue measure of Q, andfQ denotes the mean value of
f over Q, namely,

fo T (y) dy.

(We will consider only these cubes in what follows.)
(iii) If(x)- fel-< c3lQI/, all x Rn, a Rn.
(iv)

sup
iQll+v/ If(x) -fQlV dx c4 <

where the supremum is taken over the same range as in (ii). The equivalence is to
be understood to mean that each fwhich satisfies (ii), (’tii) or (iv), can be modified
in a set of measure zero so as to coincide with a continuous function which
satisfies (i) as well.

We will use freely cl, c2, C3, C4 as the Lip norm Ilfll A. of f.

Remark. In Lemma 1, if (ii) holds for some constant in place of fQ then it
also holds for fQ.
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LF.MM 2. Suppose that f Lip(Rn), fl > O, 0 < a < min{ fl, 1}, Q is a
cube with center Xo, edge-length h. Then

If(x) f,cd
n\4vrQhn+# + Ix xol +#dx <- Ch-allfll^*’ (1.6)

C a constant depending only on n, a and ft.

Using Lemma 1, the proof of Lemma 2 is similar to a result of Fefferman-
Stein’s [3], and we omit it.

LEMM 3. Suppose that f Lip(Rn) (0 < a < 1), Q is a cube and xo is in
its interior, then g(fxQ)(Xo) < o.

Proof To see this we use different estimates on kt*(fXe)(Xo) depending
on the size of t. If t > 1 we observe that

It*(fxo)(Xo)l < cf t

I<C(t + lyl)
+dy Ct-n.

This uses only the fact that fXQ is bounded and has compact support. As
for t < 1, we write

kt *(fXQ)(xo) flyla(f(x y) f(x))t(Y) dy

+ fly d
(f(x Y)XQ(X y) f(x))t(Y) dy

where we choose d > 0 but d < distance from x0 to the complement of Q.
Then

fyt((x y) <Xo)) ,(y) dy cflyl"lq,,(y)l dy <_ Ct"

since f Lip(R) and

f (/(o y)x(Xo y) -/(Xo)),(y) dy
I>d

<_ CflyId(t + lYl) +x
dy

<_ Ct,

since fxQ is bounded.
These estimates easily imply g(fXQ)(xo) < .



BOUNDEDNESS OF THE LITTLEWOOD-PALEY g-FUNCTION 535

II. Proof of Theorem 2

First we consider the case n 1, and define the function

1, x >_ 1,
f(x)= x, 0<x<l,

O, x<O.

To estimate If(x)- f(x2)l, without loss of generality, we assume that
xt < x2. If xx < 0 or x2 > 1, observing that f is constant on (-, 0] and
[1, + 0), by the triangle inequality, we may reduce these cases to x 0 or
x2 1. That is, we need only to deal with the special case 0 < xx, x2 < 1. In
this case, x x21 < 1, so

If(xx)-/(x2)l IXl-X21 -< Ixx-x21" for0<a<l.

We will prove that g(f)(x) o everywhere.
A simple calculation gives

au tyO-(x, t) -2c, (x y)
( t2 + y2)2dY

, (- + y ( + y

--c arctg-arctg (t>O).

Now, by the mean value theorem, we have

x x-1 1 1( x x-l)arctg-arctg t t 1+1- t>O,->>

and consequently, if we let 2 max{x2,(x 1)2}, it follows that

au cx 1 1 1

l+max

clt
2 + 2 (t > 0).

Thus,

g(f)(x) tlXTu(x, t)l 2 dt
t3 }(t 2 + )2)2dr

1/2
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Next, for the case n >_ 2, for x (xl, x2,..., Xn) -- R", define the function

1, x. > 1,

/(x)= x,, 0<x,<l,
0, x, < 0.

A similar proof can be used to show that f Lip,(R") and g(f)(x)= o
everywhere, and the Theorem 2 follows.

III. Proof of Theorem I

We first prove that g(f)(x)< o a.e. on R". It suffices to prove that
g(f)(x) < o a.e. on each cube Q0 containing xo. Now, suppose that a cube
Qo with edge-length ho is chosen such that xo is in its interior, and write

](x) AOo + (/() ACoo)X,Oo(x)
+ (/(x) AOo)x,.,

f(x) + A(x) + A(x).

Note that the fact that fR" q(Y) dy 0 implies that

g(const.) O, so g(fl) =- O. (3.2)

As for rE(X), using (1.5) and Lemma 2 (iv) with p 2, we have

<_ cf..iA(x)l dx

C If(x) f4Qol 2 dx
Qo

< ClQolt+(2/,)llfll 2 (3.3)

C a constant, not necessarily the same at each occurrence, depending only on
n and a. Thus by the Cauchy-Schwarz inequality,

Qolg(f2)(x)l

dx <_ IQol 1/2 g(f2)(x)2 dx

-< CI Qol x +/"llfll A,," (3.4)
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It also follows from (3.4) that

g(A)() a.e. on Qo. (3.5)

Now we consider g(f3)(x), x Qo. We have g(f3)(x) bounded by the
sum of

and

() 1,, k() ,,, A(o)l

and

1/2

g(A)(Xo) I,, A(Xo)t:

Applying Lemma 3 to the function f-f4Qo and the cube 4vrQo,
g(fz)(Xo) < , and so

g(f)(Xo) < g(f2)(Xo) + g(f)(xo) < . (3.6)

By (1.2),

II(X) n\4VlffQo[lPt(X y) t(Xo y)]

X [f(y)- fNQo] dy]Zd--}
1/2

[lPt(x Y)I + Ikt(Xo Y)I]

X If(y)- f4NQol dy]2}
1/2

< C t
"\4fffQo (t + Ix yl) n+l

1 ](t + IXo yl) n+l

12 }x If(Y) -AOol dy dt
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The conditions xo, x Qo and y 4vC-Qo, 0 < < h o, imply that

Ix-yl >- Clxo-Yl >- C(Ixo-Yl + ho)

and

1 C

(IXo Yl + t) n+l
<

IXo Yl n+l + hg+x’

1 C

(Ix- Yl + t) n+x IXo- Yl+ + hg+"

Therefore, we obtain

Ix(x ) C t -x hg+X
dy dt

\ 4VrffQo XO Y +

1/2

By Lemma 2 with e 1,

Ix(x ) < C t-hg-211fll2 dt < ChgllfllA. < CIQol/nllfllA.. (3.8)

Now we estimate I2(x). The fact that xo, xx Qo and y 4-Qo implies
that

I(x Y) (Xo- Y)I < 1/21Xo- Yl,

and by (1.3),

X0It(X Y) lllt(Xo Y)I < ct-n
1+

1

Ix -t Yi’ )
n/ +

1 (3.9)
(t + Ix0- yl)++"
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Applying Minkowski’s inequality we have

[t(x- y) -kt(xo- y)]

12 )[.f(y) Ao] y -r
1/2

Ik,(x y) k,(Xo y)l 2<
"\ 47ffQo ho

[f(y)f4/ffQol2d’tt]l/2Zy
\

holf(Y) fQol< fR. 4NQo

o (t + Ixo yl)"++ t

and for xo Qo, Y R" \ 4-Qo,

o (t + IXo yl)2<"+x+

ho (t 2 + IX0 yl-)

1 ]1/2< C
(h + Ixo-YlZ)+

C
< Ixo yl "+ + h"+’o

dt]
1/2

Then we use Lemma 2 to obtain

(3.10)

(3.11)

(3.12)
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Combining (3.6), (3.8) and (3.12), we have g(f3)(x) < o, and so

g(f)(x) < g(f2)(x) + g(f3)(x) < a.e. on Q0-

Next let Q be any cube with edge-length h. Write

fx(x) + f(x) + f3(x). (3.13)

Then g(f:)(x) 0, and repeating the process to prove (3.4) with Qo replaced
by Q, we have

QIg(f2)(x)l dx <_ CIQI:+"/IIflIA.. (3.14)

It has been shown that g(f)(x) < o a.e., so that

g(fa)(x) < g(f2)(x) + g(f )(x) <

Therefore, there must be a point Q for which g(f3)() < o. Repeating
the proof of (3.8) and (3.12) with Qo replaced by Q, we have

Thus for x Q,

Ig(f3)(x)-g(f3)()l [f0lk/* A(X)--lt * f3(-)12-] 1/2

<_ CIQl/llfllA

and consequently

g(fa)(x) g(f3)()l dx <_ CIQII+’/nlIflIA.. (3.15)
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Therefore, we have

Finally, by the remark after Lemma 1, for each cube Q,

namely,

[QI:+,/n g(f )(x) (g(/))QI dx < CII/lla.,

IIg(f)llA < CIIfllA,

C a constant depending only on n and a.
This completes the proof of Theorem 1.
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