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THE CLASS OF SYNTHESIZABLE PSEUDOMEASURES

BY

A. S. KECHRIS, A. LOUVEAU AND V. TARDIVEL

In this paper we study descriptive set theoretic questions related to
concepts of harmonic synthesis on the unit circle T, and their relationship
with the structure of uniqueness sets.
We denote by A A(T) the space of functions on T with absolutely

convergent Fourier series, by PM the space of pseudomeasures on T and by
PF the space of pseudo-functions on T. Thus PF* A, A* PM. Finally
K(T) denotes the compact space of closed subsets of T with the Hausdorff
metric. The three basic notions associated with harmonic synthesis are the
following:

(i) A function f A satisfies synthesis if (f, S) 0 for all S PM with

f 0 on supp(S).
(ii) A pseudomeasure S PM satisfies synthesis if (f, S)= 0 for all
fA with f= 0 on supp(S). This is equivalent to saying that S
N(supp(S)), where for each E K(T), we let

M(E) space of (Borel complex) measures whose (closed) support
is contained in E,

N(E) weak *-closure of M(E).

For simplicity, if S PM satisfies synthesis, we will call it a synthesizable
pseudomeasure.

(iii) A set E K(T) is a set of synthesis if for all f A, S PM with
supp(S)

___
E and f 0 on E we have (f, S) 0. Equivalently, if

I(E) {f A" f= 0on E},

J(E) {f A" f 0 on an (open) nbhd of E},

E is of synthesis iff the strong closure of J(E) in A is equal to I(E). Also
equivalently, E is of synthesis iff N(E)= PM(E) (= the space of pseu-
domeasures supported by E).
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We wish to classify the descriptive complexity of the above notions. For the
first one, we look at the separable Banach space A and set

X {f A" f satisfies synthesis}.

We claim that this set is G. For that notice that if Z(f)= {x T:
f(x) o},

f -X, f J(Z(f))

(where Z denotes the strong closure of Z in A). Now

( 1)f X , Ym > 0 Zig A g J(Z(f)) A IIf- gll <

Let go A. It is enough to show that for any m > 0,

{ 1)L(go, m) f: go J(Z(f)) A Ill-gollA <

is open in A. If f0 L(g0, m), it is not hard to find a small neighborhood of
f0 contained in L(go, m). This proves that X is a Gn set.

Remark. One could also ask for the complexity of

Y {f A" Ilfll 1 and f satisfies synthesis}

in the compact, metrizable with the weak*-topology unit ball of A, denoted
by BI(A). Since the identity map from BI(A) into A is a function of first
class between these two spaces, and maps Y onto X 3 BI(A), which is a Gn
subset of A, it follows that Y is a Fn subset of BI(A)
For the third notion, we look at the space K(T) and the set

S {E K(T)" E is a set of synthesis}.

It was shown by Kechris and Solovay, using a result of Katznelson-
McGehee [4], that this is a II (coanalytic) not Borel set; see [6], p. 346.

It thus remains only to classify the complexity of the second notion. We
look here at the compact, metrizable with the weak *-topology unit ball
BI(PM) of PM and the set

a= {S BI(PM) S is synthesizable}.
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Our first main result is then the following

THEOREM 1. The class / ofsynthesizable pseudomeasures (in the unit ball
ofPM with the weak *-topology) is II but not Borel.

The proof of Theorem 1 is based on a rank argument (see [6], pp. 110,
148). Given any closed set E K(T) define, by transfinite induction on a, a
subspace M()(E)

_
PM as follows:

M()(E) M(E),

M(a+I)(E) (M()(E))(a)

the set of limits of weak *-converging sequences
from M(’)(E),

M(X(E) 13 <xM("(E)’ h limit.

For technical reasons we actually work with

MIni(E) M()(E)
the strong closure in (PM) of M(E).

For each E, there is a countable ordinal a with MtI(E)= N(E)
(= MtI(E) for all/3 > a). So for each S define its order by

ORD(S) least a such that S Mt"l(supp(S)).

Thus ORD: ’- 0) is a rank function on a. For each S /, ORD(S) is
the smallest (transfinite) number of iterations of weak *-sequential limits that
is needed to generate S from measures on its support.

After checking the easy fact that a is II, we show that ORD" ’- to is
a II-rank (see [6] for this notion). This is done by developing an alternative
"tree-rank" $: ’ toa, which is clearly a II-rank, and then showing that
ORD, are equivalent. Finally, by the boundedness theorem for II-ranks
(see e.g. [6], p. 148) it will be enough to show that ORD is unbounded in to 1.

This is done by using again the Katznelson-McGehee [4] result.
We concentrate next on the class of synthesizable pseudofunctions a0
q PF. The main problem is whether they form a Borel class or not. The
statement that they are Borel is equivalent to the statement that every
synthesizable pseudofunction has order < a0, for some fixed a0 < to 1. We
conjecture that this fails:

Conjecture. The class a0 is not Borel.
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Although we do not know the answer to this conjecture, we show in the
second part of this paper that it is crucially related to many interesting
definability and structural problems concerning (closed) sets of uniqueness.

Let U, U0 be the classes of closed sets of uniqueness (resp. extended
uniqueness) in T, i.e., those not supporting non-0 pseudofunctions (resp.
measures which are pseudofunctions). Therefore U is characterized as the
class of those E for which J(E) is weak*-dense in A, i.e., PF n PM(E) {0}.
Piatetski-Shapiro [10] has also defined the intermediate class U1, U c_ U1 c_
U0 as the class of those E for which I(E) is weak*-dense in A, i.e., PF C3
N(E),= {0}. As opposed to U, U0 this class is not a tr-ideal, so we denote by
UI* the tr-ideal of closed sets it generates, U c_ UI* c_. U0. The connection
with synthesis is explained in [6]:

E UI* E does not support non-0 pseudofunctions of synthesis.

By results of K6rner [7], Piatetski-Shapiro [10] the inclusions U
_

UI* c_ U0
are proper. In [6] it is shown that in some sense UI* is structurally very close
to U. However, the gap (UI*, U0) remains more mysterious. Lyons [8] takes a
first step in analyzing it by introducing a further intermediate class U2,

U _c U1 __. U2
___

U0. One of its characterizations is that

E U2 * E does not support a non-0 pseudofunction in M(E) Mt(E).

Then if U2* is the o-ideal of closed sets generated by U2, we have

E U2* E does not support n0n-0 synthesizable
pseudofunctions of order 0.

It turns out of course that U2* U0 is also proper as Lyons [8] shows by using
the Piatetski-Shapiro method for the strictness of the inclusion UI* _c U0. In
some sense, which perhaps some structural theorems can make precise, U2*
seems close to U0.

We concentrate here on the gap (Ul*, U2*). We introduce a transfinite
decreasing sequence of classes Ul, and Ul*,a (the g-ideal generated by Ul, a)
defined for 0 _< a _< to by

E U,, Mt’I(E) f3 PF {0}.

It turns out again that

E UI,* E does not support
a non-O synthesizable pseudofunction of order < a.

Thus U1, 0 U2, UI,*0 U2* are Lyons’ classes and Ul,,o U1, Ul,*,o UI*,
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so we have the picture

(similarly without the stars). We prove for these classes results analogous to
those of Lyons [8] for U1,0, Ul,*0. For example U1,, U*I, are II (and
non-Borel) and UI,* has a canonical Borel basis UI’,, G UI,, (i.e. U[,,
generates also UI,* as a g-ideal of closed sets).
The main question concerning this hierarchy is of course whether it

collapses, i.e., for some a0 < to 1, Ul,*0 U1,*1 UI*. An important question
left open in [6] is the level of definability of UI*. It follows from results of
Solovay [11], Kaufman [3] (see also [6]) that UI* cannot be ;. On the other
hand it is A12, i.e., both and I11, in fact (for readers familiar with
generalized recursion theory) it belongs to the class E-IND, which is a much
smaller subclass of zl2 (The class ;-IND coincides, by a result of Solovay,
with the class D ;0.2, see [9], 7C and 6D). Thus the first main question is
whether Ux* is II. (A similar question can be raised for U1). Our second
main result states that all these problems are equivalent to our earlier
conjecture.

THEOREM 2. The following are equivalent.
(i) The class of synthesizable pseudofunctions o is Borel,
(ii) The hierarchy U* collapses i.e., for some ao < to 1, U*1, 1,
(iii) The class U* is II 1"

UI*

Thus a proof of the conjecture will establish that U* is neither ; nor II
(in fact by a result of Dougherty-Kechris it would not be even a union of a ;
and a II set). This would establish the first natural example in analysis of a
set lying between levels of the projective hierarchy.
Of course a disproof of the conjecture would be also extremely interesting.

At this stage it is not even known whether U* Ul,*0 (a question already
raised in Lyons [8]). This is equivalent to asking whether there is a synthesiz-
able pseudofunction which is not a strong limit of measures on it support.
Lyons’ result that U* U0 means that there are pseudofunctions which are1,0
strong limits of measures in their support but not of such measures which are
pseudofunctions.

Addendum. R. Kaufman (private communication) has recently showed
that indeed U* U* in fact that there is a synthesizable PF which is not a1,0
weak*-limit of a sequence of measures on its support. It would seem that this
is a major step in a proof of the above conjecture.

Before we proceed to the proofs of the results discussed in this introduc-
tion we would like to point out in general that the reader will find helpful
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material in the following references (listed at the end of the paper): [2].,
especially Ch. 3 and 4 and [6], especially Ch. V, VIII, X.

1. The order of a synthesizable pseudomeasure

Let X denote a separable Banach space and X* its dual. For each
subspace Y

___
X* we let

y(1) {x* S*: ::i{Xn*}(Xn* Y A x* x*)}

be the weak *-sequential closure of Y. Define then by transfinite induction,
yt.], as follows

y[O] ,
yt- + 1] (yt-l)(1),

y[a] t3 < xY[al, limit,

where Z denotes strong closure in X*. By a theorem of Banach (see [6], pp.
153-156) there is countable ordinal cz0 such that yt-0l yt0 for all/3 > a0

and

yt,,0] w. the weak*-closure of Y.

Given now any x * X*, let

ORD(Y, x * ) ( tolleast a such that x * yt-I if x* w*
otherwise.

Then for any fixed Y, ORD(Y, ) is a rank on yw

Remark. One could also use the transfinite sequence Y’) given by

yO) y, y(a+l) (y(a))(1), ya) L <aY), A limit.)

However, the sequence yt,, is more appropriate for our purposes here, as
will become clear in 2.

Specializing now to X A, X* PM, let x* S PM, IISIIPM <-- 1,
Y M(supp(S)). Then since

14)*

S is synthesizable ** S M(supp(S))
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define

ORD(S) ORD(M(supp(S)), S).

Then ORD: 0) is a rank on (and ORD(S) 0)1 if S a).
Using the result of Katznelson-McGehee [4], we will now show that ORD

is unbounded in 0)1.

THEOREM 1. For each countable ordinal, a, there is a synthesizable pseu-
domeasure S (with [[SIIPM <_ 1) such that ORD(S) > a.

Proof.
such -that

For each set E K(T) let IEI be the least countable ordinal

Mt](E) deeM(E) t’l

is equal to M(E) w.(= N(E)). In Katznelson-McGehee [4], the authors show
that for each a < to there is E K(T) such that IEI > a. (Moreover these
E are of synthesis themselves, i.e., N(E)= PM(E)(= the class of pseu-
domeasures supported by E). We will not need this extra information below).

Fix now a < 0)1 and let E K(T) be suchthat IEI > a. Then Mt’](E) 4:
N(E), so there is S N(E), S q Mt’](E), i.e., ORD(M(E), S) > a. We will
construct T N(E) with supp(T) E, so that T ’, and such that T
Mt](E) as well. Then clearly

ORD(M(supp(r)),r) > a

and we are done.
Let {x,,: n 1, 2, 3,... be a countable set dense in E \ supp(S). Let

where 6, is the Dirac measure at x. Then supp(T’) {x 1, x2,... K. For
each e > 0, let

T S + eT’.

Clearly T N(E). We claim that supp(T) E. Clearly K
_

supp(T). Also
E \K

_
supp(S), so E \K

_
supp(T). Thus E supp(T,).

Now we argue that for some e0, T T0 is such that T Mt’](E).
Otherwise, for each e > 0, T MtI(E). But then S lim,_.ooT1/. (where
convergence is in the strong sense), so S Mt"](E) (since. this is a closed
subspace), i.e., ORD(M(E), S) < a, a contradiction.
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Sections 2 and 3 are devoted to showing that ORD is a ll-rank on the II
set . First let us verify this last assertion.

PROPOSITION 2.
BI(PM).

The set of synthesizable pseudomeasures is II in

Proof For S BI(PM) we have

S a,, :If A f = 0 on supp(S) /x (f, S) 0].

It is therefore enough to check that the set

P ((f,S): fA &S BI(PM) &f= 0on supp(S) & (f,S) , O)

is Borel in A BI(PM). Now

P1-- {(f, S): (f,S> * O}

is clearly open. Also

P2 (f, S): f 0 on supp(S))

is Borel, since if {Vn} is an open basis for T,

(f,S) e P2 ** Vn[Vn tq supp(S) O :qx(x A f(x) 0)]
, Vn[::lg A(supp(g) c_ Vn A (g,S) 4= O)

=, ::lx(x A f(x) 0)].

To show now that ORD is a Ill-rank on ’ we will describe an alternative
"tree rank" on a, for which it is easy to show that it is a Ill-rank, and then
we will complete the proof by showing the equivalence of ORD and this
"tree rank".

2. A "tree-rank" on

Going back to the general context, let X be a separable Banach space and
let D be a countable set dense in the open unit ball of X and closed under
multiplication by elements of Q + iQ. Given a subspace Y

_
X*, x * X*,

e Q 3 (0,1) we define a tree T,,x. on Seq D (--the set of all finite
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sequences from D) as follows

{} t3 {(Xo,...,x,,)’/j <_ n(x: D A I<xy, x*>l llx*ll)
A Vj < n(llxy Xy+lll -< 2 -(j+3))
A/j <_ n(llxyllY <_ 2-(J+l))}

where IlxllY--sup{(l<x, y*>l" Ily*ll-< 1, y* Y}. (Notice that IlxllY does
not mean that x Y).

This tree is a local version of the tree T, associated to Y as in [6], p. 161.
We prove first a local version of (part of) Proposition 1 in [6], p. 161.

PROPOSITION 1. The following are equivalent, for Y a subspace ofX* and
x*X*"

(i) x* w*;
(ii) ’de Q t (0, 1)(T is well-founded).Y,x*

Proof First suppose x* w.. Then there exist e Q (0,1), x X
with Ilxll < 1 such that

I<x, x*>l >- 2ellx*ll and <x, y*> 0 for all y* Y.

Any sequence from D converging to x fast enough gives an infinite branch in
TY, x*"

Conversely, assume T has an infinite branch {xn}, for some e QY, x*
(0, 1). Then {xn} is a Cauchy sequence which converges (strongly) to some
x X. Then Ilx II Y 0, i.e., ( x, y * ) 0 for all y * Y, and ( x, x * ) >
ellx*ll > 0, so x* ?w,. t2

DEFINITION. For Y_ X* a subspace and x* w., let

/3(Y, x*) sup{ ht(T ,Y,x ) + 1 e Qt3 (0,1)}

(= lim(ht(T ))e--*O
Y,x*) + 1

where ht(T) is the height of a well-founded tree T(see [6], p. 141). If
x* ?w* we let /3(Y, x*) o. Note that e < e’ , c TY, x* so that
ht(T{,i.) _< h(T,..), which justifies the expression of fl(Y, x*) as lim,_, o.

LEMMA 2. For Y
_
X* a subspace, x * w., (y, x *) is a limit ordinal.

Proof. We show that fl(Y, x *) > to and fl(Y, x *) > to a =/3(Y, x *) >
(a + 1).
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Fix N N. Let x D be such that

IIx*ll" 2-(N+2) < I<x,x*>l, Ilxll --< 2 -(N+I).

Then s (x, x x)(N + 1 times) is in T with e 2 -(N+2), hencey,x

h(T,,x,) > N + 1 and /3(Y,x*) > to.

Let now a > 0 and /3(Y, x*) > to.a. Then for some e > 0, h(T,x,) >
a. Let N N and put e’ e 2 -(N+4). The tree

T’ 2-(N+4) Te’N
Y, x*

is a subtree of T,ix,, where

If (x) T’ and s (x0,..., Xn) G_. T’ then IIx -x011 2-(N+3); hence

( x,..., x, x0,. xn) ( N + 1 times) T,’, ,.
Since ht(T’)= ht(T,,,)> to.a (see for example the argument in pp.
162-163 of [6]) it follows that

ht(T,’,**) > o’a + N + 1,

so/3(Y, x*) > to" (a + 1).

DEFINITION.
defined by

For Y
_
X* a subspace, and x* X* let RKr(Y, x*) be

(Y,x*) [to RKr(Y,x* )
tO

if x* w*
otherwise.

The main result is now;

THEOREM 3. Let X be a separable Banach space, Y c_ X* a subspace and
x* X*. Then ifx* q Y,

ORD( Y, x *) RKr( Y, x * ).

For the proof of that theorem we will need the following lemmas.
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LEMMA 4. Let Y c_ X*, x * X*. Then the following are equivalent:
(i) x* y[1],
(ii) Eie > 0 ::l{xn}tn[xn XA [Ixnil < 1 A [(xn,x*)[ >_e" [Ix*I[ A

IIxllY _< 2 -(n+x)]

LEMMA 5. Let Y c_ X*, x* X*. Let h be a limit ordinal and a - A,
increasing. Then the following are equivalent"
(i) x*
(ii) Be > 0 ::l{Xn)n[Xn X /k IlXnll --< 1 / I<Xn, X* >1 >-- ellx* II /

Ilx,,llyt,,, _< 2-(n+1)].

LEMMA 6. Let Y c_ X *, x * X *. Suppose

u T and ht(u TY x Y x * ) >" tO Ol

Then u T,t%x,. (Here ht(u, T) is the height of a sequence u T in the
well-founded tree T; see [6], p. 141).

LEMMA 7. Let Y
_
X*, x* X*

sume moreover that
Let u (Xo,..., Xn) T,,[a], x*. As-

IlXnll. (1 + 2-(n+4)) < 1, I(Xn, X*)I" (1 2 -(n+4)) > e" IIx*ll

and

IlXn II y[a] 2-(n + 4). I]Xn II.

Then ht(u, T x,) > tO a.y,

Proof of Theorem 3 (assuming the lemmas). If x* w* then

ORD(Y, x*) RKT(Y,x* ) tO1.

So assume x* w,. We will first show that for x* ,
(A) fl(Y, x*) > tO./3 =* ORD(Y, x*) >/3.

Since x* , x* yt0]; thus ORD(Y, x*) > 1, so (A)with/3 0 is
automatically true. Let us prove it now in the case/3 a + 1 is a successor.
Thus let

(Y,x*) > tO" (a + 1).
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Then for some e > 0,

U--’ ( Xo, Xn) - TY,x* ht(u T ) >o’(a+l)Y, x*

Then for each N N, we can find vN (XnN+l XNn+N) with U^VN TY,x*
such that

(^ )ht u vN, TY,x* .0

By Lemma 6, U^VN T.t-l,x.. Since the sequence (xN+N)NN is such that

[(XNn+N, X* >1 >-- e IIX* and IlXnN+NIIYt. < 2-(n+N+l),

Lemma 4 gives x* yt-+xl, i.e.,

ORD(Y, x*) > a + 1.

Finally, let /3 h be a limit ordinal. Since/3(Y,.x*) > o.h, there is e > 0
and

u= ( xo, ,Xn) rY, x*

with

ht(u TY, x*) > (.0 A

Choose a,, A, an increasing. Then

ht(u T .Y,x ) >o (aN+ 1) forallnN.

So for all N, p N, there exists

=( N,p N,p)lN,p Xn+l Xn+p

with

( ^VN, T )ht u p, Y,x*
__. (.0 OlN,

N, Nthus by Lemma 6, u VN, p . Tr[aN],x, Now consider the sequence (Xn+N)n N.

Then

1( N,N . II and N,N -(N+n+l)[Xn+NIIYt.N] < 2Xn+N, X )l --- E IIx*

so now, by Lemma 5, x* ytal, i.e. ORD(Y, x*) > h.
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We complete now the proof by showing the converse:

(B) ORD(Y, x*) >/3 /3(Y, x*) > to /3.

Again if/3 0, since/3(Y, x *) > to, (B) is automatically satisfied. Now let
/3 a + 1 be a successor. Thus x* yt+ q. Then, by Lemma 4, we can find
e > 0 and {Xn} with xn D and

I(Xn, X*)[" (1 2 -(n+4)) > e" IIx*ll,

[]Xnl[(1 + 2 -(n+4)) < 1,

[[Xnllyt < 2-(n+a)l[Xnl[.

Let un (xn,..., xn) (repeated n times). Then Un T’tl,x, and satisfies
the hypotheses of Lemma 7, so ht(un, T,x,)> to’a. Thus ht(T.,x,)>
to "a + n for each n, i.e.,

ht(Tv,x,)> (a+l)
and so

(Y,x*) > to" (a + 1).

Next suppose /3 A is limit in (B). Choose an A, an increasing. Since
x* y[al by Lemma 5 we can find a sequence {x} and an e > 0 such that
xn D and

I<Xn, X*>I" (1 2-n/4)) > " IIX*II,

Ilxnllyt,n < 2-(n+4) Ilxnll
and

IlXnll" (1 + 2-(n+4)) < 1.

Again let un --(Xn,..., xn) (repeat n times). Then un Tt,l,x, and satis-
fies the hypotheses of Lemma 7 so ht(un, T,x,) > to an. Then ht(T.,x,) >
o .a, for all n, i.e.,

ht(TY,x*) > to A

so we are done.
It remains to prove the lemmas.

Proof of Lemma 4. (i) (ii).
loss of generality). Put

inf dist(
n

and fl(Y,x*) > to h

Suppose x* y[1], IIx* II, 1 (without

w*
x* Y nn(X* )
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where B,(X*) is the closed ball of X* of radius n. We claim that e > 0.
*Otherwise, for each n there is z. with IIx* z.*[I --* O.

Since Y c we have

x* y(1) y[1],

a contradiction.
Now, by Hahn-Banach, for each n we can find xn X, Ilxnll 1 with

Re(x,, z*) > Re(x,, y*)

for all z * in the open ball of radius e around x* and all y * B,(x*) 3 Y.
Thus

Re(xn, z*) >_. I(Xn, y*)l

for all such z*, y* and so

Re(x, z* ) > nl(x,,, y* )l

for all such z * and all y* Bl(X *) f3 Y; i.e.,

Re(x,, z*) > n IIxllY,

In particular, since 1 > Re(x,,x*), we have IIxllY_< 1/n and, since
Re(xn, z* ) > 0 for all such z*, we have I(Xn, x* )1 > e.
(As pointed out by the referee, these arguments are related to those

concerning the BX-topology in Dunford-Schwartz, Linear operators, part I,
Ch. V).

(ii) (i). Fix e and {x.} and suppose x* y[1] towards a contradiction.
For each 6 > 0 find z* y(l) with IIx* z* , Then find {zff} with
* Y andZp

w*Z ------> Z*.

Fix M with IIzT II _< M, all p. Then

I<x*, Xn>l < I<x*- z*, x.>l + I<z* zp*, x.>l + I<zp*, xn>l
_< IIx*- z*ll / II<z*- z,,xn>! / 2-(n+l) M.

Now choose 6 < 3e" IIx* II. This gives {z} and M. Choose then no with

2-(.o+I). M < - IIx*
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and p with

I(z*- z,Xno)[ < - IIx*ll.

Then (x *, Xn) < E IIx * I!, a contradiction.

Proof of Lemma 5. (i) = (ii). Let x* ytl, IIx*ll 1. Let

e inf dist(x* Bn(X*) 1’ Y[an]w*)
n

As before, e > 0. Then apply Hahn-Banach to find x with Ilxnll 1 and

Re(xn, z*) > Re(xn, y*)

for all z * in the open ball of radius e around x* and all y * Bn(X*) N
y[,l.

(ii) (i). Fix again e and {x}, and suppose x* yta1 towards a contra-
diction. Then for each 8 > 0 we can find arbitrary large n > 0 and z* ytl
with ]]x* z* -< 8. Then

I(x*,x,)[ I(x*-z*,Xn)[ + [(z*,

IIx*- z*ll + 2 -(n+l) (t-t-IIX*II).

So choose 8 < e" Ilx*ll and then no with 2-(n+l)" (t + Ilx*ll) < e.
IIx* II. Then

I<x*,x0>l < " IIx*ll,

a contradiction. []

The proof of Lemmas 6, 7 are very similar to the proofs of the correspond-
ing Lemmas 6, 7 in [6], p. 163, so we omit them here. We take this
opportunity, however, to correct some misprints in the statement and proof
of these results in [6]. These are as follows: On p. 165, line 4 replace

"llxnllr() 2 -(n+3)’’

by

"IlXn Y( < e 2-(n + 3),,

and on line 6- replace

"IlXn II Y(’ 2-(n + 3),,
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by

"llxllY, < 2-(n+4)’’.

On p. 167, line 7 replace

"llXnllr+" < 2-(n+3)’’

by

"IIxn IIr+" < e 2-" + 3),,,

and

"Let b

by

"Let a e 2-(n+3)’’"

then replace line 6- by

" Ilxnll a"

and finally on line 3- replace

"llYkllY’O < 2-(n+k+3)’’

by

"lly, llg) < e" 2-(n+k+3)’’.

3. The class a is not Borel

We use now the results in 2 to show the following:

THEOREM 1. The rank ORD" 091 is a II-rank on .
COROLLARY 2. The class a of synthesizable pseudomeasures (in the unit

ball ofPM with the weak *-topology) is II but not Borel.

This follows from the theorem in 1 by the boundedness theorem for
II-ranks (see e.g. [6], p. 148).
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Proof Notice first that for S BI(PM),

ORD(S) 0 * ORD(M(supp(S)),S) 0

* S e M(supp(S))

* VE K(T) supp(S)
_
E

( ,)Vn ::IN::I e BN(M) 1]supp(/x)
_
E A I1 SIIpM < -ff

where BN(M) is the closed ball of radius N in the space of measures on T.
Since the relation "supp(S)

_
E" is closed in BI(PM) K(T) and similarly

for "supp(/x)__. E" in BN(M) K(T)while

1 ( 1)I1 SIIPM --n * Vk I/2(k) S(k)l _< -is closed in BN(M) BI(PM) it follows that

{S" ORD(S) 0}

is II. Similarly

ORD(S) 0 * BE K(T)[ E
_
supp(S) /X ( * )]

and "E
_

supp(S)" is Borel in K(T) BI(PM) being equivalent to

vn[ Zn n e, = n n supp(S) #: O]

(see the proof of Proposition 2 in 1), so

{S" ORD(S) 0}

is Z, i.e., &l. So it is enough to show ORD(S)is a ll-rank on

" ’\ {S BI(PM)" ORD(S) 0}.

But for S, T ", by the theorem in {}2 we have

ORD(S) < ORD(T) RKT( M(supp( S) ) S ) < RKT( M(supp( T) ) T),

so it is enough to show that

RKr(M(supp(S)), S)
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or equivalently

(M(supp(S)),S)

is a ll-rank on ’. As in the proof in p. 175 of [6] it is enough to check that
the set

S e BI(PM): IlfllMsus iS}

for each f A, 6 > 0 is Borel. Since

IlfllM(supp(S)) tNVIz BN(M) N BI(PM),

(supp(/x)
_
supp(S) I<f,/z)l ),

this follows as in the preceding computation.

Remark. In the proof of the non-Borelness of a, which in particular
implies the existence of non-synthesizable pseudomeasures and therefore of
sets which are not of synthesis, one is only using (see the proof of the
Theorem in 1) that for each ordinal a < to there is E K(T) with least
fl(M(E)3 N(E))> a. In Katznelson-McGehee [4] such sets are con-
structed (which are also of synthesis) using the existence of sets which are not
of synthesis (Malliavin’s Theorem). Is it possible to construct E as above
without making use of non-synthesis sets? If so, one would have a new proof
of Malliavin’s Theorem (in a much stronger form).

4. Synthesizable pseudogunctions--The problem of their classification

We will look now at the subclass of consisting of the synthesizable
pseudofunctions. We denote this class by

o ( PF the class of synthesizable pseudofunctions
(with IISIIpM < 1).

Clearly, 0 is a II set (in BI(PM) with the weak *-topology). However we
do not know whether or not 0 is Borel. Since ORD restricted to 0 is
also a ll-rank on the II set 0, it follows by the boundedness theorem for
Ill-ranks, that the following are equivalent:

(i) 0 is Borel;
(ii) For some countable ordinal a0, every synthesizable pseudofunction S

has ORD(S) < a0, i.e., can be synthesized from measures on its support in at
most a0 iterations of sequential weak *-limits:
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It is this reformulation of (i) that makes much more plausible the non-
Borelness of /0, so we will formulate this as a conjecture

Conjecture. The class of synthesizable pseudofunctions a0 is not Borel
(in the unit ball of PM with the weak *-topology).
We will devote most of the rest of this paper to showing the connections of

this conjecture to the structure theory of sets of uniqueness. It will be seen
that either a proof or a disproof of this conjecture has interesting conse-
quences.

Remark. One can also formulate the problem of the classification of the
class of synthesizable pseudofunctions as the question of whether the set

’ {S PF: S is synthesizable} is Borel in the separable Banch space PF.
(It is clearly II). However this is easily seen to be equivalent to the above,
since the injection of BI(PF) into B(PM) is continuous (from the norm-
topology of BI(PF) into the weak *-topology of BI(PM)).

5. The new classes U1, , UI,* of uniqueness sets and their
relationship with synthesis of lseudofunctions

Recall that U, U0 denote respectively the classes of closed uniqueness,
extended uniqueness sets. Piatetski-Shapiro [10] introduced the intermediate
class U1,

consisting of those E for which I(E) A. As opposed to U, U0 this class
is not a r-ideal (i.e, closed under countable unions which are closed) so, as in
[6], let UI* denote the class of all closed sets which are countable unions of
Ul-Sets. Again

These inclusions are proper from results of K6rner [7] and Piatetski-Shapiro
[10]; see also [6]. It has been shown in [6] that UI* is in some sense
structurally very close to U. The following fact proved in [6] shows also the
relationship of UI* with synthesis. Denote by M( the class of closed sets E
which are locally not in UI* (equivalently not in U1); i.e., for each open set
V _c T with V c E 4: , V C E UI*. Then we have

E Mi ** E is the support of a synthesizable pseudofunction.
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(Note also (see again [6]) that if Mp is analogously defined for U, then
E Mp = E is the support of a pseudofunction.) In particular,

E UI* E does not support a non-0 synthesizable pseudofunction

(while E U *, E does not support a non-0 pseudofunction; and

E U1 E does not support a non-0 pseudofunction in N(E)).

Although the relationship of U, UI* is reasonably well understood, that of
Ux*, U0 is less clear. In Lyons [8] a first step was taken by introducing a new
class U2,

One of the equivalent characteristics of U2 sets is

EeU2 E supports no non-0 pseudofunction which is a strong limit
(in the PM-norm) of measures on E.

Again U2 is not closed under countable unions (which are closed), so let us
denote by U2* the class of such unions so that

Again, as Lyons [8] shows, U’
_

Uo is proper, but whether the same is true
for UI*

_
U2* is left open.

In some sense the class U2* seems close to Uo (perhaps some structural
theorems relating the classes U*, Uo may make this more precise). However
the relationship between UI*, U2* is not so clear.
To clarify this relationship we will introduce a natural transfinite decreas-

ing hierarchy of .classes Ux U* (0 < a < tol)whose first level is Lyons’,., 1,

U1,0 U, Ul,*0 U*, and last level is U1, UI*. It is also canonically associ-
ated with the hierarchy of synthesizable pseudofunctions and as we will see
the conjecture of 4 is equivalent to the properness of this hierarchy.

DEFINITION 1. A closed set E T belongs to the class U1, , 0 < a < o21,
if Mt’I(E) PF {0}, i.e., if E supports no non-0 pseudofunction in
MtI(E). Recall from 1 that Mt"I(E) is defined inductively by

Mt:l(E) M(E),

Mt,+ 1](E) Mt’:l(E)(1),
Mta](E) limit.
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Since for all large enough countable a, Mt"I(E) N(E) it follows that

We denote by U* the class of closed sets which are countable unions of1,

Ul,,-sets. (We will see later on that UI,. is not closed under countable
unions.) Thus we have

vcG*c cG*+c cG*+c cG,*cv,*,o_CG,a>/_

and Ua* U* n u*1,to < 1, "Also, denote by Me the class of closed sets which are locally not in Ua,*
(or equivalently not in UI,.), i.e., those E such that for every open V

___
T,

E n v = E n v U* (or UIra

Thus M,, M’.
Let use first provide a characterization of Mp analogous to that of MI1,

that clearly illustrates the connection with the hierarchy of synthesizable
pseudofunctions.

PROPOSITION 2. The following are equivalent for E G T, E closed"
(i) E Mp

1, t
(ii) E supp(S), where S PF n Mt"I(E), i.e., ORD(S) _< a.
In particular, E U* iffE does not support a non-O synthesizable pseudo-1,

function of ORD _< a.

Proof. To prove (ii) = (i) we need the following lemma whose proof by
induction on a we leave to the reader.

LEMMA. Let E G T be closed. If S M ](E), f A then f S
M[’](E n supp(f)).

So let

E Supp(S), S PF n Mini(E).

Let V be open with V n E 4: Q. Then there is f A, supp(f)c_ V and
f. S 4: 0. Then

f" S PF n Mt](E n V),

so E n V UI,,, i.e., E M,.



128 A.S. KECHRIS, A. LOUVEAU AND V. TARDIVEL

For the converse, repeat the proof given in [6, p. 229] for Mp noting that
each MtI(E) is a (strongly) closed subspace of PM.

It is clear that the first important question about the hierarchy {UI,*,} is
whether it collapses at some countable ordinal a0, thereby U* U*1,
U* It seems again plausible to conjecture that it does not, although as we1, 0"
mentioned in {}4 we do not even know if UI* U* Our next result however1,0"
establishes the equivalence of this conjecture with that of {}4 and rather
surprisingly ties this up with the question left open in [6] of whether Ul* (and
V1) are II sets.

THEOREM 3. The following are equivalent"
(i) The class o q PF of synthesizable pseudofunctions is Borel (in

the unit ball ofPM with the weak *-topology);
(ii) The hierarchy {U*} collapses i.e., for some countable ao Ul,*o U*"
(iii) The class U* is II 1"

Moreover, if U is II or if U{ (the class of E for which I(E) is sequentially
weak *-dense in A) is II, these equivalent conditions hold.

Proof The last assertion follows from the fact that U1 and U{ (by
Piatetski-Shapiro’s [10] Theorem; see also [6]) are hereditary bases for UI*, so
if they are II so is UI*, by the argument in VI.I.2 of [6].
The implication (i)= (ii) is clear, since if 0 is Borel, then for some

countable a0 all synthesizable pseudofunctions have order < a0, thus by
Proposition 2, M1,o Mi and so Ul,*0 UI* since

E U* *=lF[FAFcEclosedAFMi,]

The implication (ii) (iii) is clear from the following lemma.

LEMMA 4. The classes U,a, U*l,a are II.
Proof. Since U1,

U1, is II]. But
is a hereditary basis for U* it is enough to check that1,

E UI,,, * :IS BI(PM)[S , 0 A S - PF A S - MtI(E)].
Now it is easy to check by induction on a that Mill(E) N BI(PM) is a 1
subset of BI(PM) (with the weak *-topology) so we are done. D

It remains to prove the main implication (iii) = (i). Since, if {} is an open
basis in T,

E Mf ** Vn(V nE, Vn nE UI*)
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it follows that if UI* is II then M1 is E and thus Borel, since Mi is also I111
by the equivalence

E eM’ ** Vn[V tE = V E UI’],
and the simple fact (see [6]) that U{ is Z.
The following is the main lemma.

LEMMA 5.
that

IfM is Borel, there is a Borel function F: M( BI(PM) such

VE M((F(E) ao & supp(F(E)) E).

Granting this we complete the proof of (iii) (i) as follows: If UI* is II 1,

then Mi is Borel so let F be as in Lemma 5. Then {F(E): E MI} is a ;
subset of 0 and thus bounded in the Ill-rank ORD,. i.e., for some a0,

ORD(F(E)) < a0. It follows that if S ’0 there is T 0 with

ORD(T) _< ao and supp(S) supp(T).

(Recall here that M’ is exactly the set of supports of S 0). We will show
that this implies that every T o has order < a0 which, since ORD is a
ll-rank on 0, shows that ’0 is Borel.
Indeed let T 0, supp(T) E. Then for every open V with E N V

there is S PF, S 0 with S Mt"o1(V N E). It follows (see Lemma
VIII.4.2 of [6]) that PF Mt"01(E) is weak*-dense in N(E) and in particular
T PF t3 Mt01(E) w*, so

T PF Mt1(E)
w

(the weak-closure of PF MtI(E) in PF).

By Mazur’s Theorem, T Mt01(E) MtoI(E), so ORD(T) < ao.

It remains to proves Lemma 5. Assume M’ is Borel. First note that we
have the following characterization of Mi based on ideas of Piatetski-
Shapiro:

E Mi * I(E) is weak *-closed.

(See [6, VI.3.8] and the remark following it). Now consider the map

E M( I(E) N BI(A) II(E)

viewed as a function from Mi (a Borel set in K(T)) into K(BI(A)), the space
of closed subsets of BI(A) (with the weak *-topology)). We claim it is a Borel
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map. For that and for further arguments later on we will need some classical
descriptive set theoretic facts concerning compact sets. These can be all
found in [6], Chapter 4 but a non-logician reader may have trouble digging
them out. A nice exposition with proofs or complete references can be found
in Section 2 of [0].

THEOREM 6. Let X, Y be compact metric spaces. Let f: X - K(Y) be a
map such that the relation

R(x, y) y f(x)

is Borel in X Y. Then the map f is Borel.

So it is enough to show that the map E M( II(E) (which can be
viewed as mapping from all of K(T) into K(BI(A)) by defining it to be if
E Mi) has the property that the relation

R {(f, E): f BI(A ) A E M’ A f I(E)}

is Borel in K(T) BI(A). But for f BI(A) E Mi,
(f,E) R ** =lx[x E A f(x) 4: 0].

Note now that

{(x,f) T X BI(A): f(x) 4: 0}

( m

(X, f) T X BI(A)" ::le > O=inVm > nl

_
f(k)eik’[ > e

-m

is an F in T BI(A) and thus so is (K(T) BI(A))\R and we are done.
It is now a classical fact (see again [0]) that in each compact metric space X

there is a Borel map s: K(X) X such that s(E) E for E 4: . Fixing a
countable subset {fn} of BI(A) which is norm-dense in BI(A) and applying
this to the weak *-closed sets

(1)BI(A ) B fn, "
(where B(f, e) is the closed ball in A with center f and radius e)we can
easily see that there is a Borel map E M’ {dn(E)} from M’ into
BI(A)N such that for E M’, E 4: , {d(E)} is a norm-dense subset of
II(E).
We use that to show that the map E M’ NI(E) N(E) N BI(PM) is

also Borel from Mi into K(BI(PM)). This follows from Theorem 6 again
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since for E M, S BI(PM) the relation

s N(e) Vf I(e)(<S, f> 0)
* /n(( S, dn(E) ) O)

is clearly Borel.
If E M’, e > 0 and N(E) {S N(E): R(S) =df lhhIlS(n)] < e} it

follows from Lemma VIII.4.9 of [6] that for any S N(E) with IISIIPM < a
there is Tn N(E) with

and Zn IIPg < a + e.

Following the proof on p. 308 of [6] we construct inductively a sequence of
Borel functions SI(E), S2(E),... from M1 into BI(PM) and nl(E),
n2(E),.., from Mi into N such that

SI(E), S2(E),... e NI(E), 0 < nl(E) < n2(E) <
1

IISI(E)IIPM <

1
IISk(E)IIP < - / 2-i-1 if k > 2,

i<k-1

IISk(E)II < 2- if k >

and

>

(Here IISIIT,M-- sUPlmlnlS(n)l).
The main fact that we use in making S, $2,... Borel is the following

uniformization result of Arsenin and Kunugui (see [0]).

THEOREM 7 (Arsenin, Kunugui). If X, Y are compact, metric spaces,
P c_ X x Y is Borel and for each x X the section Px {Y" P(x, y)} is F,
then there is a Borel function f: X Y such that Px q fD = f(x) Px.

Looking at the relation

P(E, $1) ** E e M1 A S NI(E) A IlSlllP
< - A ::lnllml > nlSl(m)l < x m S(O) > -which is Borel (in K(T) X BI(PM)) with F sections we can find S(E) Borel

with P(E, SI(E)) for E e Mio, E . Then let nl(E)= n be least with
Vlml >_ nlS,(EXm)l <_-s. We define now S2(E), n2(E) as follows (the
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construction of S3(E), n3(E),.., is analogous): Note that from the above
mentioned property of N(E), for each m > hi(E) n there is m’ > m
and S N(E) with

nl,mIISIIPM < / IlSllPM
m< IISI(E)II + e < , IISIIPM < and S(0) >

(here IlSll,m-- suPnllnlmlS(n)l). By the uniformization Theorem 7 all
these can be found in a Borel way from E so by the usual "iterating and
averaging" argument (see [6], p. 276), S2(E), n2(E) can be defined in a Borel
way satisfying the required conditions.

Finally we use the following standard fact.

LEMMA 8. Let X be a compact metric space. There is a Borel function f:
XN X such that f({Xn}) is a limit of a converging subsequence {xn) of {Xn}.

Applying this to the sequence {Sn(E)} for E Mi we obtain a Borel
function E Mi T(E)which assigns to each E Mi a weak*-limit of a
subsequence of {Sn(E)}. By the properties of {Si(E), ni(E)} it follows that if
E #: , E M’ then T(E) 0 and T(E) NI(E) c3 PF.
To complete the proof notice that from what we have just shown it follows

that there is a sequence E Mf Tn(E) of Borel functions which assigns
to each E Mi and each n with V t3 E # f, T(E) PF C3 NI(V N E),
Tn(E) #: O. Combining this with the procedure in p. 229 of [6], one easily
constructs from the {T(E)} a Borel function E M F(E) such that for
E Mf, F(E) is a synthesizable pseudofunction with support E. This
completes the proof of Lemma 5 and the theorem, t3

Remark. The "correct" way to formulate Lemma 5 is in the following
stronger form as a basis theorem in the language of effective descriptive set
theory:

LEMMA 5’. If E Mf (so that there is S ao with supp(S) E), there
is S All(E), S o with supp(S) E.

To avoid the necessary logical background required in this formulation, we
preferred the weaker version stated in Lemma 5. However the reader
familiar with effective descriptive set theory will have no problem to view the
proof above as establishing Lemma 5’ as well. We note here a rather subtle
issue which the formulation of Lemma 5’ brings forward: If E Mp, i.e., E
is the support of pseudofunction, then in general there is no AI(E) pseudo-
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function with support equal to E. Otherwise

E Mp
* =tS AI(E)(S PF A S BI(PM ) A supp(S) E),

so that Mp would be II and thus Borel, since Mp is also ; by the
definition

Then Ulc’- K(T)\M’ would be Borel as well and so, by VI.1.3 of [6], U
would admit a Borel basis, contradicting the result of Debs-Saint Raymond
[1] (see also [6]).
One of the most interesting implications of the preceding result is that a

proof of the conjecture would establish that U1, UI* are not II. It is already
known from work of Solovay, Kaufman that U1, UI* are not (see [3], [11],
[6]). Thus these classes would be neither nor II. On the other hand it can
be seen that in terms of upper bounds U belongs to the class of comple-
ments of ’II sets, where g’= ,,o is the classical operation A ([9], p. 68)
and UI* belongs to the larger class ;-IND (see [9]), which is properly
contained in A12 ; q II. Thus if the conjecture holds one would have
the first natural examples of sets in analysis lying strictly between levels of the
projective hierarchy, a rather striking phenomenon. In fact in this case it
would be reasonable to conjecture that UI* is of complexity exactly E-IND
(see [5] for results relating E-IND with g-ideals of closed sets with ;1
bases) and perhaps similarly for U1, in its corresponding class, i.e., the dual of
’II. A result of Dougherty and Kechris states that if X is compact
metrizable, I c_ K(X) a g-ideal of closed subsets of X which is not II then
I is not v II (i.e., the union of a and a II set). Thus if the conjecture
holds UI* cannot be in v II either.
As we mentioned earlier the first open case of the conjecture is that

(this problem was raised in Lyons [8]). This is equivalent to saying that
M MPl, o. In terms of ’0 this is again equivalent to the assertion that
there is a synthesizable pseudofunction which is not a strong limit of
measures on its support. In this formulation the Piatetski-Shapiro Theorem
that UI* U0 (or M’ Mio) asserts that there is a synthesizable function
which is not a strong limit of Rajchman measures, (i.e., measures in PF)
while Lyons’ stronger result Ul,*0 U0 (or M’ M0) amounts to saying that
there is a pseudofunction which is a strong limit of measures but not
Rajchman measures on its support. (The strict inclusion UI* c U1,0" has now
been established by Kaufman; see the addendum at the end of the introduc-
tion).
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U*6. On the structure of U , x,

We will establish some results about UI,, UI,* analogous to those estab-
lished by Lyons for [8]. The methods are sometimes similar and we will only
provide details when there are new twists.
We will first define a transfinite sequence K,,(E), E K(T), of convex

compact (in the weak *-topology) subsets of BI(PM). First for such E let

M(e),

M(a+I)(E) (M(Ot)(E))(1),
A limit,

as usual so that

Now let

Mini(E) M()(E).

K0(E) PROB(E) the class of probability measures on E,

K,+ I( E) M()( E) 0 BI( PM)
gx(E) (M(X)(E))(1)(’1BI(PM )

where for each Z
_
PM we define

W*
ZO) {S PM: ::t{Sn}(S,, Z A S, S A R(S,) ---> 0)},

with R(S) Ii-lS(n)l. In [6], p. 171, Z(1 has been defined by taking only
those S Z that satisfy the above definition. This coincides with the above
definition if Z is weak *-closed, which was the case of interest in [6]. However
here the Z’s we are studying are not weak *-closed.

Let us first note the following fact.

PROPOSITION 1. _Fr any subspace Z c_ PM, 2(1 i$ weak*-closed. Also
PF t Z(1 PF Z.

_P,roof Fix e > 0 and let C {S Z: R(S) < e}. If S ,Z(1), then
C so by Lemma VIII.4.9 of [6] there are S,, C, S,, .._>w S, [[Sn.[IeM
IISIIP / e. So if S ZO), there is

W*an e z, an s, R(S,,) ---> O, IlSnllp < Ilslle + 1.
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If follows easily that Z(1 is weak *-sequentially closed, so by Banach’s
Theorem (see [6, V.2.2]) ZW is weak *-closed.

It is obvious that PF c3 Z c_ PF c3 Zx). Conversely assume S PF Zx).
Fix e > 0. Than as above, for each n, we can find T C with

IS(i) T(i)l < e for Iil n,

and

IITIIPM IISIIPM + 1.

So define no < n < n2 <
IIS[IPM + 1 such that

and To, T1,... e C with IITmI]PM <-

IS(i) Tm(i)l < e if lil _< nm or Iil >- nm+l.

So if N is large enough,

N PM
<e and TI + + TN T Z. DN

The main facts about K (that follow from their definition and the above
proposition) are

(1) For a 0 or successor, span (K,(E)) M,’)(E).
For a A limit, span(Ka(E))
(2) For any a, PF 3 span(K(E))= PF t3 M)( E).
We define now a sequence of norms on A.

Note that

Ilfll,e sup{l<f, S>" S K(E)}

Ilfll0,e Ilfllc) ( the sup-norm of the function fiE)

Ilfll0, e -< Ilfll 1, E --< < Ilfll+ 1, E --< < Ilfll + 1, E < < IlfllA(e)

and eventually Ilfll+l,e Ilfll(e. (Recall that

IlfllA(e-- inf{llf- gilA" g - I( E)}

sup{l<f, S>" S N(E) BI(PM)}.
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Moreover, if Ilfll(e) is the tilde-norm (see [2], p. 362) defined by

Ilfll<) sup{l<f, S)I S M(E) N BI(PM)}

then

Ilfll<e) Ilflll, e.

For S PM, define

IISIl, sup{ii-l(f, S)l f BI(A ), IILll,e 0}.

We now have the following key fact.

PROPOSITION 2. For each S PM,

IISIl, dist(S, span(K.(E))).

In particular, S span(K(E))** IISIl, 0,

Proofi First let S PM and suppose fn BI(A), Ilfnll, 0. Fix T
span(K(E)). Since IIfll,e --’ 0, (fn, T) --’ O. So

l-l<f, S>I ff-l<f,S- T)I < IIfll" IIS- TIIPM < IIS- TIIPM.

So S , e dist(S, span(K(E))).
Conversely, let S PM. By Hahn-Banach find

S* BI(PM* ) C3 K(E) +/- with (S,S*) dist(S, span(K(E))).

Fix e < (S, S* ). We will find fn BI(A)with

Ilf ll, E - 0 and < fn S > > e.

Put

V= {S** PM*: Re(S, S**) > e}.

This is a weak*-open nbhd of S* in PM*, so by Goldstine’s Theorem

W= VBI(A) :/:

Note that W is convex. We can obviously view W as a convex subset of
C(K(E)). (Here K(E) has the weak*-topology).
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Claim. 0 W (= the strong closure of W in C(K(E))).
Granting this there are fn W with IIf=llc(/.(e>--IIf=ll,e--’ 0. Since

f= W, 1( fn, S )1 > e and we are done.

Proof of the claim. If 0 W, there is a measure / M(K(E)) and
6 > 0 with Re(f,/x) > 6 for all f W. Write/x as a linear combination of
probability measures. Each of these has a barycenter in K(E) and thus
there is S’ span(K(E)) such that (f,/x > (f, S’), for f W. Now

S * span(K(E)) +/-,

so

{S** PM*" S** V A Re(S’, S**) < 6}

is also a weak*-nbhd of S*, thus it contains f BI(A). Then f W but

Re(S’, f) Re(f,/x) < 8,

a contradiction.

DEFINITION. For E K(T), let

W*Zo,(E ) {f A" ::If A(fn f/x Ilfnll,E 0)},
2(E) f A" =lfn BI(A)(f w___ f/X Ilfn I1, e --’ 0)}.

Note that Z,(E) is an ideal in A and ,(E) is convex compact in the
weak*-topology and for S PF,

IIsIl, sup{l(f,S>l’f 2,(E)}

Note also that if A*(E) is as in [2, p. 367], then

Zo(e) =A*(e)

PROPOSITION 3. For each E K(T),

PF N Z,( E) +/- PF Mtl(E).

Proof Clearly for S PF,

s z (e) 2(E)" IISII,E 0

span(K,,(E)) ** S M(’(E).
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We have thus the following characterization

THEOREM 4. Let E K(T). Then the following are equivalent:
(1) E Ul, a;
(2) Mt’(E) PF {0};
(3) Z,(E) is weak*-dense in A, i.e., Z,(E)w* =A;
(4) 1 Z(E)W*.
In order to introduce the classes UI’,, we first need a definition.

DEFINITION. For each 4= E K(T), let

Then the following can be established by standard methods (see e.g. [6, V.2
and V.5.3]).

PROPOSITION 5. For any closed set E

r (E) t,,(E) and t(E) 1 +,(E)"

Moreover rl(E) > 0 .. Z(E) A.

DEFINITION. Let E K(T). Put E U{, . Z(E) A.

PROPOSITION 6. Let E K(T). Then the following are equivalent:
(i) E U{,;
(ii) Z(E) A;
(iii) 1 e Z’(E);
(iv) E D or ,I(E) > O.

We will show now that UI’, is a basis for UI, and thus UI,*,,. For that
consider the Cantor-Bendixson derivation associated with UI’,, (see [6]).
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Denote by Eb., the corresponding derivative. The main point is the follow-
ing:

PROPOSITION 7. For each E K(T),

In particular if E UI,‘,, then Eb,
U ,,-sets. Thus1,

U1, so that E is a countable union of

i.e Ui’,‘, is a basis for the tr-ideal U*1, a"

Proof. Fix x Eb;., f Z‘,(E) in order to show that f(x) 0. Since
x Eb,, we can find

W*Sn span(K‘,(E)) with Sn ix and R(Sn) < 1/n.

Let Tn PF be such that

Zn S IIPM 1/n.

Since f Z‘,(E)find f A with f
Now

w, f and Ilfn II.e 0. Say Ilfn I1 M.

f(x) (f,

(f,- s) + (f,Sn Zn) -b (f-fm, Zn)
+ (fro, T- S.) + (fro, S).

Fix e > 0. Find then no such that

( f . Sno) < e/5,

[(f, So Tno)[ < e/5,

[(fro, To- So)l < e/5, all m.

Then choose mo such that

I(f fmo, Tno)l < /5,

I(fo, So)l < e/5,
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the last being possible as S0
and we are done.

e span(K,,(E)) and Ilfnll,e 0, So If(x)l < e

In the case of U’ Lyons [8] shows that U’ is an ideal. We do not know if1,0 1,0
this is true for all UI’,,. It is easy to verify that U’ is closed under finite1,
unions of pairwise disjoint (closed) sets. We can use this to show:

PROPOSITION 8. For each E K(T),

(__. I(E,,’1,, ) by Proposition 7).

Proof. Let f J(Ebl,.) t3 BI(A). Then F supp(f) t3 E is disjoint
from Eb1, and totally disconnected, so F is a finite union of clopen in F
Ul’,-sets. These can be clearly assumed to be disjoint, so F UI’,,. Thus
there is g A, gn __)w* 1, llgnll,, 0. Then fg w,* f, so it is enoughto
check that Ilfg I1, e --* 0. Fix S K,(E). Then (fg, S) (g, f. S), so

Ilfgn I1, e < Ilgn I1, F 0 I"1

and we are done.

We can deduce from this that U is not a a-ideal.

PROPOSITION 9. For each a, UI,,, is not a it-ideal.

Let E U{ \ U by K6rner’s Theorem (see [7], also [6]). Then
\U.

Let {x} enumerate the endpoints of the intervals contiguous to E and,
denoting by Eh the Herz transform of E (see [6, 6.3, p. 226]), let {Yk}
enumerate the points of Eh \E. Find E(m), F(kl) a discrete sequence of
closed sets disjoint from E such that E(nm) (all m) is in the 1/n-nbhd of x,
E(nm) ....m Xn and F(kl) (all 1) is in the 1/k-nbhd of Yk, F(kl) _..)l Xk and

0 < "vlot(E(nm,) "’)m O, 0 < ’0t(i5’(1)) -") 0ak

(Such sets can be found, as for each interval I and e > 0 there is E
_
I with

E UI’ __. UI’,,, and

0 < r/,(E) < r/0(E ) deJ inf{R(/x)"/x is a probability measure on E} < e
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(Piatetski-Shapiro [10], see also [6, VI.2.5]).) Let

F Eh U U E(nm) U U l(1)
k

n,m k,l

Then F (UI’,,) is closed and
tions

Eh. By the two preceding proposi-

J(FbL,. )
_
Z(F)

_
I(FL,. )

and Ft, Eh is a set of ,synthesis, so Z,(F)= I(Eh). But then F U1, ,l,a W
because otherwise Z(F) =A, i.e., I(Eh)* =A, so Eh U thus Eh

U and E U, a contradiction, rn

We have already seen in 5 that U1,
We actually have:

is II and thus so is the g-ideal U*

THEOREM 10. The class Ui’,
Borel basis.

is Borel, so the g-ideal UI*, (U{,,) has a

Proof. The proof is based on the method used by Solovay [12] in his
original proof that the Piatetski-Shapiro rank on U is a Ill-rank.

Let X
_
PM be a subspace.

DEFINITION. A sequence {Xn} -- BI(PM)r approximates X if xn
(. X, Vn

and {xn: n N} is dense in X BI(PM) in the weak *-topology. (We are not
assuming that X is weak *-dense).

Recall that X(1) is the set of weak *-limits of sequences from X.

LEMMA 11. Them is a Borel function F: BI(PM)r --, BI(PM)r such that

[x,} approximates X = Yn} F({x,}) approximates S(1).

Proof Let p be the metric on PM that gives the weak *-topology on each
Br(PM), i.e.,

x IS(n) T(n)lp(S,T) 2

Fix a dense sequence {d} in BI(PM) (with the weak *-topology). For each
N let

U/= x BI(PM)" p(x, d(i)o ) < -2
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where we have fixed a 1 1 correspondence ((i)0, (i)1, (i)2) between N
and N3. Thus {U/} is a basis for BI(PM).
Note that if {xn} approximates X and x X(1) N BI(PM) then

X hm Zn, Zn XNBu(PM),

for some large enough N so find Xk.
p(Xk N, z,,) < N/n. So

with P(Xkn 7.,,/N) < 1/n. Then

x limW*(Xk,, N).

For xn} t B (PM)N, let

Ks{ Xn} weak *-closure of N. x,} in Bu(PM).

So we have seen that

X(1) () BI(PM) UNKN{Xn} 0 BI(PM )

Claim. For i, N N let

RN, {{X.} BI(PM)" Ui q KN{Xn} * Q}.

Then RN, C_ BI(PM)N is Borel.

Proof For K K(BN(PM)), the map K K Bx(PM) is Borel from
Bu(PM) to B(PM). Let

(i)1}UiN= x Bg(PM) p(x, ( d) io) < -z
Then Uiu is open in BN(PM) and

U N K 4. ; K q BI(PM) UiN

thus {K: K U/4: ;O} is Borel in K(BN(PM)). Now {xn} Ku{xn} is easily
Borel from BI(PM)N into K(BN(PM)) so we are done.

We will define now a sequence of Borel functions F/: BI(PM)N - BI(PM)
such that {x} approximates X = [F/({x.}) X(1) and (U/ X() 4. =
F/({x}) U/N X(I))]. Granting this, let F({x}) {yn} where Yi F/({x}).
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Clearly F is Borel and {xn} approximates X = F({xn}) approximates X(1), SO
we are done.

Definition of F. Fix i. Given {xn} BI(PM)r, first find the least N
N({x,}) such that KN{x} r3 U f, if such exists; else let Fi({Xn}) x0.

Now define {lk} inductively such that the weak*-closure of U/0 is contained
in U/, the weak *-closure of U/k+1 is contained in U/k, (lk)l/(kk)2 < 1/k and

Uk N Kv x,} 4= .
Finally put

El( {Xn} ) limW*(d)(lk)0 the weak *-limit of the centers of {U/k}.

It is easy to check, using the fact that Rv,i is Borel, that F is Borel. D

LEMMA 12. There is a Borel function F: K(T) BI(PM)r such that F(E)
approximates M(E).

Proof. Denote by BN(M(T)) the closed ball of radius N in M(T) (with the
weak *-topology). As in the preceding proof it is enough to check that for
each fixed N, the set

QN, {E K(T)" M(E) t Bv(M(T)) C3 U/: }

is Borel. But note that the map

E M(E) t Bt(M(T))

from K(T) into K(BN(M(T)) is Borel and that

LN, Iz - BN( M(T) ) /z U/}

is an F in Bv(M(T)), so that QN, is Borel.

By putting together Lemmas 11, 12, a simple transfinite induction shows
the following result.

LEMMA 13. For each countable ordinal a, them is a Borel function
F,: K(T) BI(PM)r such that F(E) approximates M()(E).
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In particular for each a, F,(E) is a sequence dense in K,+ I(E).

We need one more lemma to take care of Kx(E), A limit.

LEMMA 14. For each limit ordinal h there is a Borel function G: K(T) -BI(PM)N such that Ga(E) approximates M()(E)(1).

Proof. It will be enough, by arguments similar to that of Lemma 12, to
show that the map

E M(’)(g)(1) O BI(PM)

from K(T) into K(BI(PM)) is Borel. And for that by Theorem 5.6, it is
enough to show that the relation

S M()(E)(,) fh BI(PM) R( E, S)

is Borel in K(T) X BI(PM). But note that if (ui’N)= is a basis for the
weak*-topology on each BN(PM) we have R(E, S) ,, ]NtiVp[S Ui, N =,

=la < A::IM[{T BN(PM): /[m[ >_ M[T(m) <_ i/p} n KN(F,(E)) U, N
]] so we are done. rn

We complete now the proof that UI’,, is Borel. Letting {gN, n} denote a
sequence norm-dense in BN(A), we have

W*E e U’ ::l{f}(f e A A f 1 A IILII, o)1,

::INVpVM=In[IgN, n(O) iI < 1
/x IgN, n(m)[ < 1__

p p’

o < Iml <_ M ^ IIgN,.ll,e < -For a 0, since Ilgll0,e Ilgllc(e) this is clearly Borel. For the successor
case a + 1, note that

Ilgll+l,E Ilgllc(K.+l(e)) sup.{l<g, Yn>l: {Y.} F,,(E)}

and for the limit case A,

Ilgllx, e Ilgllc(K(e))-- sup.{l<g, y.>: {Yn} Gx(E)}

so we are done.
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Remark. The preceding argument can be used to show also that the
inclusion in Proposition 7 is proper in general. Take a 0 in order to show
that there are E with ZO(E) 4 I(E,,’,,.o) or in fact

Z0(E) +/-
#: N(E;,, ).

t-’l,0

As Lyons shows in [8], Zo(E) +/- (= Z(E) +/- in his notation) M(E)(1).
For each closed set E let {x,,} enumerate the endpoints of the intervals

mEn(m).contiguous to E and let E(nm) be as in Proposition 9. Put
Thus Eb E. Now recall from [6] that the map F" K(T) K(BI(PM))
given by"7(E)= N(E)(3 BI(PM) is not Borel. Otherwise, since G(E)=
PM(E) 3 BI(PM) is Borel, we would have

E is of synthesis F(E) G(E)

so S {E e K(T): E is of synthesis} would be Borel. Put

H(E) M(’)(1) (’ BI(PM).

By the proof of the preceding theorem, choosing the E(nm) canonically so that
E E is Borel, we have that H: K(T) K(BI(PM)) is Borel. So for some
E, H(E) 4: F(E), i.e,

N( E) M( I)(I),

so if F =/, Z0(F) +/-= M(F)(1) N(E) N(FbIo).
We conclude with some open problems (for th definition of the concepts

involved see [6]):
Is U* (0 < a < (0 I) calibrated? Is is locally non-Borel? Can every ZI set

in (U*)int be covered by countably many Ul*,-sets?1,

REFERENCES

0. E.A. AZOFF, Borel maps on sets of yon Neumann algebras, J. Operator Theory, vol. 9 (1983),
pp. 319-340.

1. G. DEBS and J. SAINT RAYMOND, Ensembles borliens d’unicit et d’unicitg au sens large,
Ann. Inst. Fourier (Grenoble), vol. 37 (1987), pp. 217-239.

2. C.C. GRa-M and O.C. McGEHa, Essays in commutative harmonic analysis, Grundlehren
Math. Wiss., vol. 238, Springer-Verlag, New York, 1979.

3. R. KUFM,N, Fourier transforms and descriptive set theory, Mathematika, vol. 31 (1984), pp.
336:-339.

4. Y. KATZNtSON and O.C. MCGHE, Some sets obeying harmonic synthesis, Israel J. Math.,
vol. 23 (1976), pp. 88-93.

5. A.S. KeCHRS, The descriptive set theory of r-ideals of compact sets, Logic Colloq. no. 88,
Ferro, Bonotto, Valentini and Zanardo (editors), North Holland, Amsterdam, 1988,
pp. 117-138.



146 A.S. KECHRIS, A. LOUVEAU AND V. TARDIVEL

6. A.S. KECHRIS and A. LOUVEAU, Descriptive set theory and the structure of sets of uniqueness,
London Math. Soc. Lecture Note Series, vol. 128, Cambridge Univ. Press, 1987.

7. T. KRNER, A pseudofunction on a Helson set, I and II, Asterisque, vol. 5 (1973), pp. 5,
3-224, 231-239.

8. R. LYONS, A new type of sets of uniqueness, Duke J. Math., vol. 57 (1988), pp. 431-458.
9. Y.N. MOSCHOVAKIS, Descriptive set theory, North Holland, Amsterdam, 1980.

10. I.I. PIATETSKI-SHAPIRO, On the problem of uniqueness of expansion of a function in a
trigonometric series, (in Russian), Moscov. Gos. Univ. Uc. Zap. 155, Mat. 5 (1952), pp.
54-72; Supplement to the work "On the problem (in Russian), ibid., 165, Mat.
7 (1954), pp. 79-97.

11. R.M. SOLOVAY, Private communication, Dec. 1983.
12. Private communication, Feb. 1984.

CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

UNIVERSITI PARIS VI
PARIS, FRANCE

UNIVERSITY OF CALIFORNIA, LOS ANGELES
LOS ANGELES, CALIFORNIA


